The Biology of Malarial Parasite in the Mosquito - a Review Amauri Braga Simonetti

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Malarial Parasite in the Mosquito - a Review Amauri Braga Simonetti Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 91(5): 519-541, Sep./Oct. 1996 519 The Biology of Malarial Parasite in the Mosquito - A Review Amauri Braga Simonetti Departamento de Microbiologia, Instituto de Biociência Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170 Porto Alegre, RS, Brasil The purpose of this review is to summarize the biology of Plasmodium in the mosquito including recent data to contribute to better understanding of the developmental interaction between mosquito and malarial parasite. The entire sporogonic cycle is discussed taking into consideration different para- site/vector interactions and factors affecting parasite development to the mosquito. Key words: malaria - mosquito - sporogonic cycle - cell biology The control and prevention of malaria has been et al. 1996). This review foccuses on the cell biol- pursued for a long time. Although campaigns ogy of malarial parasites at different stages of its against malaria were initially successful in some development in the mosquito and also includes areas, the emergence of resistance of the parasite factors that may affect the parasite infectivity. to drugs and of the mosquito vector to insecticides, The sporogonic cycle combined with the difficulties in implementing and Some erythrocytic parasites differentiate into maintaining effective control schemes have led to sexual forms called gametocytes. Mature and func- a resurgence of the disease in many parts of the tional gametocytes ingested by an appropriate spe- world (Wernsdorfer 1991, Schapira et al. 1993, cies of mosquito in a bloodmeal are stimulated to Roush 1993). Much of the current work on ma- transform into the stages which establish the para- laria focuses on immunological aspects of the dis- sites in their vector (Garnham 1966). Under the in- ease and there has been remarkable progress in the fluence of changes in the mosquito midgut environ- identification of a variety of parasite antigens in ment the gametocytes become extracellular within different stages of the parasite development, some 8-15 min of ingestion. After emergence from the of which may be included in a future vaccine red blood cell (exflagellation) the male gametes fer- (Nussenzweig & Nussenzweig 1989, Mitchel 1989, tilize the female gametes within 60 min of ingestion Targett 1989, Nussenzweig 1990, Hommel 1991, of blood. The fertilized macrogamete (zygote) dif- Good 1991a). However, experimental and field ferentiates into a single motile ookinete over the next studies have shown the complexity of the immune 10-25 hr, which migrates from the bloodmeal response to parasites, indicating that an efficient through the midgut wall to form an oocyst under- malaria vaccine is difficult to achieve (Cattani neath the basal lamina of the midgut. Each oocyst 1989, Good 1991b, 1992, Philips 1992). There- produces many thousands of invasive sporozoites fore, for control of the disease greater understand- over a period of 7-12 days. The sporozoites escape ing of the biological mechanisms involved in host/ from the oocyst and then invade the salivary glands, parasite/vector interactions is essential. here they stay for possibly very long periods until In recent years an increasing number of stud- injected into another vertebrate host when the next ies have concentrated on the mosquito stages of bloodmeal is taken (Sinden 1984, Carter & Graves the parasite development. Comprehensive reviews 1988). A diagram of the sporogonic cycle in the on biological, ultrastructural, biochemical, molecu- mosquito is shown in Figure. lar and immunological aspects of the parasite and the vector can be obtained in the literature (Sinden Development of gametocytes (gametocytogen- 1978, 1983, 1984, Carter & Graves 1988, Carter esis) et al. 1988, Alano & Carter 1990, Billingsley 1990, As with other members of the order Crampton et al. 1990, 1994, Alano 1991, Brey Haemosporina, gametocytes of Plasmodium can 1991, Coluzzi 1992, Kaslow et al. 1994a, Sinden arise from merozoites from pre-erythrocytic para- sites. Nevertheless, during natural infections, most gametocytes arise from merozoites of blood-stage origin (Alano & Carter 1990). Two alternative possibilities by which malaria parasites could be- Fax: 55-51-3362779. E.mail: [email protected] come committed to either sexual or asexual devel- Received 20 December 1995 opment have been proposed (Inselburg 1983, Mons Accepted 13 May 1996 1985, 1986, Bruce et al. 1990): first, the merozoite 520 Biology of Malarial Parasites in Mosquito • AB Simonetti EXOERYTHROCYTIC CYCLE ERYTHROCYTIC IN LIVER CYCLE IN BLOOD Penetrates red cell Merozoites red cells reinvade Schizont Merozoites Sporozoites Macro- Micro- penetrates gametocyte gametocyte liver cell IN MAN Gametocytes taken Sporozoites injected into mosquito IN MOSQUITO into man with saliva stomach with (ANOPHELES) of mosquito bloo meal Sporozoites in Microgametes salivary gland FERTILISATION GAMETOGENESIS Ookinete Ookinete penetrates midgut wall of mosquito to develop into oocyst SPOROGONY Oocyst ruptures to liberate sporozoites which penetrate salivary gland Life cycle of the malaria parasite in mammals (from Vickerman & Cox 1972). is not committed at the time of invasion of a red ronmental factors influence it so that at maturity blood cell. During early growth (as a ring form), the schizont produces merozoites that are the parasite is suceptible to factors that will com- precommitted to form asexual parasites or com- mit it to either sexual or asexual development. Sec- mitted to form gametocytes upon subsequent in- ond, during growth of an asexual parasite, envi- vasion of a red blood cell. