The Names of Plants, Third Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration -
Of Dahlia Myths.Pub
Cavanilles’ detailed illustrations established the dahlia in the botanical taxonomy In 1796, the third volume of “Icones” introduced two more dahlia species, named D. coccinea and D. rosea. They also were initially thought to be sunflowers and had been brought to Spain as part of the Alejandro Malaspina/Luis Neé expedition. More than 600 drawings brought the plant collection to light. Cavanilles, whose extensive correspondence included many of Europe’s leading botanists, began to develop a following far greater than his title of “sacerdote” (priest, in French Abbé) ever would have offered. The A. J. Cavanilles archives of the present‐day Royal Botanical Garden hold the botanist’s sizable oeu‐ vre, along with moren tha 1,300 letters, many dissertations, studies, and drawings. In time, Cavanilles achieved another goal: in 1801, he was finally appointed professor and director of the garden. Regrettably, he died in Madrid on May 10, 1804. The Cavanillesia, a tree from Central America, was later named for this famousMaterial Spanish scientist. ANDERS DAHL The lives of Dahl and his Spanish ‘godfather’ could not have been any more different. Born March 17,1751, in Varnhem town (Västergötland), this Swedish botanist struggled with health and financial hardship throughout his short life. While attending school in Skara, he and several teenage friends with scientific bent founded the “Swedish Topographic Society of Skara” and sought to catalogue the natural world of their community. With his preacher father’s support, the young Dahl enrolled on April 3, 1770, at Uppsala University in medicine, and he soon became one of Carl Linnaeus’ students. -
The Role of Fir Species in the Silviculture of British Forests
Kastamonu Üni., Orman Fakültesi Dergisi, 2012, Özel Sayı: 15-26 Kastamonu Univ., Journal of Forestry Faculty, 2012, Special Issue The Role of True Fir Species in the Silviculture of British Forests: past, present and future W.L. MASON Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, U.K. E.mail:[email protected] Abstract There are no true fir species (Abies spp.) native to the British Isles: the first to be introduced was Abies alba in the 1600s which was planted on some scale until the late 1800s when it proved vulnerable to an insect pest. Thereafter interest switched to North American species, particularly grand (Abies grandis) and noble (Abies procera) firs. Provenance tests were established for A. alba, A. amabilis, A. grandis, and A. procera. Other silver fir species were trialled in forest plots with varying success. Although species such as grand fir have proved highly productive on favourable sites, their initial slow growth on new planting sites and limited tolerance of the moist nutrient-poor soils characteristic of upland Britain restricted their use in the afforestation programmes of the last century. As a consequence, in 2010, there were about 8000 ha of Abies species in Britain, comprising less than one per cent of the forest area. Recent species trials have confirmed that best growth is on mineral soils and that, in open ground conditions, establishment takes longer than for other conifers. However, changes in forest policies increasingly favour the use of Continuous Cover Forestry and the shade tolerant nature of many fir species makes them candidates for use with selection or shelterwood silvicultural systems. -
24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice. -
Wetlands, Biodiversity and the Ramsar Convention
Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. -
Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits. -
Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse. -
Phylogenetic Relationships Among the Mangrove Species of Acanthaceae Found in Indian Sundarban, As Revealed by RAPD Analysis
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(3):179-184 ISSN: 0976-8610 CODEN (USA): AASRFC Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis Surya Shekhar Das 1, Swati Das (Sur) 2 and Parthadeb Ghosh* 1Department of Botany, Bolpur College, Birbhum, West Bengal, India 2Department of Botany, Nabadwip Vidyasagar College, Nadia, West Bengal, India _____________________________________________________________________________________________ ABSTRACT RAPD markers were successfully used to identify and differentiate all the five species of Acanthaceae found in the mangrove forest of Indian Sundarban, to assess the extent of interspecific genetic diversity among them, to reveal their molecular phylogeny and to throw some light on the systematic position of Avicennia. The dendrogram reveals that the five species under study exhibits an overall similarity of 60.7%. Avicennia alba and A. officinalis (cluster C1) have very close relationship between them and share a common node in the dendrogram at a 73.3% level of similarity. Avicennia marina and Acanthus ilicifolius (cluster C2) also have close relationship between them as evident by a common node in the dendrogram at 71.8% level of similarity. Acanthus volubilis showed 68.1% similarity with cluster C1 and 60.7% similarity with cluster C2. Our study also supported the view of placing Avicennia under Acanthaceae. Regarding the relative position of Avicennia within Acanthaceae, it was shown to be very close to Acanthoideae. In comparison to other species, A. marina showed most genetic variability, suggesting utilization of this species over others for breeding programme and as source material in in situ conservation programmes. -
