Evolution of Bat-Trypanosome Associations and the Origins of Chagas Disease

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Bat-Trypanosome Associations and the Origins of Chagas Disease City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2015 Evolution of Bat-Trypanosome Associations and the Origins of Chagas Disease Christian Miguel Pinto Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/608 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Evolution of bat-trypanosome associations and the origins of Chagas Disease By C. Miguel Pinto A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2015 © 2015 C. MIGUEL PINTO All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Susan L. Perkins____________________________________________ ______________________ __________________________________________________________ Date Chair of Examining Committee Laurel Eckhardt_____________________________________________ _______________________ _________________________________________________________ Date Executive Officer Nancy B. Simmons______________________________________________ Michael J. Hickerson_____________________________________________ Stephane Boissinot______________________________________________ Liliana M. Dávalos_______________________________________________ Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract EVOLUTION OF BAT-TRYPANOSOME ASSOCIATIONS AND THE ORIGINS OF CHAGAS DISEASE By C. Miguel Pinto Adviser: Doctor Susan L. Perkins Trypanosoma cruzi is a genetically diverse parasite that causes Chagas disease, one of the most important zoonoses in the Americas. This generalist parasite of mammals belongs to a clade mostly comprised of bat parasites, the T. cruzi clade. The origins (i.e., biogeographic history and evolution of hosts associations) of this parasite are far from being understood, and the main areas that need further study are: species limits within T. cruzi sensu lato, further studies on the diversity of T. cruzi clade members and their hosts, and research on adaptations of the hosts to trypanosome infections. In this dissertation I explore these research areas in five core chapters (Ch.2 to Ch.6), and these are the main results per chapter: ch.2) Proposed the recognition of Tcbat as a major diagnostic typing unit of T. cruzi. Ch.3) Found high genetic diversity in the bat exclusive lineage T. c. marinkellei than in the other subdivisions of T. cruzi. Also, reported Tcbat and T. c. marinkellei for Ecuador. Ch.4) Determined that the number of putative species in the T. cruzi clade is underestimated, and more strikingly, that the bat Artibeus jamaicensis is the vertebrate host with the highest number of trypanosomes (5 species) detected in a single locality. Ch.5) Results indicate that T. cruzi sensu lato is actually comprised of three species - the generalist T. cruzi, and two parasites of bats, Trypanosoma marinkellei and Trypanosoma sp. nov.; that there is a previously undetected high diversity of T. cruzi relatives associated with bats, iv and use of bats as hosts has evolved several times and in three different clades of parasites. Ch.6) Tested the hypothesis that immune genes in bats evolve under stronger positive selection than in other mammals because of the high diversity of pathogens associated with bats—including trypanosomes of the T. cruzi clade. I used the gene TLR2, as a candidate gene. These results help to understanding better the diversity of the T. cruzi clade, and the importance of bats on the origins of T. cruzi sensu strict and Chagas disease. v ACKNOWLEDGMENTS I specially thank my partner Verónica Crespo-Pérez for her unconditional support during the last year and half, the hardest and the best of this academic journey. I am very fortunate to have great friends that gave me moral support during my PhD studies, to all of them my most sincere thank you. I am particularly grateful to friends at the following institutions, at AMNH: Robin M. D. Beck, Santiago Claramunt, André Carvalho, Gloria Carvalho, Nadine Duperré, Laureano González-Ruíz, Edmundo González-Santillán, Alejandro Grajales, Camille Grohe, Christine Johnson, Isabelle Kruta, Simone