Entirely Plasmid-Based Reverse Genetics System for Rotaviruses

Total Page:16

File Type:pdf, Size:1020Kb

Entirely Plasmid-Based Reverse Genetics System for Rotaviruses Entirely plasmid-based reverse genetics system SEE COMMENTARY for rotaviruses Yuta Kanaia, Satoshi Komotob, Takahiro Kawagishia,c, Ryotaro Noudaa,c, Naoko Nagasawaa, Misa Onishia, Yoshiharu Matsuurac, Koki Taniguchib, and Takeshi Kobayashia,1 aLaboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871 Japan; bDepartment of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192 Japan; and cDepartment of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871 Japan Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved December 28, 2016 (received for review November 7, 2016) Rotaviruses (RVs) are highly important pathogens that cause severe extensive serial selective passage at a high multiplicity of infection diarrhea among infants and young children worldwide. The under- (MOI) (11). A method for generating a recombinant virus containing standing of the molecular mechanisms underlying RV replication and the NSP2 gene segment uses independent selection mechanisms: a pathogenesis has been hampered by the lack of an entirely plasmid- temperature-sensitive (ts) mutant in which NSP2 is defective at based reverse genetics system. In this study, we describe the recovery nonpermissive temperature as a helper virus, and siRNA-mediated of recombinant RVs entirely from cloned cDNAs. The strategy requires gene silencing against the NSP2 message-sense ssRNA of the ts coexpression of a small transmembrane protein that accelerates cell- mutant (12). However, despite extensive efforts in many laboratories, to-cell fusion and vaccinia virus capping enzyme. We used this system no entirely plasmid-based reverse genetics system that does not re- to obtain insights into the process by which RV nonstructural protein quire a selection method against helper virus and is applicable to all NSP1 subverts host innate immune responses. By insertion into the gene segments of RV strains has been developed (14). NSP1 gene segment, we recovered recombinant viruses that encode Here, we demonstrate that recombinant RV can be recovered – split-green fluorescent protein tagged NSP1 and NanoLuc luciferase. following transfection of baby hamster kidney cells constitutively This technology will provide opportunities for studying RV biology expressing T7pol (BHK-T7) with 11 RV cDNA plasmids and and foster development of RV vaccines and therapeutics. expression plasmids encoding NBV fusion-associated small transmembrane (FAST) protein and VV capping enzyme. We rotavirus | reverse genetics | vaccine | reporter virus tested the plasmid-based reverse genetics system by generating a recombinant virus lacking the C-terminal region of NSP1 and Reoviridae roup A rotaviruses (RVs), members of the family , used it to investigate the function of this protein as an antag- Gare a highly prevalent cause of severe diarrhea in infants and ∼ onist of the innate immune response in infected cells. In ad- young children worldwide and are responsible for 215,000 deaths dition, we established efficient gene transfer systems for use in annually, mostly in developing countries (1). RVs are nonenveloped live-cell imaging, trafficking, and antiviral screening. icosahedral viruses containing a genome of 11 gene segments composed of double-stranded (ds) RNA. Results Reverse genetics systems for manipulating viral genomes Development of a Reverse Genetics System for RV. In the efforts to provide key critical insights into viral replication and pathogen- develop improved reverse genetics systems for Reoviridae viruses, esis and facilitate development of novel vaccines and viral vec- we discovered two important modifications that significantly tors through direct gene modification and attenuation. Entirely increase nonfusogenic MRV and RV replication and enhance plasmid- or RNA transcript-based reverse genetics systems have now been established for several genera of Reoviridae, including Significance mammalian orthoreovirus (MRV), Nelson Bay orthoreovirus MICROBIOLOGY (NBV) (Orthoreovirus genus), and bluetongue virus, African horse sickness virus, and epizootic hemorrhagic disease virus Rotaviruses (RVs) are a group of viruses that cause severe gas- (Orbivirus genus) (2–9). The development of the plasmid-based troenteritis in infants and young children. Until now, no strategy reverse genetics system for MRV (2) raised expectations that this has been developed to generate infectious RVs entirely from technology could be readily applied to genus Rotavirus. Partial cloned cDNAs. The absence of a reliable reverse genetics plat- plasmid-based reverse genetics systems that are dependent on form has been a major roadblock in the RV field, precluding helper viruses have been developed for RV, and these strategies numerous studies of RV replication and pathogenesis and ham- have been used to generate recombinant RVs containing a single pering efforts to develop the next generation of RV vaccines. recombinant gene segment derived from cloned cDNAs (10–13). Here, we developed a plasmid-based reverse genetics system The breakthrough for generating recombinant RVs was de- that is free from helper viruses and independent of any selection veloped to manipulate the gene segment that encodes outer- for RV. This technology will accelerate studies of RV pathobiol- ogy, allow rational design of RV vaccines, and yield RVs suitable capsid protein VP4 (13). In this