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 91(5), Sep./Oct. 1996 521 A number of studies have attempted to iden- showed in vitro that induction of exflagellation of tify factors that may influence the differentiation P. berghei is triggered by a rise in the intracellular ++ and production of sexual stage parasites including pH (pHi) which is mediated by Ca and cGMP cAMP, presence of antimalarial drugs and other regulation. pHi can be modulated by alkaline me- environmental factors associated to the host such dia and is controlled by a complex series of inter- as the presence of serum undetermined components dependent ion pumps and channels controlling Na+, + - - (reviewed by Sinden 1983, Mons 1986, Carter & K , Cl and HCO3 transport between the parasite Graves 1988, Dearsly et al. 1990). In a recent re- and the environment. Other influential factors de- port (Schneweis et al. 1991) it was claimed that scribed include cAMP analogues and inhibitors of the production of infective gametocytes in vitro phosphodiesterase (Martin et al. 1978). The dura- can be enhanced by products of haemolysis but tion of microgametogenesis is both temperature and the nature of the erythrocytic factor was not iden- species dependent, e.g. at 20-22°C it may take 7- tified. 15 min for P. falciparum in vitro, although Gametocyte development takes longer than exflagellation may be detected after shorter peri- asexual schizogony, e.g. 26 hr as opposed to 22.5 ods in the fluid excreted by feeding Anopheles hr in P. berghei (Mons et al. 1985) or in the more (Sinden 1983). There is no evidence that extreme case of P. falciparum 8-12 days as op- exflagellation is influenced by factors released by posed to 48 hr (Sinden 1983). The proportion of digestion of the blood meal since digestion nor- parasites that develop into gametocytes varies mally begins several hours later (Graf et al. 1986). greatly during the course of natural infections even Microgamete formation involves three mitotic di- at its peak but is very low in relation to the total visions with a rapid assembly of eight axonemes parasitaemia (Smalley et al. 1981). The growth and on the single microtubule organizing centre that differentiation of gametocytes of P. falciparum has divides and passes to the spindle poles. This divi- been divided into five stages (I to V) covering about sion simultaneously segregates the genome and the eight days from merozoite invasion to mature ga- axoneme so that each of the eight emergent ga- metocyte, each stage being distinguished by suc- metes receives a single axoneme and haploid ge- cessive changes in the organization of the cell nome, both being connected to a common micro- (Hawking et al. 1971). tubule organizing centre. After exflagellation the Little is known about commitment of gameto- microgametes, normally bearing a single axoneme, cytes to be male or female. The fact that both fe- a single condensed nucleus and a single kineto- male and male can be produced by haploid blood- some with its sphere and granule at the distal end, stage parasite, the sex of a gametocyte does not are torn from the microgametocyte surface and result from chromosomal differences between both rapidly move away into the blood meal (Sinden & types of cell but their development must be due to Croll 1975). selective gene expression. In general, the number Macrogametogenesis at the morphological of female gametocytes predominates over the num- level involves little more than escape from the host ber of male, but this predominance may vary at cell (Sinden 1984). At the cellular level there is de different times between cloned infections novo synthesis of the proteins which are expressed (Cornelissen 1988, Schall 1989). on the surface of macrogamete (Kumar & Carter 1984). It was recently identified a gametocyte spe- Gametogenesis Mature and functional gametocytes ingested by cific protein of P. falciparum called Pf11-1 and there is some evidence that this protein might be the mosquito in a bloodmeal are stimulated by the involved in the emergence of gametes from the midgut environment to transform into gametes. infected erythrocyte (Scherf et al. 1992, 1993). Studies indicate that various triggers induce game- Interactions between the vertebrate host and the tocytes to undergo differentiation. Microgameto- parasite do not cease when the blood meal is taken. genesis in vitro is, optimally, dependent upon a rise in pH (Nijhout & Carter 1978), a rise in pCO and Following induction of gametogenesis the parasite 2 is liberated into the blood meal.