Loss, John Maisey, Aja Marcato, Angelica Menchaca, Alejandro Oceguera-Figueroa, Alan Pradel, Natalia Rossi, Jocelyn Sessa, Angelo Soto-Centeno, Ellen Trimarco, John Wahlert, Eileen Westwig; at CUNY: Elliot Aguilar, JT Boehn, Xin Chen, Terry Demos, Peter Galante, Stephen Harris, Sara Ruane, Mariano Soley, Mark Tollis; at University of Ulm: Gerardo Algara-Siller, Tania González, Tonatiuh Ruíz and Julia Treitler. For facilitating my research, I thank the staff members of the Centro de Investigación en Enfermedades Infecciosas at PUCE, the Sackler Institute for Comparative Genomics, the Laboratory for Conservation Genetics at the National Zoo Park, the Division of Mammals at the Smithsonian Institution, the Department of Mammalogy at the AMNH, the Mammal Collection at the FMNH, the Institute for Experimental Ecology al University of Ulm, Michel Tibayrenc and Jenny Telleria at the IRD-Montpellier, and John Hanson at Research and Testing. Also, I would like to thank the administrative staffs that have helped me along these years with all sorts of paperwork: Mohammad Faiz, Anna Manuel, Sue Ng-Maresco, Joan Reid, María Rios, Elizabeth Sweeny and Eileen Westwig. I thank all my colleagues with whom I have developed these dissertation projects: Elisabeth K. V. Kalko, Iain Cottontail, Nele Wellinghausen,Veronika M. Cottontail, Sofía vi Ocaña-Mayorga, Elicio E. Tapia, Simón E. Lobos, Alejandra P. Zurita, Fernanda Aguirre- Villacís, Amber MacDonald, Anita G. Villacís, Luciana Lima, Marta M. G. Teixeira, Mario J. Grijalva, Susan L Perkins, Marco Tschapka, Kristofer M. Helgen, Bruce D. Patterson, William T. Stanley, Michelle Yu, Burton K. Lim, Jorge Ortega, Carlos A. Flores-López, Carlos A. Machado, Felix Martinez, Craig Willis, DeeAnn M. Reeder, Steven M. Goodman, Robert C. Fleischer, Nancy B. Simmons, and Liliana Davalos. Also, I thank all members of my PhD committee: Susan Perkins, Nancy Simmons, Michael Hickerson, Stephane Boissinot and Liliana Dávalos. This work has benefited from an « Investissements d’Avenir » grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01); a Grant-in-Aid, a Shadle Fellowship and an ASM Graduate Student Fellowship, all from the American Society of Mammalogists; a graduate fellowship from the Smithsonian Institution; an Annette Kade Fellowship and a Graduate Student Fellowship both from the AMNH; A Science Fellowship from CUNY; and NSF-DDIG grant DEB-1311582. vii TABLE OF CONTENTS ABSTRACT………………………………………..…….……………………………………...iv ACKNOWLEDGMENTS……..………………………………………………………………..vi TABLE OF CONTENTS……………………………………………………………...……....viii LIST OF TABLES…………………………………………………………….………………....x LIST OF FIGURES……………………………………………………………...……..…….....xi CHAPTER 1: Introduction—the Trypanosoma cruzi clade and its mammalian hosts ..……1 CHAPTER 2: Tcbat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification …...……………………………………………………………………………….17 CHAPTER 3: Bats, trypanosomes, and triatomines in Ecuador: new insights into the diversity, transmission, and origins of Trypanosoma cruzi and Chagas disease ..………….29 CHAPTER 4: High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade ……………....…….49 CHAPTER 5: Origins of Trypanosoma cruzi and evolution of bat-trypanosome associations ……………...……………………………………………………………………………....…….64 CHAPTER 6: Comparative evolution of the TLR2 gene in bats: effects of phylogeny, life traits and parasite exposure ..…………………………………………………………....…….92 CHAPTER 7: Conclusions and Future Work …………………………………….…..…….118 APPENDIX 3.1.……………………………….………………………….……………………126 APPENDIX 4.1.…………………………………………………………………………..……136 APPENDIX 5.1.…………………………………………………………………………..……141 APPENDIX 5.2.…………………………………………………………………………..……145 viii APPENDIX 6.1.…………………………………………………………………………..……154 APPENDIX 6.2.…………………………………………………………………………..……158 APPENDIX 6.3.…………………………………………………………………………..……159 APPENDIX 6.4.…………………………………………………………………………..……162 APPENDIX 6.5.……………………………………………………………………………..…166 BIBLIOGRAPHY…………..