C2G Evidence Brief: Carbon Dioxide Removal and Its Governance

Total Page:16

File Type:pdf, Size:1020Kb

C2G Evidence Brief: Carbon Dioxide Removal and Its Governance Carnegie Climate EVIDENCE BRIEF Governance Initiative Carbon Dioxide Removal An initiative of and its Governance 2 March 2021 Summary This briefing summarises the latest evidence relating to Carbon Dioxide Removal (CDR) techniques and their governance. It describes a range of techniques currently under consideration, exploring their technical readiness, current research, applicable governance frameworks, and other socio-political considerations in section I. It also provides an overview of some generic CDR governance issues and the key instruments relevant for the governance of CDR in section II. About C2G The Carnegie Climate Governance Initiative (C2G) seeks to catalyse the creation of effective governance for climate-altering approaches, in particular for solar radiation modification (SRM) and large-scale carbon dioxide removal (CDR). In 2018, the Intergovernmental Panel on Climate Change (IPCC) reaffirmed that large-scale CDR is required in all pathways to limit global warming to 1.5°C with limited or no overshoot. Some scientists say SRM may also be needed to avoid that overshoot. C2G is impartial regarding the potential use of specific approaches, but not on the need for their governance - which includes multiple, diverse processes of learning, discussion and decision-making, involving all sectors of society. It is not C2G’s role to influence the outcome of these processes, but to raise awareness of the critical governance questions that underpin CDR and SRM. C2G’s mission will have been achieved once their governance is taken on board by governments and intergovernmental bodies, including awareness raising, knowledge generation, and facilitating collaboration. C2G has prepared several other briefs exploring various CDR and SRM technologies and associated issues. These are available on our website. c2g2.net | [email protected] Evidence Brief: Carbon Dioxide Removal and its Governance Table of Contents Introduction ���������������������������������������������������������������������������������������������������������������������������������������������������� 3 SECTION I: CDR Techniques Overview �������������������������������������������������������������������������������������������������������� 4 Introduction ������������������������������������������������������������������������������������������������������������������������������������������������ 4 Afforestation and reforestation �������������������������������������������������������������������������������������������������������������� 7 Artificial downwelling ������������������������������������������������������������������������������������������������������������������������������ 10 Artificial upwelling �������������������������������������������������������������������������������������������������������������������������������� 11 Biochar production and deposition ������������������������������������������������������������������������������������������������������ 13 Bioenergy with carbon capture and storage (BECCS) ������������������������������������������������������������������������ 15 Building with biomass . 17 Carbon sequestration in soils ���������������������������������������������������������������������������������������������������������������� 19 Crop residue oceanic carbon sequestration . 21 Direct air carbon dioxide capture & storage (DACCS) ���������������������������������������������������������������������� 23 Enhancing ocean alkalinity �������������������������������������������������������������������������������������������������������������������� 27 Enhanced terrestrial weathering ���������������������������������������������������������������������������������������������������������� 29 Macroalgal cultivation for sequestration �������������������������������������������������������������������������������������������� 31 Ocean carbon capture and storage (OCCS) �������������������������������������������������������������������������������������� 33 Ocean fertilisation with iron . 34 Ocean fertilisation with macro-nutrients, nitrogen, and phosphorus . 35 Restoring wetlands, peatlands and coastal habitats �������������������������������������������������������������������������� 37 SECTION II: Governance . 41 Introduction ���������������������������������������������������������������������������������������������������������������������������������������������� 41 Research governance . 41 Monitoring, Reporting and Verification (MRV) . 42 ‘Moral hazard’ or ‘mitigation deterrence’ �������������������������������������������������������������������������������������������� 43 Risk-risk trade-offs . 43 Incentives �������������������������������������������������������������������������������������������������������������������������������������������������� 44 Sequestration and permanency ������������������������������������������������������������������������������������������������������������ 44 Other remaining governance challenges �������������������������������������������������������������������������������������������� 44 International law and frameworks �������������������������������������������������������������������������������������������������������� 45 Customary International Law ���������������������������������������������������������������������������������������������������������������� 45 United Nations Framework Convention on Climate Change (UNFCCC) ������������������������������������������ 47 The Paris Agreement . 