system, a plasmid cDNA con- for screening small molecules as potential antivirals. taining the VP4 gene segment was transfected into monkey kidney epithelial COS-7 cells expressing T7 RNA polymerase Author contributions: Y.K., Y.M., K.T., and T. Kobayashi designed research; Y.K., S.K., (T7pol) from attenuated vaccinia virus (VV) recombinant-strain T. Kawagishi, R.N., N.N., and M.O. performed research;Y.K.andT.Kobayashianalyzed rDIs-T7pol. The cells were then infected with human RV strain data; and Y.K., Y.M., K.T., and T. Kobayashi wrote the paper. KU as a helper virus. Distinct recombinant VP4 monoreassortant The authors declare no conflict of interest. viruses were isolated using neutralizing monoclonal antibodies This article is a PNAS Direct Submission. – specific for helper virus VP4. Subsequently, other helper-virus Data deposition: The complete genome sequences of strain SA11 reported in this paper dependent techniques were developed by modification of the first have been deposited in the GenBank database (accession nos. LC178564–LC178574). system. Troupin et al. reported a reverse genetics method for RVs See Commentary on page 2106. based on preferential packaging of rearranged gene segments. In 1To whom correspondence should be addressed. Email: [email protected]. this system, a recombinant monoreassortant virus containing the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. nonstructural protein NSP3 gene segment was engineered by 1073/pnas.1618424114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1618424114 PNAS | February 28, 2017 | vol. 114 | no. 9 | 2349–2354 Downloaded by guest on September 26, 2021 recombinant virus recovery. Fusogenic orthoreovirus FAST strain SA11 were introduced into plasmids at sites flanked by the proteins are the smallest known nonenveloped viral fusogenic T7 promoter sequence and the antigenomic hepatitis delta virus proteins (15) and promote viral replication and pathogenesis (HDV) ribozyme (Fig. 1A). Transcription using T7pol and self- in vivo (16). Based on these findings, we speculated that FAST cleavage by the HDV ribozyme generated RNA transcripts proteins could accelerate replication of other Reoviridae viruses, corresponding to viral positive-sense RNAs containing the au- including MRV and RV, which do not encode a FAST homolog. thentic viral 5′ and 3′ ends, respectively. BHK-T7 cells were As expected, yields of MRV and RV were significantly increased cotransfected with 11 plasmids, each corresponding to a single (by ∼15-fold and ∼40-fold, respectively) in infected cells trans- RV gene segment, along with expression plasmids encoding fected with a FAST expression plasmid relative to mock-trans- FAST and VV capping enzyme (Fig. 1A). After 3–5dofin- fected cells (Fig. S1 A and B). To determine whether FAST cubation, transfected cells were subjected to three cycles of expression increases the efficiency of the MRV rescue system, we freezing and thawing and lysates were passaged in MA104 cells. cotransfected BHK-T7 cells with the rescue vector set of the A few days after the first passage, a significant cytopathic effect reverse genetics system for MRV strain T1L (9) and a FAST (CPE) was observed in MA104 cells, suggesting recovery of expression plasmid. Coexpression of FAST protein (0.005 μg) recombinant strain (rs) SA11 derived from cloned cDNAs. By resulted in an ∼600-fold increased viral yield compared with that contrast, we did not recover any recombinant virus following in cells transfected with the MRV rescue vector set alone (Fig. several passages from cells transfected with the 11 RV cDNA S1C). However, no infectious virus was synthesized in the pres- rescue vectors in the absence of FAST protein and VV capping ence of the highest concentration of FAST protein (0.05 μg) enzyme. To exclude the possibility of contamination with parental (Fig. S1C). MRV and RV mRNAs are capped at their 5′ ends, virus, a unique
Recommended publications
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • The Acinetobacter Baumannii Mla System and Glycerophospholipid
    RESEARCH ARTICLE The Acinetobacter baumannii Mla system and glycerophospholipid transport to the outer membrane Cassandra Kamischke1, Junping Fan1, Julien Bergeron2,3, Hemantha D Kulasekara1, Zachary D Dalebroux1, Anika Burrell2, Justin M Kollman2, Samuel I Miller1,4,5* 1Department of Microbiology, University of Washington, Seattle, United States; 2Department of Biochemistry, University of Washington, Seattle, United States; 3Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom; 4Department of Genome Sciences, University of Washington, Seattle, United States; 5Department of Medicine, University of Washington, Seattle, United States Abstract The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial *For correspondence: therapeutic targets. [email protected] DOI: https://doi.org/10.7554/eLife.40171.001 Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Ribozyme-Mediated, Multiplex CRISPR Gene Editing and Crispri in Plasmodium Yoelii