Recommended publications
  • Essential Function of the Alveolin Network in the Subpellicular
    RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite.
    [Show full text]
  • Extra-Intestinal Coccidians Plasmodium Species Distribution Of
    Extra-intestinal coccidians Apicomplexa Coccidia Gregarinea Piroplasmida Eimeriida Haemosporida -Eimeriidae -Theileriidae -Haemosporiidae -Cryptosporidiidae - Babesiidae (Plasmodium) -Sarcocystidae (Sacrocystis) Aconoid (Toxoplasmsa) Plasmodium species Causitive agent of Malaria ~155 species named Infect birds, reptiles, rodents, primates, humans Species is specific for host and •P. falciparum vector •P. vivax 4 species cause human disease •P. malariae No zoonoses or animal reservoirs •P. ovale Transmission by Anopheles mosquito Distribution of Malarial Parasites P. vivax most widespread, found in most endemic areas including some temperate zones P. falciparum primarily tropics and subtropics P. malariae similar range as P. falciparum, but less common and patchy distribution P. ovale occurs primarily in tropical west Africa 1 Distribution of Malaria US Army, 1943 300 - 500 million cases per year 1.5 to 2.0 million deaths per year #1 cause of infant mortality in Africa! 40% of world’s population is at risk Malaria Atlas Map Project http://www.map.ox.ac.uk/index.htm 2 Malaria in the United States Malaria was quite prevalent in the rural South It was eradicated after world war II in an aggressive campaign using, treatment, vector control and exposure control Time magazine - 1947 (along with overall improvement of living Was a widely available, conditions) cheap insecticide This was the CDCs initial DDT resistance misssion Half-life in mammals - 8 years! US banned use of DDT in 1973 History of Malaria Considered to be the most
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Equine Piroplasmosis
    EAZWV Transmissible Disease Fact Sheet Sheet No. 119 EQUINE PIROPLASMOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Equines Tick-borne Acute, subacute Sometimes Babesiosis: In houses or chronic disease fatal, in Imidocarb Tick control characterised by particular in (Imizol, erythrolysis: fever, acute T.equi Carbesia, in zoos progressive infections. Forray) Tick control anaemia, icterus, When Dimenazene haemoglobinuria haemoglobinuria diaceturate (in advanced develops, (Berenil) stages). prognosis is Theileriosis: poor. Buparvaquone (Butalex) Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium F. Vercammen, Royal Zoological Society of Antwerp, Belgium Susceptible animal groups Horse (Equus caballus), donkey (Equus asinus), mule, zebra (Equus zebra) and Przewalski (Equus przewalskii), likely all Equus spp. are susceptible to equine piroplasmosis or biliary fever. Causative organism Babesia caballi: belonging to the phylum of the Apicomplexa, order Piroplasmida, family Babesiidae; Theileria equi, formerly known as Babesia equi or Nutallia equi, apicomplexa, order Piroplasmida, family Theileriidae. Babesia canis has been demonstrated by molecular diagnosis in apparently asymptomatic horses. A single case of Babesia bovis and two cases of Babesia bigemina have been detected in horses by a quantitative PCR. Zoonotic potential Equine piroplasmoses are specific for Equus spp. yet there are some reports of T.equi in asymptomatic dogs. Distribution Widespread: B.caballi occurs in southern Europe, Russia, Asia, Africa, South and Central America and the southern states of the US. T.equi has a more extended geographical distribution and even in tropical regions it occurs more frequent than B.caballi, also in the Mediterranean basin, Switzerland and the SW of France.
