Checklist of Annelida from the Coasts of Turkey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anélidos Poliquetos Bentónicos De Las Islas De Cabo Verde: Primer
Rev. Acad. Canar. Cienc, XI (Nums. 3-4), 135-172 (1999) ANELIDOS POLIQUETOS BENTONICOS DE LAS ISLAS DE CABO VERDE: PRIMER CATALOGO FAUNISTICO J. Nunez, G. Viera, R. Riera y M.C. Brito Departamento de Biologia Animal (Zoologia), Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Islas Canarias, Spain ABSTRACT The polychaetes catalogue included 34 families and 213 species of which 11 are collected for the first time for Cap Verde Islands. The families Syllidae and Polynoidae have been the best represented with 51 species (24%) and 16 species (8%) respectively. The biogeographics analysis reveals a prevalence of Atlantic-mediterranean species (25%) followed by Senegal and Gulf of Guinea (18%). Key words: Annelida, Polychaeta, Cape Verde Islands, Macaronesia. RESUMEN El catalogo incluye 34 familias y 213 especies, de las cuales 11 se citan por primera vez para las Islas de Cabo Verde. Las familias Syllidae y Polynoidae han sido las mejor representadas con 51 especies (24%) y 16 especies (8%) respectivamente. El analisis biogeografico realizado revela un mayor predominio de especies Atlantico-mediterraneas (25%), seguidas de las de Senegal y Golfo de Guinea (18%). Palabras clave: Anelidos, Poliquetos, Islas de Cabo Verde, Macaronesia. 1. INTRODUCCION En el presente catalogo sobre los poliquetos bentonicos del archipielago de Cabo Verde, se realiza una recopilacion bibliografica de los trabajos taxonomicos dedicados al conocimiento de la poliquetofauna caboverdiana. Ademas, se ha incluido el material macrofaunal colectado durante las campanas efectuadas en 1996 y 1997, en el marco del proyecto "Evaluation de los recursos naturales litorales de las Islas de Cabo Verde" y la campana Cabo Verde 1999 del proyecto "Macaronesia 2000". -
Annelida, Hesionidae), Described As New Based on Morphometry
Contributions to Zoology, 86 (2) 181-211 (2017) Another brick in the wall: population dynamics of a symbiotic species of Oxydromus (Annelida, Hesionidae), described as new based on morphometry Daniel Martin1,*, Miguel A. Meca1, João Gil1, Pilar Drake2 & Arne Nygren3 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC) – Carrer d’Accés a la Cala Sant Francesc 14. 17300 Blanes, Girona, Catalunya, Spain 2 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui 2, Puerto Real 11519, Cádiz, Spain 3 Sjöfartsmuseet Akvariet, Karl Johansgatan 1-3, 41459, Göteborg, Sweden 1 E-mail: [email protected] Key words: Bivalvia, Cádiz Bay, Hesionidae, Iberian Peninsula, NE Atlantic Oxydromus, symbiosis, Tellinidae urn:lsid:zoobank.org:pub: D97B28C0-4BE9-4C1E-93F8-BD78F994A8D1 Abstract Results ............................................................................................. 186 Oxydromus humesi is an annelid polychaete living as a strict bi- Morphometry ........................................................................... 186 valve endosymbiont (likely parasitic) of Tellina nymphalis in Population size-structure ..................................................... 190 Congolese mangrove swamps and of Scrobicularia plana and Infestation characteristics .................................................... 190 Macomopsis pellucida in Iberian saltmarshes. The Congolese Discussion ....................................................................................... 193 and Iberian polychaete populations were previously -
Polychaeta: Serpulidae) from Southeastern Australia
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Knight-Jones, E. W., P. Knight-Jones and L. C. Llewellyn, 1974. Spirorbinae (Polychaeta: Serpulidae) from southeastern Australia. Notes on their taxonomy, ecology, and distribution. Records of the Australian Museum 29(3): 106–151. [1 May 1974]. doi:10.3853/j.0067-1975.29.1974.230 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia o ~------------------~o 25-20 and above 23-17 19- 14 17- 13 ood below 20 20 40 40 ,-- 50 50 Figure I.-Top left, collecting sites near Adelaide; top right, ditto near Sydney; bottom, collecting locations inset, showing also currents of warm, cool (interrupted lines) and cold water (dotted lines). A second smaller arrow-head indicates that the current occasionally reverses. Coastal water types and the mean position of the subtropical convergence (see p. 147) modified from Knox (1963), with mean summer (February) and winter (August) temperatures in degreesC. SPIRORBINAE (POLYCHAETA: SERPULIDAE) FROM SOUTHEASTERN AUSTRALIA. Notes on their Taxonomy, Ecology, and Distribution By E. W. KNIGHT-jONES and PHYLLIS KNIGHT-jONES University College of Swansea, U.K. and L. C. LLEWELLYN, New South Wales State Fisheries, Sydney, Australia Figures 1-14 Manuscript received, 1st September, 1972 SUMMARY Fifteen species belonging to seven genera are described, with pictorial and dichotomous keys to identification and notes on their distribution in other regions. All occur on or adjoining the shore, or on seaweeds cast ashore. -
Onetouch 4.0 Sanned Documents