48 The Kyoto Protocol ���������������������������������������������������������������������������������������������������������������������������������� 49 The United Nations Convention on Biodiversity (CBD) ���������������������������������������������������������������������� 49 The London Convention and Protocol . 50 The International Convention for the Prevention of Pollution from Ships (MARPOL) . 51 United Nations Convention on the Law of the Sea (UNCLOS) ���������������������������������������������������������� 52 Other fora ������������������������������������������������������������������������������������������������������������������������������������������������ 53 Publics and their role in governance �������������������������������������������������������������������������������������������������� 53 Conclusions ����������������������������������������������������������������������������������������������������������������������������������������������������53 References . 54 Page 2 Evidence Brief: Carbon Dioxide Removal and its Governance Introduction CDR is defined by the IPCC as ‘Anthropogenic activities removing CO2 from the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential anthropogenic enhancement of biological or geochemical sinks and direct air capture and storage, but excludes natural CO2 uptake not directly caused by human activities’ (p544, IPCC, 2018). CDR is also known as carbon removal or carbon drawdown. Negative Emissions Technologies (NETS) and Greenhouse Gas Removal (GGR) are terms that encompass CDR, but which also include other greenhouse gases (GHGs) such as methane. It should be noted that there are currently no well-developed methods for removal of non-CO2 GHGs. CDR, if ever implemented at large scale is expected to have climate cooling effects. In such circumstances, they are described as climate-altering techniques, climate engineering or geoengineering. Four years after the Paris Agreement on climate change entered into force, recognition is growing that without a rapid acceleration in action, limiting global average temperature rise to 1.5-2 degrees Celsius (°C) will not be possible. Progress towards achieving the Paris Agreement goals has been slow. Rather than fall, prior to the COVID-19 pandemic, emissions have only risen, hitting a new high of 55.3 billion tonnes of CO2 equivalent in 2018 (UNEP, 2019). Even if all the Nationally Determined Contributions (NDCs) under the Paris Agreement were implemented, the Earth is still expected to warm by 3.0°C by the end of the century (range 3.0–3.5°C with 66% probability) (UNEP, 2020). The collective failure to adequately respond to global warming is reflected in the emission pathways in the IPCC Special Report on Global Warming of 1.5°C (IPCC, 2018). These all require the removal of CO2 from the atmosphere using CDR, if warming is to be limited to 1.5°C. These scenarios indicate the need to remove up to 1,000 billion tonnes (Gigatons, or 1,000 Gt) of CO2 by the year 2100, demonstrating the necessity of rapid and unprecedented action. It is in this context that CDR options are increasingly being proposed (UNEP, 2019). This briefing encompasses all the main CDR techniques covered in the scientific literature, presenting them in alphabetical order. It describes techniques currently under consideration and explores their relative strengths and weaknesses. Current applicable governance frameworks are examined and other socio-political issues pertinent to these large-scale interventions are explored. Knowledge gaps about the techniques discussed still require further research, governance dialogue and decision making, even though some are already being deployed, although not at scales capable of delivering climate scale impacts. C2G has no position on the appropriateness of any of the techniques described here; it seeks only to catalyse the creation of effective governance by providing this impartial overview. The briefing is not
Recommended publications
  • Reforestation in a High-CO2 World—Higher Mitigation Potential Than
    Geophysical Research Letters RESEARCH LETTER Reforestation in a high-CO2 world—Higher mitigation 10.1002/2016GL068824 potential than expected, lower adaptation Key Points: potential than hoped for • We isolate effects of land use changes and fossil-fuel emissions in RCPs 1 1 1 1 •ClimateandCO2 feedbacks strongly Sebastian Sonntag , Julia Pongratz , Christian H. Reick , and Hauke Schmidt affect mitigation potential of reforestation 1Max Planck Institute for Meteorology, Hamburg, Germany • Adaptation to mean temperature changes is still needed, but extremes might be reduced Abstract We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Supporting Information: Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario • Supporting Information S1 Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those Correspondence to: of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the S. Sonntag, reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is [email protected] higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in Citation: 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in Sonntag, S., J.