Kingdom Class Family Scientific Name Common Name I Q a Records
Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised. -
Instructor's Manual: Development of Higher Level Thinking Abilities. INSTITUTION Northwest Regional Educational Lab., Portland, Oreg
DOCURIBT RESUME ED 146 125 95 SP 011 730 AUTHOR McCollum, John A.; Davis, Rose Marie TITLE Instructor's Manual: Development of Higher Level Thinking Abilities. INSTITUTION Northwest Regional Educational Lab., Portland, Oreg. SPONS AGENCY Office of Education (DHEN), Washington, D.C. PUB DATE 72 NOTE 611p.; Some pages may not reproduce well due to the paper color EARS T4ICE MF-$1.t6 HC-$32.81 Plus Postage. DESCRIPTORS *Institutes (Training Programs); Instructional Materials; *Leaders Guides; *Learning Processes; Manuals; Research Utilization; Skill Development; *Teacher Education; *Thought Processes ABSTRACT This training manual is designed for use by instructional leaders conducting a workshop on the translationand application of research on *thinking processes* into implemented programs of instruction. The objectives of such a program is to develop teacher skills in relating thinkingprocesses to a structure of knowledge (factual base -- concepts-- generalizations). Specific objectives for instructional leaders are the development of leadership skills in the areas of (1)open, active learning processes;(2) human relations; (3) conduct of simulation, laboratory, and application activities; (4) curriculum development; and (5) self-evaluation. Content of the manual includesa participant materials list, description of instructional format, preinstructional arrangements, orientation, rationale for change, and overview of the training procedure. All participant materials are also included. Processes discussed are: curriculum development, concept formation, sensitivity to data interpretation, learning experiences, interpretation of information displays, and application of knowledge. A review of materials coveree concludes the program:a bibliography and glossary of terms are appended. (MJB) ******************************************* *************************** Documents acquired by ERIC include aauy informal unpublished * .terials not available from other sources. ERIC makes every effort * * to obtain the best copy available. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Acanthus Ebracteatus Leaf Extract Provides Neuronal Cell Protection Against Oxidative Stress Injury Induced by Glutamate Anchalee Prasansuklab1 and Tewin Tencomnao2*
Prasansuklab and Tencomnao BMC Complementary and Alternative Medicine (2018) 18:278 https://doi.org/10.1186/s12906-018-2340-4 RESEARCHARTICLE Open Access Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate Anchalee Prasansuklab1 and Tewin Tencomnao2* Abstract Background: Acanthus ebracteatus (AE), an herb native to Asia, has been recognized in traditional folk medicine not only for its antioxidant properties and various pharmacological activities but also as an ingredient of longevity formulas. However, its anti-neurodegenerative potential is not yet clearly known. This work aimed to evaluate the protective effect of AE leaf extract against glutamate-induced oxidative damage in mouse hippocampal HT22 cells, a neurodegenerative model system due to a reduction in glutathione levels and an increase in reactive oxygen species (ROS). Methods: Cell viability, apoptosis, and ROS assays were performed to assess the protective effect of AE leaf extract against glutamate-induced oxidative toxicity in HT22 cells. The antioxidant capacity of AE was evaluated using in vitro radical scavenging assays. The subcellular localization of apoptosis-inducing factor (AIF) and the mRNA and protein levels of genes associated with the nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidant system were determined to elucidate the mechanisms underlying the neuroprotective effect of AE leaf extract. Results: We demonstrated that AE leaf extract is capable of attenuating the intracellular ROS generation and HT22 cell death induced by glutamate in a concentration-dependent manner. Co-treatment of glutamate with the extract significantly reduced apoptotic cell death via inhibition of AIF nuclear translocation. The increases in Nrf2 levels in the nucleus and gene expression levels of antioxidant-related downstream genes under Nrf2 control were found to be significant in cells treated with the extract.