Vol. 82, pp. 1-30 29 May, 1969 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON REVIEW OF SOME SPECIES REFERRED TO SCALISETOSUS MCINTOSH (POLYCHAETA, POLYNOIDAE) BY MABIAN H. PETTIBONE Smithsonian Institution, Washington, D. C. In connection with an extended review of the polynoid gen- era, based on a study of the type-species, it was foimd that Scalisetosus Mclntosh ( 1885) has been used for a heterogenous group of species. The genus has served to include species with setae as transparent as crystal and the neurosetae character- ized by the presence of a basal semilunar cusp or pocket, al- though this particular feature was not shown on the figure of the neiu-osetae of the type-species, S. ceramensis, by Mclntosh (1885, pi. lOA, fig. 14). Any species equipped with this pe- culiar type of neiu-osetae has been placed in Scalisetosus, re- gardless of other characters. Saint-Joseph (1899) proposed the new genus Adyte for three species {Polynoe pellucida Ehlers, Hermadion assimile Mclntosh, and H. echini Giard) having the peculiar type of neurosetae, separating them from S. cera- mensis, which lacks the basal semilunar cusps. Mclntosh (1900) was responsible for changing the diagnosis of Scali- setosus to include the species referred to Adyte by Saint- Joseph, Subsequently, Adyte was abandoned and was synony- mized with Scalisetosus by Fauvel (1914, p. 47). During a visit to the British Museum of Natural History in May 1967, I was able to examine the unique type of Scalise- tosus ceramensis and to verify that the neurosetae indeed do lack the basal semilunar cusps and that the species therefore lacks one of the key characters that has been attributed to the genus. -
December 2019 Editorial
NEWSLETTER December 2019 Editorial At the inspiring iBOL congress In this issue: organized by Torbjørn Ekrem in by Agnès Bouchez Trondheim (Norway) last June more than 30 participants from · Editorial DNAqua-Net gathered, many of them presenting talks and posters · Announcements in the various sessions, including 5 young scientists funded with ITC · Working groups Conference Grants. It’s stimulating and great to see young scientists · General reports from ITCs taking a more and · STSMs more active roles in all DNAq- ua-Net related activities! · ITC grants The current Grant Period 4 constitutes the “integration phase”. It’s fascinating how DNAqua-Net It is characterized by a particular shift, with methods leaving the www.dnaqua.net has now reached its full maturity, resulting in so many outcomes. labs where they have been devel- About 50 short research ex- oped, and being tested in real life, changes (STSMs) already took involving more and more stake- place leading to fruitful and in- holders: teresting results with many papers New programs inspired by already published. During the DNAqua-Net have been launched, recent training schools in Bucha- testing the application of molecu- rest, Sweden and France more lar methods for biomonitoring at than 72 trainees from 25 countries a much larger scale: INTERREG participated to build capacities in programs (SYNAQUA, Eco-Alp- metabarcoding. The workshops sWater), SCANDNAnet, GeDNA, held during the last year addressed JDS4, Portugal WFD and more. different topics: High Performance International collaborations Computation and data storage beyond Europe are now well EU COST Action CA15219 (Lyon), sedimentary DNA (Rome), settled, especially with Xiaowei molecular tools to assess new bio- Zhang (Nanjing University, Chi- logical quality elements i.e. -
Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998
Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Specialist I Thomas Dix Environmental Scientist II MARCH 2003 1 Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph.D. Director, Environmental Resources Management Division 2 INTRODUCTION The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting samples in Middle Tampa Bay 1993 as part of the bay-wide benthic monitoring program developed to (Tampa Bay National Estuary Program 1996). The original objectives of this program were to discern the ―health‖—or ―status‖-- of the bay’s sediments by developing a Benthic Index for Tampa Bay as well as evaluating sediment quality by means of Sediment Quality Assessment Guidelines (SQAGs). The Tampa Bay Estuary Program provided partial support for this monitoring. This report summarizes data collected during 1993-1998 from the Middle Tampa Bay segment of Tampa Bay. 3 METHODS Field Collection and Laboratory Procedures: A total of 127 stations (20 to 24 per year) were sampled during late summer/early fall ―Index Period‖ 1993-1998 (Appendix A). Sample locations were randomly selected from computer- generated coordinates. Benthic samples were collected using a Young grab sampler following the field protocols outlined in Courtney et al. (1993). Laboratory procedures followed the protocols set forth in Courtney et al. (1995). Data Analysis: Species richness, Shannon-Wiener diversity, and Evenness were calculated using PISCES Conservation Ltd.’s (2001) ―Species Diversity and Richness II‖ software. -
National Reports (Term of Reference A) Presented at the 46Th Meeting of the ICES Working Group on Introductions and Transfers Of
National Reports (Term of Reference a) Presented at the 46th meeting of the ICES Working Group on Introductions and Transfers of Marine Organisms, held in Gdynia, Poland from 4 to 6 March 2020. Arranged Alphabetically by Country Compiled by Cynthia H McKenzie, Chair, WGITMO CANADA …………………………………………………………………… …. 2 DENMARK ………………………………………………………………………. 10 FINLAND ………………………………………………………………………. 18 FRANCE ………………………………………………………………………. 21 GERMANY ………………………………………………………………………. 33 GREECE ………………………………………………………………………. 46 ICELAND ………………………………………………………………………. 54 ITALY ………………………………………………………………………. 58 LITHUANIA ………………………………………………………………………. 73 NETHERLANDS …………………………………………………………………. 75 NORWAY ………………………………………………………………………. 77 POLAND ………………………………………………………………………. 86 PORTUGAL ………………………………………………………………………. 89 SWEDEN ………………………………………………………………………. 99 UNITED KINGDOM ……………………………………………………………. 104 UNITED STATES …………………………………………………………………. 119 1 CANADA National Report for Canada 2019 Report Prepared By: Cynthia McKenzie, Fisheries and Oceans Canada, Newfoundland and Labrador Region: [email protected]; Contributions By: Nathalie Simard, Fisheries and Oceans Canada, Quebec Region: [email protected]; Kimberly Howland, Fisheries and Oceans Canada, Central and Arctic Region: [email protected]; Renée Bernier and Chantal Coomber, Fisheries and Oceans Canada, Gulf Region: renee.bernier@dfo- mpo.gc.ca, [email protected]; Angelica Silva, Fisheries and Oceans Canada, Maritimes Region: [email protected] Overview: NEW or SPREAD -
RECON: Reef Effect Structures in the North Sea, Islands Or Connections?
RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Authors: Coolen, J.W.P. & R.G. Jak (eds.). Wageningen University & Research Report C074/17A RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Revised Author(s): Coolen, J.W.P. & R.G. Jak (eds.). With contributions from J.W.P. Coolen, B.E. van der Weide, J. Cuperus, P. Luttikhuizen, M. Schutter, M. Dorenbosch, F. Driessen, W. Lengkeek, M. Blomberg, G. van Moorsel, M.A. Faasse, O.G. Bos, I.M. Dias, M. Spierings, S.G. Glorius, L.E. Becking, T. Schol, R. Crooijmans, A.R. Boon, H. van Pelt, F. Kleissen, D. Gerla, R.G. Jak, S. Degraer, H.J. Lindeboom Publication date: January 2018 Wageningen Marine Research Den Helder, January 2018 Wageningen Marine Research report C074/17A Coolen, J.W.P. & R.G. Jak (eds.) 2017. RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Wageningen, Wageningen Marine Research, Wageningen Marine Research report C074/17A. 33 pp. Client: INSITE joint industry project Attn.: Richard Heard 6th Floor East, Portland House, Bressenden Place London SW1E 5BH, United Kingdom This report can be downloaded for free from https://doi.org/10.18174/424244 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. Photo cover: Udo van Dongen. © 2017 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr. -
A Bioturbation Classification of European Marine Infaunal
A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K. -
FROM ROCAS ATOLL, BRAZIL, with the DESCRIPTION of a NEW SPECIES 1 (With 4 Figures)
Arquivos do Museu Nacional, Rio de Janeiro, v.65, n.3, p.363-368, jul./set.2007 ISSN 0365-4508 SABELLIDAE LATREILLE, 1825 (ANNELIDA, POLYCHAETA) FROM ROCAS ATOLL, BRAZIL, WITH THE DESCRIPTION OF A NEW SPECIES 1 (With 4 figures) ELISA MARIA COSTA-PAIVA 2, 3 PAULO CESAR PAIVA 2 ABSTRACT: Three species of sabellids belonging to the genera Bispira and Notaulax were found in Rocas Atoll, Rio Grande do Norte State (RN), Brazil (3 o51’30”S and 33 o49’29”W). Among them, Bispira klautae is a new species. The description of this new species and a redescription of B. melanostigma and N. occidentalis are provided. Key words: Polychaeta. Sabellidae. Rocas Atoll. Brazil. New species. RESUMO: Sabellidae Latreille, 1825 (Annelida, Polychaeta) do Atol das Rocas, Brasil, com a descrição de uma nova espécie. Três espécies de sabelídeos pertencentes aos gêneros Bispira e Notaulax foram encontrados no Atol das Rocas, Rio Grande do Norte (RN), Brasil (3 o51’30”S e 33 o49’29”W). Dentre estas, uma nova espécie: Bispira klautae . Além da descrição desta nova espécie, é fornecida a redescrição de B. melanostigma e N. occidentalis. Palavras-chave: Polychaeta. Sabellidae. Atol das Rocas. Brasil. Espécie nova. INTRODUCTION associated with hard surfaces and soft sediments for all latitudes from intertidal areas to shelf depths After the original description, the first significant (F AUCHALD , 1977; R OUSE & P LEIJEL , 2001; G IANGRANDE subdivision of the Sabellidae was carried by R IOJA & L ICCIANO , 2004). (1923) who divided the family in three subfamilies: The major characteristics used in sabellids taxonomy Myxicolinae, Fabriciinae, and Sabellinae, based include: (a) the presence or absence of companion largely on setal characters. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................