Tropomodulin's Actin-Binding Abilities Are Required to Modulate Dendrite Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
A Cell Line P53 Mutation Type UM
A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin. -
Mechanism of Action Through an IFN Type I-Independent Responses To
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 -
Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation Omotola F. Omotade1,3, Yanfang Rui1,3, Wenliang Lei1,3, Kuai Yu1, H. Criss Hartzell1, Velia M. Fowler4 and James Q. Zheng1,2,3 1Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322. 2Department of Neurology 3Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322. 4Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037 DOI: 10.1523/JNEUROSCI.3325-17.2018 Received: 22 November 2017 Revised: 25 September 2018 Accepted: 2 October 2018 Published: 9 October 2018 Author contributions: O.F.O. and J.Q.Z. designed research; O.F.O., Y.R., W.L., and K.Y. performed research; O.F.O. and J.Q.Z. analyzed data; O.F.O. and J.Q.Z. wrote the paper; Y.R., H.C.H., V.M.F., and J.Q.Z. edited the paper; V.M.F. contributed unpublished reagents/analytic tools. Conflict of Interest: The authors declare no competing financial interests. This research project was supported in part by research grants from National Institutes of Health to JQZ (GM083889, MH104632, and MH108025), OFO (5F31NS092437-03), VMF (EY017724) and HCH (EY014852, AR067786), as well as by the Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience NINDS Core Facilities grant (5P30NS055077). We would like to thank Dr. Kenneth Myers for his technical expertise and help throughout the project. We also thank Drs. -
Effect of Exercise Training on Tropomodulin-2 Gene Expression in Cerebellum of Diabetic Rats
ORGINAL ARTICLE Effect of Exercise Training on Tropomodulin-2 Gene Expression in Cerebellum of Diabetic Rats Seyed Jalal Taherabadi 1, Masoud Rahmati 1*, Rahim Mirnasuri 1, Abdolreza Kazemi 2 Abstract 1. Department of Sport Sciences, Lorestan Objective: It is well documented that exercise training (ET) University, Khoram Abad, Iran. imposes beneficial effects on diabetes mellitus and its complication 2. Department of Sport Sciences, Vali-E-Asr University of Rafsanjan, Kerman, Iran. such as diabetic peripheral neuropathy (DPN). Regarding the importance of tropomodulin-2 (TMOD2) in nervous system plasticity, this protein may be recognized as a candidate mechanism for ET-induced neuroplasticity. The aim of this study was to *Correspondence: investigate the effects of ET on cerebellar gene expression of Masoud Rahmati, PhD, Department of TMOD2 in rats with DPN. Sport Sciences, Lorestan University, Materials and Methods: Animals were randomly divided into Khoram Abad, Iran. three groups: healthy control (C), diabetic control (DC) and diabetic Tel: (98) 912 452 5538 trained (DT). Diabetes was induced by a single intraperitoneal Email: [email protected] injection of streptozotocin. Behavioral nociception assessment was carried out by Von Frey Filaments and tail-flick tests. TMOD2 gene expression was assessed by real time-PCR . Received: 17 February 2019 Results: The mRNA levels of TMOD2 increased to 0.50-fold ( P- value: 0.005) in comparison of the sedentary controls after 6 weeks Accepted: 21 June 2019 of DPN. Also, TMOD2 gene expression in DT group was decreased Published in August 2019 to -0.68-fold changes in comparison of the C group ( P-value: 0.001). -
Serum Albumin OS=Homo Sapiens
Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
IDENTIFICATION and CHARACTERIZATION of ACTIN-REGULATORY PROTEINS in the HAIR CELL's CUTICULAR PLATE by LANA MARY POLLOCK Subm
IDENTIFICATION AND CHARACTERIZATION OF ACTIN-REGULATORY PROTEINS IN THE HAIR CELL’S CUTICULAR PLATE by LANA MARY POLLOCK Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Brian M. McDermott Jr., Ph.D. Department of Genetics and Genome Sciences CASE WESTERN RESERVE UNIVERSITY January 2016 Case Western Reserve University School of Graduate Studies We, the thesis committee, hereby approve the thesis/dissertation of Lana Pollock, candidate for the degree of Doctor of Philosophy (PhD).* (signed)_________Zhenghe Wang, Ph.D._________________ (chair of committee) ___________Brian McDermott, Ph.D._______________ ___________ Hua Lou, Ph.D._____________________ ___________Stephen Maricich, Ph.D., M.D.___________ ___________Anthony Wynshaw-Boris, Ph.D., M.D._____ Date of defense_____September 8th, 2015_______________ *we also certify that written approval has been obtained for release of any proprietary material contained therein 2 This thesis is dedicated to Daniel Margevicius. Thank you for your unwavering love and support. Ačiū!! 3 Table of contents List of Tables ........................................................................................................ 7 List of Figures ....................................................................................................... 8 List of abbreviations ............................................................................................ 13 Abstract ............................................................................................................. -