    [Show full text]
  • First Case of Autochthonous Equine Theileriosis in Austria
    pathogens Case Report First Case of Autochthonous Equine Theileriosis in Austria Esther Dirks 1, Phebe de Heus 1, Anja Joachim 2, Jessika-M. V. Cavalleri 1 , Ilse Schwendenwein 3, Maria Melchert 4 and Hans-Peter Fuehrer 2,* 1 Clinical Unit of Equine Internal Medicine, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] (E.D.); [email protected] (P.d.H.); [email protected] (J.-M.V.C.) 2 Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Clinical Pathology Platform, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 4 Centre for Insemination and Embryo transfer Platform, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-125-077-2205 Abstract: A 23-year-old pregnant warmblood mare from Güssing, Eastern Austria, presented with apathy, anemia, fever, tachycardia and tachypnoea, and a severely elevated serum amyloid A concentration. The horse had a poor body condition and showed thoracic and pericardial effusions, and later dependent edema and icteric mucous membranes. Blood smear and molecular analyses revealed an infection with Theileria equi. Upon treatment with imidocarb diproprionate, the mare improved clinically, parasites were undetectable in blood smears, and 19 days after hospitalization the horse was discharged from hospital. However, 89 days after first hospitalization, the mare again presented to the hospital with an abortion, and the spleen of the aborted fetus was also PCR-positive Citation: Dirks, E.; de Heus, P.; for T.
    [Show full text]
  • Cytauxzoon Sp.: Un Protozoo Emergente Nel Gatto
    Sede amministrativa: Università degli studi di Padova Dipartimento di Biomedicina Comparata e Alimentazione Scuola di Dottorato di ricerca in SCIENZE VETERINARIE Indirizzo: SCIENZE BIOMEDICHE VETERINARIE E COMPARATE Ciclo XXV CYTAUXZOON SP.: UN PROTOZOO EMERGENTE NEL GATTO Direttore della Scuola: Ch.mo Prof. Gianfranco Gabai Coordinatore di Indirizzo: Ch.mo Prof. Gianfranco Gabai Supervisore: Ch.mo Prof. Mario Pietrobelli Correlatori: Ch. ma Prof.ssa Gioia Capelli Dr. Tommaso Furlanello Dr.ssa Laia Solano-Gallego Dottoranda: Dr.ssa Erika Carli Alla mia famiglia e a chi se ne sente parte 2 Ringraziamenti L’ultima cosa che sto scrivendo in questa tesi è la prima che voglio sia letta e cioè questa pagina di ringraziamenti. Innanzitutto voglio ringraziare l’inventore del microscopio ottico, anche se non si sa chi sia. Galileo Galilei, uno dei possibili nomi, definì il microscopio di sua costruzione “un occhialino per vedere le cose minime”. Chi come me lavora quotidiamente con questo strumento, sa quanto sia affascinante e, a volte, esaltante poter vedere “le cose minime” e può capire quanto sia stato entusiasmante il momento in cui ho visto per la prima volta Cytauxzoon nei globuli rossi di un gatto! Incomincio con il ringraziare Marco Caldin che mi ha insegnato e trasmesso la sua passione per l’Ematologia. Lo ringrazio anche perché la Clinica San Marco, da lui diretta, ha totalmente finaziato questo progetto di ricerca. Ringrazio Mario Pietrobelli che mi ha seguita e accompagnata da buon tutor in questo percorso e che ha accolto sempre con grande entusiasmo gli annunci delle mie gravidanze. Grazie anche ai miei correlatori Tommaso Furlanello e Gioia Capelli, per avermi dato suggerimenti preziosi e spunti di riflessione.
    [Show full text]
  • Functional Analysis of Genomic Variations Associated with Emerging Artemisinin Resistant P
    Functional analysis of genomic variations associated with emerging artemisinin resistant P. falciparum parasite populations and human infecting piroplasmida B. microti Ankit Dwivedi To cite this version: Ankit Dwivedi. Functional analysis of genomic variations associated with emerging artemisinin resis- tant P. falciparum parasite populations and human infecting piroplasmida B. microti. Human health and pathology. Université Montpellier, 2016. English. NNT : 2016MONTT073. tel-01557492 HAL Id: tel-01557492 https://tel.archives-ouvertes.fr/tel-01557492 Submitted on 6 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par Université de Montpellier Préparée au sein de l’école doctorale CBS2 Et de l’unité de recherche Institut de Recherche en Cancérologie de Montpellier Spécialité : Bioinformatique et Parasitologie Présentée par Ankit Dwivedi Functional analysis of genomic variations associated with emerging artemisinin resistant P. falciparum parasite populations and human B. microti infecting piroplasmida populations Soutenue le 28 Septembre 2016 devant le jury composé de M. Emmanuel CORNILLOT , Professeur des universités, Directeur de Institut de Recherche en Cancérologie de Montpellier these Mme Christelle REYNES , Maître de conférences, Coencadrant de Faculté des sciences pharmaceutiques et biologiques these M. Thomas OTTO , Directeur de recherche, Rapporteur Wellcome Trust Sanger Institute M.