…………………………………………………………………170 ix List of Tables Table 2.1. Mean genetic distances of the 18S rRNA gene, TrN+G model, among Trypanosoma dionisii, T. cruzi marinkellei, T. cruzi DTUs, and TcBat, (below the diagonal), and their standard error estimates (above the diagonal) ...........................................................................................26 Table 3.1. Results of PCR screenings for Trypanosoma cruzi and Trypanosoma rangeli ........42 Table 6.1. ω values of the TLR2 gene for selected braches of the mammalian phylogeny .....106 Table 6.2. Codons of the TLR2 gene under positive selection as estimated by four branch-site methods .....................................................................................................................................107 Table 6.3. Tajima’s D and Pi values for the TLR2 and COI genes
Recommended publications
  • Comparative Phylogeography of Trypanosoma Rangeli and Rhodnius
    Molecular Ecology (2007) 16, 3361–3373 doi: 10.1111/j.1365-294X.2007.03371.x ComparativeBlackwell Publishing Ltd phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors F. MAIA DA SILVA,* A. C. V. JUNQUEIRA,† M. CAMPANER,* A. C. RODRIGUES,* G. CRISANTE,‡ L. E. RAMIREZ,§ Z. C. E. CABALLERO,¶ F. A. MONTEIRO,† J. R. COURA,† N. AÑEZ‡ and M. M. G. TEIXEIRA* *Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, SP, 05508-900, Brazil, †Departamento de Medicina Tropical, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil, ‡Facultad de Ciencias, Departamento de Biologia, Universidad de Los Andes, Mérida, Venezuela, §Departamento de Ciências Biológicas, Parasitologia, UFTM, Uberaba, MG, Brazil, ¶Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil Abstract To make reliable interpretations about evolutionary relationships between Trypanosoma rangeli lineages and their insect vectors (triatomine bugs of the genus Rhodnius) and, thus, about the determinant factors of lineage segregation within T. rangeli, we compared phylogenies of parasite isolates and vector species. Sixty-one T. rangeli isolates from inver- tebrate and vertebrate hosts were initially evaluated in terms of polymorphism of the spliced-leader gene (SL). Further analysis based on SL and SSUrRNA sequences from 33 selected isolates, representative of the overall phylogenetic diversity and geographical range of T. rangeli, supported four phylogenetic lineages within this species. By comparing the phylogeny of Rhodnius species with that inferred for T. rangeli isolates and through analysis of the geographical range of the isolates, we showed that there is a very significant overlap in the distribution of Rhodnius species and T.
    [Show full text]
  • Trypanosome—Trypanosoma Rangeli
    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli Patrı´cia Hermes Stoco1*, Glauber Wagner1,2, Carlos Talavera-Lopez3, Alexandra Gerber4, Arnaldo Zaha5, Claudia Elizabeth Thompson4, Daniella Castanheira Bartholomeu6,De´bora Denardin Lu¨ ckemeyer1, Diana Bahia6,7, Elgion Loreto8, Elisa Beatriz Prestes1,Fa´bio Mitsuo Lima7, Gabriela Rodrigues-Luiz6, Gustavo Adolfo Vallejo9, Jose´ Franco da Silveira Filho7,Se´rgio Schenkman7, Karina Mariante Monteiro5, Kevin Morris Tyler10, Luiz Gonzaga Paula de Almeida4, Mauro Freitas Ortiz5, Miguel Angel Chiurillo7,11, Milene Ho¨ ehr de Moraes1, Oberdan de Lima Cunha4, Rondon Mendonc¸a-Neto6, Rosane Silva12, Santuza Maria Ribeiro Teixeira6, Silvane Maria Fonseca Murta13, Thais Cristine Marques Sincero1, Tiago Antonio de Oliveira Mendes6, Tura´ n Peter Urmenyi12, Viviane Grazielle Silva6, Wanderson Duarte DaRocha14, Bjo¨ rn Andersson3,A´ lvaro Jose´ Romanha1,Ma´rio Steindel1, Ana Tereza Ribeiro de Vasconcelos3, Edmundo Carlos Grisard1* 1 Universidade Federal de Santa Catarina, Floriano´polis, Santa Catarina, Brazil, 2 Universidade do Oeste de Santa Catarina, Joac¸aba, Santa Catarina, Brazil, 3 Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden, 4 Laborato´rio Nacional de Computac¸a˜o Cientı´fica, Petro´polis, Rio de Janeiro, Brazil, 5 Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, 6 Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 7 Universidade Federal de Sa˜o
    [Show full text]
  • The Evolution of Echolocation in Bats: a Comparative Approach