1471-2164-2-7.Pdf
BMC Genomics BioMed Central BMC Genomics :7 Research2 2001, article Genomic organization of Tropomodulins 2 and 4 and unusual intergenic and intraexonic splicing of YL-1 and Tropomodulin 4 Patrick R Cox1, Teepu Siddique5 and Huda Y Zoghbi*1,2,3,4 Address: 1Division of Neuroscience, Baylor College of Medicine, Houston, Texas, USA, 2Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA, 3Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA, 4Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA and 5Baylor College of Medicine, Houston, Northwestern University Medical School, Chicago, Illinois, USA E-mail: Patrick R Cox - [email protected]; Teepu Siddique - [email protected]; Huda Y Zoghbi* - [email protected] *Corresponding author Published: 17 October 2001 Received: 13 July 2001 Accepted: 17 October 2001 BMC Genomics 2001, 2:7 This article is available from: http://www.biomedcentral.com/1471-2164/2/7 © 2001 Cox et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any non-commercial purpose, provided this notice is preserved along with the article's original URL. For commercial use, contact [email protected] Abstract Background: The tropomodulins (TMODs) are a family of proteins that cap the pointed ends of actin filaments. Four TMODs have been identified in humans, with orthologs in mice. Mutations in actin or actin-binding proteins have been found to cause several human diseases, ranging from hypertrophic cardiomyopathy to immunodefiencies such as Wiskott-Aldrich syndrome. We had previously mapped Tropomodulin 2 (TMOD2) to the genomic region containing the gene for amyotrophic lateral sclerosis 5 (ALS5). -
Cytoskeletal Remodeling in Cancer
biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. -
Differential Proteomics of the Cerebral Cortex of Juvenile, Adult and Aged Rats
ics om & B te i Wille et al., J Proteomics Bioinform 2017, 10:2 ro o P in f f o o DOI: 10.4172/jpb.1000424 r l m a Journal of a n t r i c u s o J ISSN: 0974-276X Proteomics & Bioinformatics Research Article Article Open Access Differential Proteomics of the Cerebral Cortex of Juvenile, Adult and Aged Rats: An Ontogenetic Study Michael Wille1, Antje Schümann, Michael Kreutzer2, Michael O Glocker2, Andreas Wree1, Grit Mutzbauer3 and Oliver Schmitt1* 1Department of Anatomy, Gertrudenstraße 9, 18055 Rostock, Germany 2Proteome Center Rostock, Schillingallee 69, 18055 Rostock, Germany 3Department of Pathology, Josef-Schneider-Straße 2, 97080 Würzburg, Germany Abstract The identification of up- and downregulated as well as absent proteins in the central nervous system is necessary to understand the interplay of migration, differentiation and integration of neuronal progenitor cells at different stages of development. In a first step, differentially expressed proteins of the cerebral cortex of the laboratory rat at three significant stages of development were identified. The cerebral cortex needs differential abundances of proteins during ontogenesis and uses its high plasticity postnatally to adapt to many types of intrinsic and extrinsic changes. This study focuses on the identification of specific proteins which are differentially expressed during postnatal development. Cerebral cortices of P7, P90 and P637 old wistar rats were dissected and analyzed by two- dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. The identified and differentially expressed proteins are subdivided into 13 different classes. -
Profiling of Transcripts and Proteins Modulated by K-Ras Oncogene in the Lung Tissues of K-Ras Transgenic Mice by Omics Approaches
161-172 2/12/2008 12:52 ÌÌ ™ÂÏ›‰·161 INTERNATIONAL JOURNAL OF ONCOLOGY 34: 161-172, 2009 161 Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches SOJUNG LEE1*, JUNGWOO KANG1*, MINCHUL CHO1, EUNHEE SEO1, HEESOOK CHOI1, EUNJIN KIM1, JUNGHEE KIM1, HEEJONG KIM1, GUM YONG KANG2, KWANG PYO KIM2, YOUNG-HO PARK3, DAE-YEUL YU3, YOUNG NA YUM4, SUE-NIE PARK4 and DO-YOUNG YOON1 Departments of 1Bioscience and Biotechnology and 2Molecular Biotechnology, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701; 3Animal Disease Model Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333; 4Division of Genetic Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, #194 Tongil-Ro, Eunpyung-Gu, Seoul 122-704, Korea Received August 7, 2008; Accepted October 13, 2008 DOI: 10.3892/ijo_00000138 Abstract. The mutated K-ras gene is involved in ~30% of proteins related to phosphorylation (from 1 to 2%). ATP human cancers. In order to search for K-ras oncogene- synthase, Ras oncogene family, cytochrome c oxidase, induced modulators in lung tissues of K-ras transgenic mice, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, we performed microarray and proteomics (LC/ESI-MS/MS) fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, up-regulated by K-ras oncogene. However, integrin ·1, Ras- chemokine ligand 6, epiregulin, EGF-like domain and interacting protein (Rain), endothelin-converting enzyme-1d cathepsin) related to cancer development (Wnt signaling and splicing factor 3b were down-regulated.