    bioRxiv preprint doi: https://doi.org/10.1101/481416; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ribozyme-Mediated, Multiplex CRISPR Gene Editing and CRISPRi in Plasmodium yoelii Michael P. Walker1 and Scott E. Lindner1 * 1Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA. *Correspondence: Scott E. Lindner, [email protected] Running Title: CRISPR-RGR in Plasmodium yoelii Keywords: Plasmodium, CRISPR, CRISPRi, Ribozyme, HDR, ALBA bioRxiv preprint doi: https://doi.org/10.1101/481416; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Functional characterization of genes in Plasmodium parasites often relies on genetic 3 manipulations to disrupt or modify a gene-of-interest. However, these approaches are limited by 4 the time required to generate transgenic parasites for P. falciparum and the availability of a 5 single drug selectable marker for P. yoelii. In both cases, there remains a risk of disrupting native 6 gene regulatory elements with the introduction of exogenous sequences. To address these 7 limitations, we have developed CRISPR-RGR, a SpCas9-based gene editing system for 8 Plasmodium that utilizes a Ribozyme-Guide-Ribozyme (RGR) sgRNA expression strategy. 9 Using this system with P. yoelii, we demonstrate that both gene disruptions and coding sequence 10 insertions are efficiently generated, producing marker-free and scar-free parasites with homology 11 arms as short as 80-100bp.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Double-Stranded RNA Killer Plasmid Replication in Saccharomyces Cerevisiae (Ski Mutants/Mak Mutants) Akio TOH-E* and REED B
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 1, pp. 527-530, January 1980 Genetics "Superkiller" mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae (ski mutants/mak mutants) AKIo TOH-E* AND REED B. WICKNERt Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20205 Communicated by G. Gilbert Ashwell, October 17,1979 ABSTRACT Saccharomyces cerevisiae strains carrying a MATERIALS AND METHODS 1.5 X 106-dalton double-stranded RNA genome in virus-like particles (killer plasmid) secrete a protein toxin that kills strains Strains. Some of the strains of Saccharomyces cerevsiae used not carrying this plasmid. At least 28 chromosomal genes (mak in this study are listed in Table 1. Description of the phenotype genes) are required to maintain or replicate this plasmid. Re- and genotype of killer strains was presented previously (21). cessive mutations in any of four other chromosomal genes (ski Curing of the killer plasmid is done by growing killer strains for superkiller) result in enhanced toxin production. We report at an elevated temperature (37°C) (23). Mitochondrial DNA that many ski- mak- double mutants are able to maintain the killer plasmid, indicating that the SKIproducts have an effect was eliminated from strains by streaking to single colonies on on plasmid replication. The skil-) mutation suppresses (by- YPAD medium containing ethidium bromide at 30 ug/ml passes) all mak mutations tested except makl6-l. A variant killer (24). plasmid is described that confers the superkiller phenotype and, Media. YPAD, YPG, SD, presporulation medium, sporula- like chromosomal ski mutations, makes several mak genes tion medium, MB medium, and various omission media were dispensable for plasmid replication.
    [Show full text]
  • Indirect Selection Against Antibiotic Resistance Via Specialized Plasmid-Dependent Bacteriophages
    microorganisms Perspective Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages Reetta Penttinen 1,2 , Cindy Given 1 and Matti Jalasvuori 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9C, P.O.Box 35, FI-40014 Jyväskylä, Finland; reetta.k.penttinen@jyu.fi (R.P.); cindy.j.given@jyu.fi (C.G.) 2 Department of Biology, University of Turku, FI-20014 Turku, Finland * Correspondence: matti.jalasvuori@jyu.fi; Tel.: +358-504135092 Abstract: Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, Citation: Penttinen, R.; Given, C.; we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Origin and Evolution of Emerging Liaoning Virus(Genus Seadornavirus, Family Reoviridae)
    Origin and Evolution of Emerging Liaoning Virusgenus Seadornavirus, family Reoviridae) Jun Zhang Shandong University of Technology Hong Liu ( [email protected] ) Shandong University of Technology https://orcid.org/0000-0002-5182-4750 Jiahui Wang Shandong University of Technology Jiheng Wang Shandong University of Technology Jianming Zhang Shandong University of Technology Jiayue Wang Shandong University of Technology Xin Zhang Shandong University of Technology Hongfang Ji Shandong University of Technology Zhongfen Ding Shandong University of Technology Han Xia Chinese Academy of Sciences Chunyang Zhang Shandong University of Technology Qian Zhao Shandong University of Technology Guodong Liang Chinese Center for Disease Control and Prevention Research Keywords: Liaoning virus, LNV, Seadornavirus, Evolution, Migration Posted Date: January 15th, 2020 DOI: https://doi.org/10.21203/rs.2.20915/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/13 Abstract Background:Liaoning virus(LNV) is a member of the genus Seadornavirus, family Reoviridae and has been isolated from kinds of sucking insects in Asia and Australia. However, there are no systematic studies describe the molecular genetic evolution and migration of LNVs isolated from different time, regions and vectors. Methods:Here, a phylogenetic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on the LNVs isolated from a variety of vectors during 1990-2014,worldwide. Results:The phylogenetic analysis demonstrated that the LNV could be divided into 3 genotypes, of which genotype 1 mainly composed of LNVs isolated from Australia during 1990 to 2014 as well as the original LNV strain(LNV-NE97-31) isolated from Liaoning province in northern China in 1997,genotype 2 comprised of the isolates all from Xinjiang province in western China and genotype 3 consisted the isolates from Qinghai and Shanxi province of central China.