    [Show full text]
  • Assessing the Role of Carbon Dioxide Removal in Companies' Climate
    Net Expectations Assessing the role of carbon dioxide removal in companies’ climate plans. Briefing by Greenpeace UK January 2021 ~ While a few companies plan to deliver CDR Executive in specific projects, many plan to simply purchase credits on carbon markets, summary which have been beset with integrity problems and dubious accounting, even where certified. To stabilise global temperatures at any level – whether 1.5˚C, 2˚C, 3˚C or 5˚C Limits and uncertainties – carbon dioxide (CO2) emissions must The IPCC warns that reliance on CDR is a major reach net zero at some point, because risk to humanity’s ability to achieve the Paris goals. of CO2’s long-term, cumulative effect. The uncertainties are not whether mechanisms to remove CO2 “work”: they all work in a laboratory According to the Intergovernmental at least. Rather, it is whether they can be delivered Panel on Climate Change (IPCC), at scale, with sufficient funding and regulation, to store CO2 over the long term without unacceptable limiting warming to 1.5˚C requires net- social and environmental impacts. zero CO2 to be reached by about 2050. To illustrate the need for regulation, the carbon A small proportion of emissions is likely to be dioxide captured by forests is highly dependent on unavoidable and must be offset by carbon dioxide their specific circumstances, including their removal (CDR), such as by tree-planting (afforestation/ species diversity, the prior land use, and future reforestation) or by technological approaches like risks to the forest (such as fires or pests). In some bioenergy with carbon capture and storage (BECCS) cases, forests and BECCS can increase rather than or direct air carbon capture with storage (DACCS).
    [Show full text]
  • The Potential for Climate Engineering with Stratospheric Sulfate Aerosol Injections to Reduce Climate Injustice
    Journal of Global Ethics ISSN: 1744-9626 (Print) 1744-9634 (Online) Journal homepage: https://www.tandfonline.com/loi/rjge20 The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice Toby Svoboda, Peter J. Irvine, Daniel Callies & Masahiro Sugiyama To cite this article: Toby Svoboda, Peter J. Irvine, Daniel Callies & Masahiro Sugiyama (2019): The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice, Journal of Global Ethics, DOI: 10.1080/17449626.2018.1552180 To link to this article: https://doi.org/10.1080/17449626.2018.1552180 Published online: 07 Feb 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rjge20 JOURNAL OF GLOBAL ETHICS https://doi.org/10.1080/17449626.2018.1552180 The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice Toby Svobodaa, Peter J. Irvineb, Daniel Calliesc and Masahiro Sugiyamad aDepartment of Philosophy, Fairfield University College of Arts and Sciences, Fairfield, USA; bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, USA; cChair of International Political Theory, Goethe University Frankfurt, Frankfurt am Main, Germany; dPolicy Alternatives Research Institute, The University of Tokyo, Tokyo, Japan ABSTRACT ARTICLE HISTORY Climate engineering with stratospheric sulfate aerosol injections Received 5 February 2018 (SSAI) has the potential to reduce risks of injustice related to Accepted 26 September 2018 anthropogenic emissions of greenhouse gases. Relying on KEYWORDS evidence from modeling studies, this paper makes the case that Climate change; justice; SSAI could have the potential to reduce many of the key physical climate engineering; risk risks of climate change identified by the Intergovernmental Panel on Climate Change.
