Annelid Phylogeny—Molecular Analysis with an Emphasis on Model Annelids 13 Part II Evolution and Development Christoph Bleidorn 2.1 Introduction 13 5

Total Page:16

File Type:pdf, Size:1020Kb

Annelid Phylogeny—Molecular Analysis with an Emphasis on Model Annelids 13 Part II Evolution and Development Christoph Bleidorn 2.1 Introduction 13 5 Annelids in Modern Biology Edited by Daniel H. Shain A John Wiley & Sons, Inc., Publication Annelids in Modern Biology Annelids in Modern Biology Edited by Daniel H. Shain A John Wiley & Sons, Inc., Publication Copyright © 2009 by Wiley-Blackwell. All rights reserved. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientifi c, Technical, and Medical business with Blackwell Publishing. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Annelids in modern biology / edited by Daniel H. Shain. p. cm. Includes index. ISBN 978-0-470-34421-7 (cloth) 1. Annelida. I. Shain, Daniel H. QL391.A6.A56 2009 592′.6–dc22 2008042925 Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1 In Memoriam Charlie D. Drewes (1946 – 2005) On Monday, July 4, 2005, those of us interested in annelids and their use as models in research and teaching lost a good friend and enthusiastic colleague. Charlie Drewes, Professor of Ecology, Evolution and Organismal Biology at Iowa State University, died in Ames, Iowa. Charlie was born and raised in Minnesota and received a bachelor ’ s degree in biology from Augustana College in South Dakota. As a National Science Foundation Fellow in the early 1970s, he completed both master ’ s and doctoral degrees in zoology at Michigan State University. He was recruited as an assistant professor to Iowa State University where he attained the rank of professor and, in 2003, was honored with the title of University Professor. As a physiologist at Iowa State University for 31 years, Charlie taught hundreds of students in neurobiology, invertebrate biology, advance vertebrate physiology and science ethics. Charlie mentored 19 graduate students in neurobiology research, many of them now mentoring students of their own at universities in California, Illinois, Texas, Vermont and Georgia, among others. He published over 50 refereed research articles and numerous book chapters, invited reviews and education - related publications. Many of his most important contributions followed his development of noninvasive, recording devices for detecting giant fi ber action potentials in freely moving worms. He applied this approach v vi In Memoriam to studies of escape refl ex physiology, annelid nerve regeneration and the sublethal effects of environmental toxicants. In the last decade or more, Charlie invested considerable effort in developing Lumbriculus variegatus as a tool for biological science education (see Chapter 10 ). With groups now interested in sequencing the genome of L. variegatus and with its expansion as a model in teaching and research laboratories, Charlie ’ s legacy might be linked to his keen enthusiasm for the California mudworm as a model for discovery. Charlie Drewes focused the last years of his life on educational outreach to high school and college science teachers. He conducted an annual “ total immersion ” teaching work- shop at Iowa Lakeside Laboratory in Lake Okoboji, Iowa. A legion of high school and community college biology teachers from 16 states participated in these workshops over the years. He conducted numerous invited workshops and presentations at local and national platforms, including a guest instructorship at the Woodrow Wilson National Fel- lowship Foundation and recurring visiting instructorships at Advanced Placement Biology workshops for State of Texas biology teachers at Texas A & M University. Thus, Charlie ’ s impact on biologists, and especially the group of individuals he fondly called wormolo- gists, was far broader than the borders of Iowa. Charlie was a recipient of several distin- guished teaching awards from Iowa State University, the Iowa Academy of Science and the National Association of Biology Teachers (NABT). In 2004, the NABT named