    The evolution of echolocation in bats: a comparative approach Alanna Collen A thesis submitted for the degree of Doctor of Philosophy from the Department of Genetics, Evolution and Environment, University College London. November 2012 Declaration Declaration I, Alanna Collen (née Maltby), confirm that the work presented in this thesis is my own. Where information has been derived from other sources, this is indicated in the thesis, and below: Chapter 1 This chapter is published in the Handbook of Mammalian Vocalisations (Maltby, Jones, & Jones) as a first authored book chapter with Gareth Jones and Kate Jones. Gareth Jones provided the research for the genetics section, and both Kate Jones and Gareth Jones providing comments and edits. Chapter 2 The raw echolocation call recordings in EchoBank were largely made and contributed by members of the ‘Echolocation Call Consortium’ (see full list in Chapter 2). The R code for the diversity maps was provided by Kamran Safi. Custom adjustments were made to the computer program SonoBat by developer Joe Szewczak, Humboldt State University, in order to select echolocation calls for measurement. Chapter 3 The supertree construction process was carried out using Perl scripts developed and provided by Olaf Bininda-Emonds, University of Oldenburg, and the supertree was run and dated by Olaf Bininda-Emonds. The source trees for the Pteropodidae were collected by Imperial College London MSc student Christina Ravinet. Chapter 4 Rob Freckleton, University of Sheffield, and Luke Harmon, University of Idaho, helped with R code implementation. 2 Declaration Chapter 5 Luke Harmon, University of Idaho, helped with R code implementation. Chapter 6 Joseph W.
    [Show full text]
  • Dissertation Bats As Reservoir Hosts
    DISSERTATION BATS AS RESERVOIR HOSTS: EXPLORING NOVEL VIRUSES IN NEW WORLD BATS Submitted by Ashley Malmlov Department of Microbiology, Immunology, and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2018 Doctoral Committee: Advisor: Tony Schountz Richard Bowen Page Dinsmore Kristy Pabilonia Copyright by Ashley Malmlov 2018 All Rights Reserved ABSTRACT BATS AS RESERVOIR HOSTS: EXPLORING NOVEL VIRUSES IN NEW WORLD BATS Order Chiroptera is oft incriminated for their capacity to serve as reservoirs for many high profile human pathogens, including Ebola virus, Marburg virus, severe acute respiratory syndrome coronavirus, Nipah virus and Hendra virus. Additionally, bats are postulated to be the original hosts for such virus families and subfamilies as Paramyxoviridae and Coronavirinae. Given the perceived risk bats may impart upon public health, numerous explorations have been done to delineate if in fact bats do host more viruses than other animal species, such as rodents, and to ascertain what is unique about bats to allow them to maintain commensal relationships with zoonotic pathogens and allow for spillover. Of particular interest is data that demonstrate type I interferons (IFN), a first line defense to invading viruses, may be constitutively expressed in bats. The constant expression of type I IFNs would hamper viral infection as soon as viral invasion occurred, thereby limiting viral spread and disease. Another immunophysiological trait that may facilitate the ability to harbor viruses is a lack of somatic hypermutation and affinity maturation, which would decrease antibody affinity and neutralizing antibody titers, possibly facilitating viral persistence.
    [Show full text]
  • Evolutionary Analyses of Myosin Genes in Trypanosomatids Show A
    www.nature.com/scientificreports OPEN Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary Received: 15 September 2017 Accepted: 18 December 2017 losses and neofunctionalization Published: xx xx xxxx Denise Andréa Silva de Souza1,2, Daniela Parada Pavoni1,2, Marco Aurélio Krieger1,2,3 & Adriana Ludwig1,3 Myosins are motor proteins that comprise a large and diversifed family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identifed in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered “orphans”. We proposed the classifcation of a kinetoplastid-specifc myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions. Myosins are important eukaryotic molecular motor proteins that bind actin flaments and are dependent of ATP hydrolysis1.