    [Show full text]
  • Principles for Thinking About Carbon Dioxide Removal in Just Climate Policy
    ll Commentary Principles for Thinking about Carbon Dioxide Removal in Just Climate Policy David R. Morrow,1,* Michael S. Thompson,2 Angela Anderson,3 Maya Batres,4 Holly J. Buck,5 Kate Dooley,6 Oliver Geden,7,8 Arunabha Ghosh,9 Sean Low,10 Augustine Njamnshi,11 John Noel,€ 4 Olu´ fẹ́mi O. Ta´ ı´wo` ,12 Shuchi Talati,3 and Jennifer Wilcox13 1Institute for Carbon Removal Law and Policy, American University, Washington, DC, USA 2Carnegie Climate Governance Initiative, New York, NY, USA 3Union of Concerned Scientists, Washington, DC, USA 4Independent scholar, USA 5UCLA School of Law, Los Angeles, CA, USA 6Australian-German Climate and Energy College, University of Melbourne, Melbourne, Australia 7German Institute for International and Security Affairs, Berlin, Germany 8International Institute for Applied Systems Analysis, Laxenburg, Austria 9Council on Energy, Environment, and Water, New Delhi, India 10Institute for Advanced Sustainability Studies, Potsdam, Germany 11Pan-African Climate Justice Alliance, Nairobi, Kenya 12Department of Philosophy, Georgetown University, Washington, DC, USA 13Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA *Correspondence: [email protected] https://doi.org/10.1016/j.oneear.2020.07.015 Carbon dioxide removal (CDR) is rising up the climate-policy agenda. Four principles for thinking about its role in climate policy can help ensure that CDR supports the kind of robust, abatement-focused long-term climate strategy that is essential to fair and effective implementation. Carbon dioxide removal (CDR), some- agencies are wrestling with the chal- Different people and institutions will times called carbon removal or negative lenge of forming positions on CDR, have different expectations about long- emissions, is the practice of capturing including whether to support it at all term climate strategies.
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • Climate Intervention (July 2021)
    State of the Science FACT SHEET Climate Intervention Climate Intervention (CI), also called climate engineering or geoengineering, refers to deliberate, large‐scale actions intended to counteract aspects of climate change. This Fact Sheet explains some of the fundamental principles and issues associated with CI (1). Why Might Climate Intervention Be Considered? The main driver of climate change over the past century has been anthropogenic emissions of carbon dioxide (CO2), a greenhouse gas (GHG). Increasing emission rates have caused present‐day atmospheric CO2 to reach the highest value in over a million years based on studies of emissions of atmospheric CO2 and its accumulation in the atmosphere, ocean, and terrestrial biosphere. The increased emissions of other GHGs, such as methane, nitrous oxide and ozone, also contribute to anthropogenic climate change. The increased accumulation of GHGs has led to warming over much of the globe, to acidification of ocean surface waters (from CO2) (2), and to many other well‐documented climate impacts (3). As climate change continues, if the world does not make the desired greenhouse gas emissions reductions (4) such as those initiated by the Paris agreement (5), governments and other entities might turn to CI to counteract increasing climate change impacts. CI could potentially be implemented by consensus or unilaterally; either way, a thorough understanding of CI methods, and their associated uncertainties and unintended side effects is essential. Principal CI methods are divided into two How might CDR be accomplished? general categories (6) (see figure): Oceanic sequestration: Adding nutrients, such as iron, to “ferti‐ lize” the ocean enhances biological growth (e.g., phytoplank‐ Carbon dioxide removal (CDR): CDR is a process to remove ton), which removes CO2 from surface waters and leads to lower CO2 from the atmosphere for long‐term storage on land or atmospheric levels.
    [Show full text]
  • Permafrost Carbon Feedbacks Threaten Global Climate Goals Downloaded by Guest on October 1, 2021 [EU] Member States Were Included in the EU’S Commitment)
    Permafrost carbon feedbacks threaten global BRIEF REPORT climate goals Susan M. Natalia,1, John P. Holdrenb, Brendan M. Rogersa, Rachael Treharnea, Philip B. Duffya, Rafe Pomerancea, and Erin MacDonalda aWoodwell Climate Research Center, Falmouth, MA 02540; and bBelfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138 Edited by Robert E. Dickinson, University of California, Los Angeles, CA, and approved March 9, 2021 (received for review January 5, 2021) Rapid Arctic warming has intensified northern wildfires and is wildfires (8, 9) that emit large amounts of carbon both directly thawing carbon-rich permafrost. Carbon emissions from perma- from combustion and indirectly by accelerating permafrost thaw. frost thaw and Arctic wildfires, which are not fully accounted for Fire-induced permafrost thaw and the subsequent decomposition in global emissions budgets, will greatly reduce the amount of of previously frozen organic matter may be a dominant source of greenhouse gases that humans can emit to remain below 1.5 °C Arctic carbon emissions during the coming decades (9). or 2 °C. The Paris Agreement provides ongoing opportunities to Despite the potential for a strong positive feedback from increase ambition to reduce society’s greenhouse gas emissions, permafrost carbon on global climate, permafrost carbon emissions which will also reduce emissions from thawing permafrost. In De- are not accounted for by most Earth system models (ESMs) or cember 2020, more than 70 countries announced more ambitious integrated assessment models (IAMs), including those that in- nationally determined contributions as part of their Paris Agree- formed the last assessment report of the Intergovernmental Panel ment commitments; however, the carbon budgets that informed on Climate Change (IPCC) and the IAMs which informed the these commitments were incomplete, as they do not fully account IPCC’s special report on global warming of 1.5 °C (10, 11).