    [Show full text]
  • Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
    Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied.
    [Show full text]
  • Great Diversity of Piroplasmida in Equidae in Africa and Europe, Including Potential New Species
    Veterinary Parasitology: Regional Studies and Reports 18 (2019) 100332 Contents lists available at ScienceDirect Veterinary Parasitology: Regional Studies and Reports journal homepage: www.elsevier.com/locate/vprsr Original Article Great diversity of Piroplasmida in Equidae in Africa and Europe, including T potential new species Handi Dahmanaa, Nadia Amanzougaghenea, Bernard Davousta,b, Thomas Normandb, Olivier Caretteb, Jean-Paul Demoncheauxb, Baptiste Mulotc, Bernard Fabrizyd, Pierre Scandolab, ⁎ Makhlouf Chika, Florence Fenollare, Oleg Mediannikova, a IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France b Working Group on Animal Epidemiology, French Forces Medical Service, Toulon, France c ZoologicalResarch Center, Saint-Aignan-sur-Cher, ZooParc of Beauval, France d Clinique Vétérinaire CyrnevetLupino, Bastia, France e IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France ARTICLE INFO ABSTRACT Keywords: Piroplasms are Apicomplexa tick-borne parasites distributed worldwide. They are responsible for piroplasmosis Piroplasmosis (theileriosis and babesiosis) in Vertebrata and are therefore of medical and economic importance. Equidae Herein, we developed a new real time PCR assay targeting the 5.8S rRNA gene and three standard PCR assays, PCR assays targeting 18S rRNA, 28S rRNA, and cox1 genes, for the detection of piroplasmids. These assays were first op- Sub-Saharan Africa timized and screened for specificity and sensitivity. Then, they were used to study a total of 548 blood samples France and 97 ticks collected from Equidae in four sub-Saharan countries (Senegal, Democratic Republic of the Congo, Chad, and Djibouti) and France (Marseille and Corsica). DNA of piroplasms was detected in 162 of 548 (29.5%) blood samples and in 9 of 97 (9.3%) ticks.
    [Show full text]
  • 1 Comparative Genomics of Cryptosporidium Species
    COMPARATIVE GENOMICS OF CRYPTOSPORIDIUM SPECIES Submitted by Giovanni Widmer and Jessica Kissinger on behalf of the Cryptosporidium research community Submitted July 8, 2011 Executive Summary With 62 million DALYs (disability-adjusted life years), diarrheal diseases represent the third most important infectious disease burden (Hotez et al., 2006), only exceeded by lower respiratory tract infections and HIV-AIDS. Together with viral, bacterial and other eukaryotic pathogens, various Cryptosporidium species infect the gastro-intestinal tract and cause diarrhea. The fact that multiple enteric infections are frequently concurrent makes it difficult to estimate the burden associated with cryptosporidiosis. In malnourished children, the infection can aggravate poor nutritional conditions, lead to impaired immune response, chronic infection and long-term negative impact on growth and development. Immune-compromised individuals worldwide are at risk of chronic infection, which can lead to wasting and death. Significantly, there are no effective drugs to treat cryptosporidiosis. To accelerate research on Cryptosporidium parasites, we propose to fully sequence the genomes of six Cryptosporidium species, two of which have partial, or nearly complete sequence (Table 1). The size of each of the proposed genomes is expected to be approximately 9.2 Mbp and contain around 4000 genes. We also recommend survey sequencing of a genotypically diversified collection of 28 clinical isolates of C. parvum and C. hominis (including pre- and post-laboratory passage to assess the effects of selection on heterogeneity, if any), and four C. parvum isolates belonging to the IIc or "anthroponotic" subgroup. This latter genotype is commonly identified in human infections in developing countries. Table 1 Summary of proposed genomes.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Genome-Wide Identification and Evolutionary Analysis of Sarcocystis Neurona Protein Kinases
    Article Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases Edwin K. Murungi 1,* and Henry M. Kariithi 2 1 Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115 Njoro, Kenya 2 Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Kaptagat Rd, Loresho, 00200 Nairobi, Kenya; [email protected] * Correspondence: [email protected]; Tel: +254-789-716-059 Academic Editor: Anthony Underwood Received: 6 January 2017; Accepted: 17 March 2017; Published: 21 March 2017 Abstract: The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1.
    [Show full text]