    [Show full text]
  • Diversity and Diversification Across the Global Radiation of Extant Bats
    Diversity and Diversification Across the Global Radiation of Extant Bats by Jeff J. Shi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2018 Doctoral Committee: Professor Catherine Badgley, co-chair Assistant Professor and Assistant Curator Daniel Rabosky, co-chair Associate Professor Geoffrey Gerstner Associate Research Scientist Miriam Zelditch Kalong (Malay, traditional) Pteropus vampyrus (Linnaeus, 1758) Illustration by Gustav Mützel (Brehms Tierleben), 19271 1 Reproduced as a work in the public domain of the United States of America; accessible via the Wikimedia Commons repository. EPIGRAPHS “...one had to know the initial and final states to meet that goal; one needed knowledge of the effects before the causes could be initiated.” Ted Chiang; Story of Your Life (1998) “Dr. Eleven: What was it like for you, at the end? Captain Lonagan: It was exactly like waking up from a dream.” Emily St. John Mandel; Station Eleven (2014) Bill Watterson; Calvin & Hobbes (October 27, 1989)2 2 Reproduced according to the educational usage policies of, and direct correspondence with Andrews McMeel Syndication. © Jeff J. Shi 2018 [email protected] ORCID: 0000-0002-8529-7100 DEDICATION To the memory and life of Samantha Jade Wang. ii ACKNOWLEDGMENTS All of the research presented here was supported by a National Science Foundation (NSF) Graduate Research Fellowship, an Edwin H. Edwards Scholarship in Biology, and awards from the University of Michigan’s Rackham Graduate School and the Department of Ecology & Evolutionary Biology (EEB). A significant amount of computational work was funded by a Michigan Institute for Computational Discovery and Engineering fellowship; specimen scanning, loans, and research assistants were funded by the Museum of Zoology’s Hinsdale & Walker fund and an NSF Doctoral Dissertation Improvement Grant.
    [Show full text]
  • Bio-Ecologie De Triaenops Furculus (Hipposideridae
    FACULTE DES SCIENCES Département de Biologie N° d’ordre : 002/2011 THESE Pour obtenir le grade de DOCTEUR DE L'UNIVERSITE DE TOLIARA Biodiversité et Environnement Option : Biologie Animale Présentée et soutenue publiquement par TSIBARA Mbohoahy Le 31 mars 2011 BIO-ECOLOGIE DE TRIAENOPS FURCULUS (HIPPOSIDERIDAE) ET D’OTOMOPS MADAGASCARIENSIS (MOLOSSIDAE) DANS LA REGION DE SAINT AUGUSTIN ET DANS LE PARC NATIONAL TSINGY DE BEMARAHA Jury : Président du Jury : Monsieur Théodore RAZAKAMANANA, Professeur titulaire, Université de Toliara, Directeur de Thèse : Monsieur MARA Edouard REMANEVY, Professeur d’Enseignement Supérieur et des Recherches, Université de Toliara, Rapporteur interne : Madame REJO FIENENA Félicitée, Professeur d’Enseignement Supérieur et des Recherches, Université de Toliara Rapporteur externe : Monsieur Gérard LASSERRE, Professeur titulaire, Université de Montpellier, Examinateurs : Monsieur Steven M. GOODMAN, Professeur d’Enseignement Supérieur et des Recherches, Field Museum of Natural History de Chicago, Monsieur Richard K. B. JENKINS, Maître de conference, School of the Environment, Natural Resources and Geography, Bangor University, Bangor & Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury. Année universitaire: 2009-2010 1 Je dédie cette thèse à toute ma famille, en particulier ma fille MBOHOAHY Adryanà Thésardine. Si vous pouvez imaginer, vous pouvez y arriver ; si vous pouvez rêvez, vous pouvez le devenir William Arthur Ward i REMERCIEMENTS Ce travail a pu être réalisé grâce à l’appui de près ou de loin de différentes personnes morales et ONGs. J’adresse mes remerciements d’abord à Dieu tout puissant qui m’a donné la force et la santé. Mes remerciements s’adressent sincèrement à tout le personnel universitaire et en particulier : Les membres du jury, présidé par le Professeur titulaire Théodore RAZAKAMANANA, qui ont bien voulu juger ce travail.