him the National College Biology Teacher of the Year. Along with his research publications, Charlie produced a long list of useful documents, informational and procedural, on anne- lids and other invertebrates as tools for science education. This can be found online at a site ( http://www.eeob.iastate.edu/faculty/DrewesC/htdocs/ ) maintained by the Department of Ecology, Evolution, and Organismal Biology , Iowa State University. Charlie Drewes was willing to answer e - mails from wondering high school students at almost any time of the day or night. He would talk for hours at a time in person or by phone with colleagues seeking his knowledge. We will miss Charlie ’ s inexhaustible excite- ment toward biology and annelids in particular. His passing has created a void in our sci- entifi c community and in many of our hearts. Charlie enjoyed life and the lives of worms. Let us continue the joy. Contents Preface xi 3.2 Sources and Kinds of Variation 32 Contributors xiii 3.3 Examples of Clitellate Model Organisms 34 3.4 Cryptic Speciation 41 Part I Annelids as Model Systems 3.5 Conclusions and in Biology Recommendations 41 4. Annelid Life Cycle Cultures 47 1. Developing Models for Lophotrochozoan and Annelid Donald J. Reish and Bruno Pernet Biology 3 4.1 Introduction 47 Kenneth M. Halanych and 4.2 Criteria for the Selection of Elizabeth Borda Species 48 4.3 Summary of Culture 1.1 Introduction 3 Techniques 48 1.2 Phylogenetic Considerations 4 4.4 Life Cycle Cultures of 1.3 Genetic and Developmental Polychaeta 50 Tools 5 4.5 Life Cycle Cultures of 1.4 Annelid Model Organisms 6 Oligochaeta 56 1.5 Other Potential Annelid 4.6 Life Cycle Cultures of Hirudinea Models 8 (Leeches) 58 2. Annelid Phylogeny—Molecular Analysis with an Emphasis on Model Annelids 13 Part II Evolution and Development Christoph Bleidorn 2.1 Introduction 13 5. Annelids in Evolutionary 2.2 Genes 14 Developmental Biology 65 2.3 Molecular Annelid Dian-Han Kuo Phylogeny 16 2.4 Choosing Model Organisms 24 5.1 Introduction 65 2.5 Branch Lengths 24 5.2 Evo-Devo Today 66 2.6 Problems in Inferring Annelid 5.3 Evo-Devo as Comparative Phylogeny 24 Biology 66 2.7 Conclusions 25 5.4 Why Annelid Development Is Interesting for Metazoan 3. Cryptic Speciation in Clitellate Evo-Devo Biologists 67 Model Organisms 31 5.5 Case Study 1: Segmentation 68 Christer Erséus and Daniel Gustafsson 5.6 Case Study 2: Spiral Cleavage and 3.1 Introduction 31 Axis Specifi cation 74 vii viii Contents 5.7 Tools for Analyzing Molecular Part III Neurobiology and Regeneration Mechanisms of Development 79 5.8 The Future of the Annelid 8. Cellular and Behavioral Model Systems for Properties of Learning in Leech Evo-Devo 81 and Other Annelids 135 Kevin M. Crisp and Brian D. Burrell 6. Evolution, Development and 8.1 Introduction 135 Ecology of Capitella sp. I: 8.2 Learning in the Leech Whole- A Waxing Model for Polychaete Body Shortening Refl ex and Role Studies 88 of the S Interneuron 137 Susan D. Hill and Robert M. Savage 8.3 Role of the S Interneuron: Modulation of Excitability 139 6.1 Introduction 88 8.4 Learning in the Leech Swim 6.2 Speciation Studies 89 Circuit 144 6.3 Capitella Sp. 1 8.5 Using the Leech to Study Intrinsic Morphology 91 Forms of Sensitization 146 6.4 Replacement of Lost Segments 8.6 Synaptic Plasticity in Leech and Reproductive CNS 147 Trade-Offs 92 8.7 Conclusions 150 6.5 Metatrochophores, Ciliary Bands and Musculature 93 9. Development, Regeneration and 6.6 Gene Expression during Immune Responses of the Leech the Specifi cation and Nervous System 156 Differentiation of Germ Layers 95 Michel Salzet and Eduardo Macagno 6.7 Sex among the Vermes 100 9.1 Introduction 156 6.8 Annelids and the Segmentation 9.2 Background 157 Debate 101 9.3 Recent Work on the Development 6.9 A-P Polarity—Hox and ParaHox of the Nervous System 157 Genes 106 9.4 Neuronal Regeneration and 6.10 Annelid Genomics: Draft Genome Repair 169 Sequence 108 9.5 Neuroimmune Responses 173 6.11 The Future—Where Is This 9.6 Cellular and Humoral Immune Going? 109 Mechanisms: A Leech Innate Immune Response 176 7.