    [Show full text]
  • Module1: General Concepts
    NPTEL – Biotechnology – General Virology Module1: General Concepts Lecture 1: Virus history The history of virology goes back to the late 19th century, when German anatomist Dr Jacob Henle (discoverer of Henle’s loop) hypothesized the existence of infectious agent that were too small to be observed under light microscope. This idea fails to be accepted by the present scientific community in the absence of any direct evidence. At the same time three landmark discoveries came together that formed the founding stone of what we call today as medical science. The first discovery came from Louis Pasture (1822-1895) who gave the spontaneous generation theory from his famous swan-neck flask experiment. The second discovery came from Robert Koch (1843-1910), a student of Jacob Henle, who showed for first time that the anthrax and tuberculosis is caused by a bacillus, and finally Joseph Lister (1827-1912) gave the concept of sterility during the surgery and isolation of new organism. The history of viruses and the field of virology are broadly divided into three phases, namely discovery, early and modern. The discovery phase (1886-1913) In 1879, Adolf Mayer, a German scientist first observed the dark and light spot on infected leaves of tobacco plant and named it tobacco mosaic disease. Although he failed to describe the disease, he showed the infectious nature of the disease after inoculating the juice extract of diseased plant to a healthy one. The next step was taken by a Russian scientist Dimitri Ivanovsky in 1890, who demonstrated that sap of the leaves infected with tobacco mosaic disease retains its infectious property even after its filtration through a Chamberland filter.
    [Show full text]
  • Lentivirus and Lentiviral Vectors Fact Sheet
    Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell.
    [Show full text]
  • Écologie Et Évolution De Coronavirus Dans Des Populations De Chauves-Souris Des Îles De L’Ouest De L’Océan Indien
    Université de La Réunion THÈSE Pour l’obtention du grade de DOCTEUR D’UNIVERSITÉ Doctorat Sciences du vivant Spécialité : Écologie, santé, environnement École doctorale (542) : Sciences Technologiques Santé Écologie et évolution de coronavirus dans des populations de chauves-souris des îles de l’ouest de l’Océan Indien Présentée et soutenue publiquement par Léa Joffrin Le 28 novembre 2019, devant le jury composé de : Dr. Alexandre CARON Chercheur,CIRAD, Montpellier Rapporteur Dr. Nathalie CHARBONNEL Directrice de recherche, INRA, Montpellier Rapporteur Dr. Pascale BESSE Professeur, Université de La Réunion Examinateur Dr. Catherine CETRE-SOSSAH Chercheuse, CIRAD, La Réunion Examinateur Directeur de la conservation, Mauritian Examinateur Dr. Vikash TATAYAH Wildlife Foundation, Ile Maurice Dr. Patrick MAVINGUI Directeur de recherche, CNRS, La Réunion Directeur de thèse Dr. Camille LEBARBENCHON Maitre de conférences, Université de La Co-directeur de thèse Réunion Laboratoire de recherche : UMR PIMIT Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion Cette thèse a reçu le soutien financier de la Région Réunion et de l’Union Européenne -Fonds Européen de Développement Régional (FEDER) dans le cadre du Programme Opérationnel de Coopération Territoriale 2014-2020. Remerciements Je souhaite remercier les membres du jury pour avoir accepté d'évaluer mon travail. Merci au Dr. Nathalie Charbonnel et au Dr. Alexandre Caron d'avoir accepté d'être rapporteurs de ma thèse malgré leurs emplois du temps chargés. Merci au Dr. Pascale Besse d'avoir accepté d'être examinatrice et présidente de ce jury. Je remercie également le Dr. Catherine Cetre-Sossah et le Dr.
    [Show full text]