    [Show full text]
  • Genome and Transcriptome Studies of the Protozoan Parasites Trypanosoma Cruzi and Giardia Intestinalis
    Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis Oscar Franz´en Stockholm 2012 Cover: (Front) Artwork showing replicating Giardia intestinalis trophozoites and Trypanosoma cruzi epimastigotes. DAPI staining (blue) shows the two nuclei of the former parasite. Original micrographs: J. Jerlstr¨om-Hultqvist and M. Ferella. All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB. c Oscar Franz´en,2012 ISBN 978-91-7457-860-7 To my parents... Abstract Trypanosoma cruzi and Giardia intestinalis are two human pathogens and protozoan parasites responsible for the diseases Chagas disease and giardia- sis, respectively. Both diseases cause suffering and illness in several million individuals. The former disease occurs primarily in South America and Cen- tral America, and the latter disease occurs worldwide. Current therapeutics are toxic and lack efficacy, and potential vaccines are far from the market. In- creased knowledge about the biology of these parasites is essential for drug and vaccine development, and new diagnostic tests. In this thesis, high-throughput sequencing was applied together with extensive bioinformatic analyses to yield insights into the biology and evolution of Trypanosoma cruzi and Giardia in- testinalis. Bioinformatics analysis of DNA and RNA sequences was performed to identify features that may be of importance for parasite biology and func- tional characterization. This thesis is based on five papers (i-v). Paper i and ii describe comparative genome studies of three distinct genotypes of Giardia in- testinalis (A, B and E).
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 392 (2013) 426–453 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo The Randeck Maar: Palaeoenvironment and habitat differentiation of a Miocene lacustrine system M.W. Rasser a,⁎,G.Bechlya,R.Böttchera,M.Ebnerb,E.P.J.Heizmanna,O.Höltkea,C.Joachimc,A.K.Kerna, J. Kovar-Eder a,J.H.Nebelsickb, A. Roth-Nebelsick a,R.R.Schocha,G.Schweigerta,R.Zieglera a Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany b Department for Geosciences, University of Tübingen, Sigwartstrasse 10, 72076 Tübingen, Germany c Department of Ecology and Ecosystem Management, Technische Universität München, 85354 Freising, Germany article info abstract Article history: The Randeck Maar in S. Germany is a well-known fossil lagerstätte with exceptionally preserved fossils, particu- Received 23 May 2013 larly insects and plants, which thrived in and around the maar lake during the Mid-Miocene Climatic Optimum Received in revised form 16 September 2013 (late Early/early Middle Miocene, mammal zone MN5). We provide the first critical and detailed overview of the Accepted 18 September 2013 fauna and flora with lists of 363 previously published, partially revised, and newly identified taxa. Plant remains Available online 26 September 2013 are the most diverse group (168 taxa), followed by insects (79). The flora points towards subhumid Keywords: sclerophyllous forests and mixed mesophytic forests, the former being an indication for the occurrence of Fossil lagerstätte seasonal drought. Three main sections can be differentiated for the habitats of the Randeck Maar lake system: Palaeoenvironmental reconstruction and (1) Deep- and open-water lake habitats with local and short-termed mass occurrences of insect larvae, amphibians, habitats and/or gastropods, while fish is particularly scarce.