Recommended publications
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • In the Deep Weddell Sea (Southern Ocean, Antarctica) and Adjacent Deep-Sea Basins
    Biodiversity and Zoogeography of the Polychaeta (Annelida) in the deep Weddell Sea (Southern Ocean, Antarctica) and adjacent deep-sea basins Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum angefertigt im Lehrstuhl für Evolutionsökologie und Biodiversität der Tiere vorgelegt von Myriam Schüller aus Aachen Bochum 2007 Biodiversität und Zoogeographie der Polychaeta (Annelida) des Weddell Meeres (Süd Ozean, Antarktis) und angrenzender Tiefseebecken The most exciting phrase to hear in science, the one that heralds new discoveries, is not „EUREKA!“ (I found it!) but “THAT’S FUNNY…” Isaak Asimov US science fiction novelist & scholar (1920-1992) photo: Ampharetidae from the Southern Ocean, © S. Kaiser Title photo: Polychaete samples from the expedition DIVA II, © Schüller & Brenke, 2005 Erklärung Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst und bei keiner anderen Fakultät eingereicht und dass ich keine anderen als die angegebenen Hilfsmittel verwendet habe. Es handelt sich bei der heute von mir eingereichten Dissertation um fünf in Wort und Bild völlig übereinstimmende Exemplare. Weiterhin erkläre ich, dass digitale Abbildungen nur die originalen Daten enthalten und in keinem Fall inhaltsverändernde Bildbearbeitung vorgenommen wurde. Bochum, den 28.06.2007 ____________________________________ Myriam Schüller INDEX iv Index 1 Introduction 1 1.1 The Southern Ocean 2 1.2 Introduction to the Polychaeta 4 1.2.1 Polychaete morphology
    [Show full text]
  • Polychaeta Lana Crumrine
    Polychaeta Lana Crumrine Well over 200 species of the class Polychaeta are found in waters off the shores of the Pacific Northwest. Larval descriptions are not available for the majority of these species, though descriptions are available of the larvae for at least some species from most families. This chapter provides a dichotomous key to the polychaete larvae to the family level for those families with known or suspected pelagic larva. Descriptions have be $in gleaned from the literature from sites worldwide, and the keys are based on the assumption that developmental patterns are similar in different geographical locations. This is a large assumption; there are cases in which development varies with geography (e.g., Levin, 1984). Identifying polychaetes at the trochophore stage can be difficult, and culturing larvae to advanced stages is advised by several experts in the field (Bhaud and Cazaux, 1987; Plate and Husemann, 1994). Reproduction, Development, and Morphology Within the polychaetes, the patterns of reproduction and larval development are quite variable. Sexes are separate in most species, though hermaphroditism is not uncommon. Some groups undergo a process called epitoky at sexual maturation; benthic adults develop swimming structures, internal organs degenerate, and mating occurs between adults swimming in the water column. Descriptions of reproductive pattern, gamete formation, and spawning can be found in Strathmann (1987). Larval polychaetes generally develop through three stages: the trochophore, metatrochophore, and nectochaete stages. Trochophores are ciliated larvae (see Fig. 1).A band of cilia, the prototroch, is used for locomotion and sometimes feeding. Trochophore larvae are generally broad anteriorly and taper posteriorly.
    [Show full text]
  • Assessing the Suitability of Passive Bio-Collectors for Monitoring Biodiversity Of
    Assessing the suitability of passive bio-collectors for monitoring biodiversity of subtidal cobble-bottom habitat by Gregory Wittig BSc, University of British Columbia, 2007 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in the Graduate Academic Unit of Biology Supervisors: Rémy Rochette, PhD, Biology Gerhard Pohle, PhD, Biology Examining Board: Bruce MacDonald, PhD, Biology Jeff Houlahan, PhD, Biology, Chair (Masters) Rob Moir, PhD, Social Sciences, UNB This thesis is accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK March, 2018 © Gregory Wittig, 2018 Abstract This study is part of a larger project aiming to develop a tool and program to monitor biodiversity in rocky subtidal habitats using a passive bio-collector filled with cobble. I compared the communities of “settlers” and “crawl-ins” sampled by the bio-collectors to those found on nearby natural cobble substrate, and assessed the effects of cobble size and surface complexity on recruitment into the bio-collectors. The bio-collectors provided a good representation of what was found on the natural substrate, as there was high species overlap (54%) between the two sampling methods and most (80%) species not found in both were exclusive to the bio-collectors. Cobble size was found to have a small but significant effect on recruitment into the bio-collectors, and surface complexity had a significant effect on settlement of an abundant encrusting species (Anomia simplex). Results show that these passive bio-collectors offer a good tool to monitor cobble-bottom communities. ii Acknowledgements Thank you to my supervisor Rémy Rochette who worked with me and helped me through each step of this project.
    [Show full text]
  • Ecosystem Overview Report for the Minas Basin, Nova Scotia
    Ecosystem Overview Report for the Minas Basin, Nova Scotia Prepared for: Oceans and Habitat Branch Maritimes Region Fisheries and Oceans Canada Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia B2Y 4A2 Prepared by: M. Parker1, M. Westhead2 and A. Service1 1East Coast Aquatics Inc. Bridgetown, Nova Scotia 2Fisheries and Oceans Canada, Bedford Institute of Oceans and Coastal Management Report 2007-05 Oceans and Habitat Report Series The Oceans and Habitat Report Series contains public discussion papers, consultant reports, and other public documents prepared for and by the Oceans and Habitat Branch, Fisheries and Oceans Canada, Maritimes Region. Documents in the series reflect the broad interests, policies and programs of Fisheries and Oceans Canada. The primary focus of the series is on topics related to oceans and coastal planning and management, conservation, habitat protection and sustainable development. Documents in the series are numbered chronologically by year of publication. The series commenced with Oceans and Coastal Management Report No. 1998-01. In 2007, the name was changed to the Oceans and Habitat Report Series. Documents are available through the Oceans and Habitat Branch in both electronic and limited paper formats. Reports of broad international, national, regional or scientific interest may be catalogued jointly with other departmental document series, such as the Canadian Technical Report of Fisheries and Aquatic Sciences Series. Série des Rapports sur l’habitat et les océans La série des Rapports sur l’habitat et les océans regroupe des documents de discussion publics, des rapports d’experts et d’autres documents publics préparés par la Direction des océans et de l’habitat de Pêches et Océans Canada, Région des Maritimes ou pour le compte de cette direction.
    [Show full text]
  • Inventory of Marine Fauna in Frenchman Bay and Blue Hill Bay, Maine 1926-1932
    INVENTORY OF MARINE FAUNA IN FRENCHMAN BAY AND BLUE HILL BAY, MAINE 1926-1932 **** CATALOG OF WILLIAM PROCTER’S MARINE COLLECTIONS By: Glen Mittelhauser & Darrin Kelly Maine Natural History Observatory 2007 1 INVENTORY OF MARINE FAUNA IN FRENCHMAN BAY AND BLUE HILL BAY, MAINE 1926-1932 **** CATALOG OF WILLIAM PROCTER’S MARINE COLLECTIONS By: Glen Mittelhauser & Darrin Kelly Maine Natural History Observatory 2007 Catalog prepared by: Glen H. Mittelhauser Specimens cataloged by: Darrin Kelly Glen Mittelhauser Kit Sheehan Taxonomy assistance: Glen Mittelhauser, Maine Natural History Observatory Anne Favolise, Humboldt Field Research Institute Thomas Trott, Gerhard Pohle P.G. Ross 2 William Procter started work on the survey of the marine fauna of the Mount Desert Island region in the spring of 1926 after a summer’s spotting of the territory with a hand dredge. This work was continued from the last week in June until the first week of September through 1932. The specimens from this collection effort were brought back to Mount Desert Island recently. Although Procter noted that this inventorywas not intended to generate a complete list of all species recorded from the Mount Desert Island area, this inventory is the foundation on which all future work on the marine fauna in the region will build. An inven- tory of this magnitude has not been replicated in the region to date. This publication is the result of a major recovery effort for the collection initiated and funded by Acadia National Park. Many of the specimens in this collection were loosing preservative or were already dried out. Over a two year effort, Maine Natural History Observatory worked closely with Acadia National Park to re-house the collection in archival containers, re-hydrate specimens (through stepped concentrations of ethyl alcohol) that had dried, fully catalog the collection, and update the synonymy of specimens.