    [Show full text]
  • Euglenozoa: Taxonomy, Diversity and Ecology, Symbioses and Viruses
    Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses † † † royalsocietypublishing.org/journal/rsob Alexei Y. Kostygov1,2, , Anna Karnkowska3, , Jan Votýpka4,5, , Daria Tashyreva4,†, Kacper Maciszewski3, Vyacheslav Yurchenko1,6 and Julius Lukeš4,7 1Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Review 2Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia 3Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Cite this article: Kostygov AY, Karnkowska A, Warsaw, Warsaw, Poland 4 Votýpka J, Tashyreva D, Maciszewski K, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic 5Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic Yurchenko V, Lukeš J. 2021 Euglenozoa: 6Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, taxonomy, diversity and ecology, symbioses Moscow, Russia and viruses. Open Biol. 11: 200407. 7Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic https://doi.org/10.1098/rsob.200407 AYK, 0000-0002-1516-437X; AK, 0000-0003-3709-7873; KM, 0000-0001-8556-9500; VY, 0000-0003-4765-3263; JL, 0000-0002-0578-6618 Euglenozoa is a species-rich group of protists, which have extremely diverse Received: 19 December 2020 lifestyles and a range of features that distinguish them from other eukar- Accepted: 8 February 2021 yotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here.
    [Show full text]
  • Thesis Reference
    Thesis Phylogeography of Myotis, Miniopterus and Emballonura bats from the Comoros and Madagascar WEYENETH, Nicole Abstract Using genetic markers, we reconstructed biogeographic origins, dispersal and diversification patterns of bats endemic to Madagascar and the Comoro islands. Our results give insight on when and how diversification was initiated in these western Indian Ocean bats: (1) populations of the Malagasy bat Myotis goudoti diverged into a southern and a northern component during the Pleistocene, with subsequent expansion and adaptation to all biomes, (2) Malagasy Miniopterus bats colonized the Comoros during the Pleistocene, favored by prevailing winds, yet recent inter-island gene flow is restricted to few individuals flying against winds but a notably shorter distance within the Comoros, (3) Emballonura lineages diverged during the Oligocene into two monophyletic groups, one represented by Malagasy members, the other by Indo-Pacific members, and (4) bioclimatic disparities between the humid east and dry west promoted the rather recent divergence of these emballonurid bats on Madagascar. Reference WEYENETH, Nicole. Phylogeography of Myotis, Miniopterus and Emballonura bats from the Comoros and Madagascar. Thèse de doctorat : Univ. Genève, 2010, no. Sc. 4267 URN : urn:nbn:ch:unige-130947 DOI : 10.13097/archive-ouverte/unige:13094 Available at: http://archive-ouverte.unige.ch/unige:13094 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de zoologie
    [Show full text]
  • Genome-Wide Characterization of Folate Transporter Proteins of Eukaryotic Pathogens [Version 1; Peer Review: 2 Approved with Reservations]
    F1000Research 2017, 6:36 Last updated: 28 JUL 2021 RESEARCH ARTICLE Genome-wide characterization of folate transporter proteins of eukaryotic pathogens [version 1; peer review: 2 approved with reservations] Mofolusho Falade 1, Benson Otarigho 1,2 1Cellular Parasitology Programme, Department of Zoology, University of Ibadan, Ibadan, Nigeria 2Department of Biological Science, Edo University, Iyamho, Nigeria v1 First published: 12 Jan 2017, 6:36 Open Peer Review https://doi.org/10.12688/f1000research.10561.1 Latest published: 13 Jul 2017, 6:36 https://doi.org/10.12688/f1000research.10561.2 Reviewer Status Invited Reviewers Abstract Background: Medically important pathogens are responsible for the 1 2 death of millions every year. For many of these pathogens, there are limited options for therapy and resistance to commonly used drugs is version 2 fast emerging. The availability of genome sequences of many (revision) report report eukaryotic protozoa is providing important data for understanding 13 Jul 2017 parasite biology and identifying new drug and vaccine targets. The folate synthesis and salvage pathway are important for eukaryote version 1 pathogen survival and organismal biology and may present new 12 Jan 2017 report report targets for drug discovery. Methods: We applied a combination of bioinformatics methods to examine the genomes of pathogens in the EupathDB for genes 1. Raphael D. Isokpehi, Bethune-Cookman encoding homologues of proteins that mediate folate salvage in a bid University , Daytona Beach, USA to identify and assign putative functions. We also performed phylogenetic comparisons of identified proteins. 2. Gajinder Singh , International Centre for Results: We identified 234 proteins to be involve in folate transport in Genetic Engineering and 63 strains, 28 pathogen species and 12 phyla, 60% of which were identified for the first time.
    [Show full text]