    [Show full text]
  • Comparative Neuroanatomy Within the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy within the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Carsten Michael Heuer aus Düsseldorf Berichter: Herr Universitätsprofessor Dr. Peter Bräunig Herr Privatdozent Dr. Rudolf Loesel Tag der mündlichen Prüfung: 08.03.2010 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Summary Comparative invertebrate neuroanatomy has seen a renaissance in recent years. Highly conserved neuroarchitectural traits offer a wealth of hitherto largely unexploited characters that can make valuable contributions in inferring phylogenetic relationships in cases where phylogenetic analyses of molecular or morphological data sets yield trees with conflicting or weakly supported topologies. Conversely, in those cases where robust phylogenetic trees exist, neuroanatomical features can be mapped onto the trees, helping to shed light on the evolution of the central nervous system. This thesis aims to provide detailed neuroanatomical data for a hitherto poorly studied invertebrate taxon, the segmented worms (Annelida). Drawing on the wealth of investigations into the architecture of the brain in different arthropods, the study focuses on the identification and description of possibly homologous brain centers (i.e. neuropils) in annelids. The thesis presents an extensive survey of the internal architecture of the brain of the ragworm Nereis diversicolor (Polychaeta, Annelida). Based upon confocal laser scanning microscope analyses, the distribution of neuroactive substances in the brain is described and the architecture of two major brain compartments, namely the paired mushroom bodies and the central optic neuropil, is characterized in detail.
    [Show full text]
  • Post-Embryonic Development of the Copepoda CRUSTACEA NA MONOGRAPHS Constitutes a Series of Books on Carcinology in Its Widest Sense
    Post-embryonic Development of the Copepoda CRUSTACEA NA MONOGRAPHS constitutes a series of books on carcinology in its widest sense. Contributions are handled by the Editor-in-Chief and may be submitted through the office of KONINKLIJKE BRILL Academic Publishers N.V., P.O. Box 9000, NL-2300 PA Leiden, The Netherlands. Editor-in-Chief: ].C. VON VAUPEL KLEIN, Beetslaan 32, NL-3723 DX Bilthoven, Netherlands; e-mail: [email protected] Editorial Committee: N.L. BRUCE, Wellington, New Zealand; Mrs. M. CHARMANTIER-DAURES, Montpellier, France; D.L. DANIELOPOL, Mondsee, Austria; Mrs. D. DEFAYE, Paris, France; H. DiRCKSEN, Stockholm, Sweden; J. DORGELO, Amsterdam, Netherlands; J. FOREST, Paris, France; C.H.J.M. FRANSEN, Leiden, Netherlands; R.C. GuiA§u, Toronto, Ontario, Canada; R.G. FIARTNOLL, Port Erin, Isle of Man; L.B. HOLTHUIS, Leiden, Netherlands; E. MACPHERSON, Blanes, Spain; P.K.L. NG, Singapore, Rep. of Singapore; H.-K. SCHMINKE, Oldenburg, Germany; F.R. SCHRAM, Langley, WA, U.S.A.; S.F. TIMOFEEV, Murmansk, Russia; G. VAN DER VELDE, Nij- megen, Netherlands; W. VERVOORT, Leiden, Netherlands; H.P. WAGNER, Leiden, Netherlands; D.L WILLIAMSON, Port Erin, Isle of Man. Published in this series: CRM 001 - Stephan G. Bullard Larvae of anomuran and brachyuran crabs of North Carolina CRM 002 - Spyros Sfenthourakis et al. The biology of terrestrial isopods, V CRM 003 - Tomislav Karanovic Subterranean Copepoda from arid Western Australia CRM 004 - Katsushi Sakai Callianassoidea of the world (Decapoda, Thalassinidea) CRM 005 - Kim Larsen Deep-sea Tanaidacea from the Gulf of Mexico CRM 006 - Katsushi Sakai Upogebiidae of the world (Decapoda, Thalassinidea) CRM 007 - Ivana Karanovic Candoninae(Ostracoda) fromthePilbararegion in Western Australia CRM 008 - Frank D.
    [Show full text]
  • Checklist of Annelida from the Coasts of Turkey
    Turkish Journal of Zoology Turk J Zool (2014) 38: 734-764 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Review Article doi:10.3906/zoo-1405-72 Checklist of Annelida from the coasts of Turkey 1, 1 2 Melih Ertan ÇINAR *, Ertan DAĞLI , Güley KURT ŞAHİN 1 Department of Hydrobiology, Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey Received: 28.05.2014 Accepted: 30.07.2014 Published Online: 10.11.2014 Printed: 28.11.2014 Abstract: The compilation of papers on marine annelids along the coasts of Turkey together with new records of species (24 species) presented in this study yielded a total of 721 species belonging to 2 classes (Polychaeta and Clitellata), 60 families, and 352 genera. Polychaeta were represented by 705 species, Oligochaeta by 13 species, and Hirudinea by 3 species. Syllidae (119 species) and Serpulidae (56 species) were the species-rich polychaete families. The majority of annelid species were benthic (691 species), 14 species were pelagic, and 3 species (leeches) were parasitic. Thirteen polychaete species were excluded from the species inventory. The Aegean Sea had the highest number of species (559 species), followed by the Levantine Sea (459 species) and the Sea of Marmara (398 species). The hot spot areas for the species diversity were İzmir Bay, Mersin Bay, the southwest part of the Sea of Marmara, and Sinop Peninsula, where intense scientific efforts have been carried out. A total of 75 alien polychaete species were reported from the regions, 22 of which were classified as invasive species.
    [Show full text]
  • Annelida) Based on Transcriptomes, Molecular and Morphological Data Stiller, Josefin; Tilic, Ekin; Rousset, Vincent; Pleijel, Fredrik; Rouse, Greg W
    Spaghetti to a Tree A Robust Phylogeny for Terebelliformia (Annelida) Based on Transcriptomes, Molecular and Morphological Data Stiller, Josefin; Tilic, Ekin; Rousset, Vincent; Pleijel, Fredrik; Rouse, Greg W. Published in: Biology DOI: 10.3390/biology9040073 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Stiller, J., Tilic, E., Rousset, V., Pleijel, F., & Rouse, G. W. (2020). Spaghetti to a Tree: A Robust Phylogeny for Terebelliformia (Annelida) Based on Transcriptomes, Molecular and Morphological Data. Biology, 9(4), [73]. https://doi.org/10.3390/biology9040073 Download date: 06. okt.. 2021 biology Article Spaghetti to a Tree: A Robust Phylogeny for Terebelliformia (Annelida) Based on Transcriptomes, Molecular and Morphological Data Josefin Stiller 1,2,* , Ekin Tilic 1,3 , Vincent Rousset 1, Fredrik Pleijel 4 and Greg W. Rouse 1,* 1 Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA; [email protected] (E.T.); [email protected] (V.R.) 2 Centre for Biodiversity Genomics, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark 3 Institute of Evolutionary Biology and Animal Ecology, University of Bonn, 53121 Bonn, Germany 4 Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; [email protected] * Correspondence: josefi[email protected] (J.S.); [email protected] (G.W.R.) Received: 14 March 2020; Accepted: 3 April 2020; Published: 6 April 2020 Abstract: Terebelliformia—“spaghetti worms” and their allies—are speciose and ubiquitous marine annelids but our understanding of how their morphological and ecological diversity evolved is hampered by an uncertain delineation of lineages and their phylogenetic relationships.
    [Show full text]