    [Show full text]
  • Vulnerable Populations' Perspectives on Climate Engineering
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Vulnerable Populations' Perspectives on Climate Engineering Wylie Allen Carr Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Carr, Wylie Allen, "Vulnerable Populations' Perspectives on Climate Engineering" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 10864. https://scholarworks.umt.edu/etd/10864 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. VULNERABLE POPULATIONS’ PERSPECTIVES ON CLIMATE ENGINEERING By WYLIE ALLEN CARR B.A. in Religious Studies, University of Virginia, Charlottesville, Virginia, 2006 M.S. in Resource Conservation, University of Montana, Missoula, Montana, 2010 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Forest and Conservation Sciences The University of Montana Missoula, MT December 2015 Approved by: Sandy Ross, Dean of The Graduate School Dr. Laurie A. Yung, Chair Department of Society and Conservation Dr. Michael E. Patterson College of Forestry and Conservation Dr. Jill M. Belsky Department of Society and Conservation Dr. Christopher J. Preston Department of Philosophy Dr. Jason J. Blackstock Department of Science, Technology, Engineering, and Public Policy University College London © COPYRIGHT by Wylie Allen Carr 2015 All Rights Reserved ii Abstract Carr, Wylie A., Ph.D., December 2015 Forest and Conservation Sciences Vulnerable Populations’ Perspectives on Climate Engineering Chairperson: Dr.
    [Show full text]
  • Governing Climate Engineering: Scenarios for Analysis
    The Harvard Project on Climate Agreements November 2011 Discussion Paper 11-47 Governing Climate Engineering: Scenarios for Analysis Daniel Bodansky Arizona State University Email: [email protected] Website: www.belfercenter.org/climate Governing Climate Engineering: Scenarios for Analysis Daniel Bodansky Arizona State University Prepared for The Harvard Project on Climate Agreements THE HARVARD PROJECT ON CLIMATE AGREEMENTS The goal of the Harvard Project on Climate Agreements is to help identify and advance scientifically sound, economically rational, and politically pragmatic public policy options for addressing global climate change. Drawing upon leading thinkers in Australia, China, Europe, India, Japan, and the United States, the Project conducts research on policy architecture, key design elements, and institutional dimensions of domestic climate policy and a post-2012 international climate policy regime. The Project is directed by Robert N. Stavins, Albert Pratt Professor of Business and Government, Harvard Kennedy School. For more information, see the Project’s website: http://belfercenter.ksg.harvard.edu/climate Acknowledgements The Harvard Project on Climate Agreements is supported by the Harvard University Center for the Environment; the Belfer Center for Science and International Affairs at the Harvard Kennedy School; Christopher P. Kaneb (Harvard AB 1990); the James M. and Cathleen D. Stone Foundation; and ClimateWorks Foundation. The Project is very grateful to the Doris Duke Charitable Foundation, which provided major support during the period July 2007– December 2010. Citation Information Bodansky, Daniel. “Governing Climate Engineering: Scenarios for Analysis” Discussion Paper 2011-47, Cambridge, Mass.: Harvard Project on Climate Agreements, November 2011. The views expressed in the Harvard Project on Climate Agreements Discussion Paper Series are those of the author(s) and do not necessarily reflect those of the Harvard Kennedy School or of Harvard University.
    [Show full text]
  • Climate Engineering Field Research: the Favorable Setting of International Environmental Law
    Climate Engineering Field Research: The Favorable Setting of International Environmental Law Jesse Reynolds* Abstract As forecasts for climate change and its impacts have become more dire, climate engineering proposals have come under increasing consideration and are presently moving toward field trials. This article examines the relevant international environmental law, distinguishing between climate engineering research and deployment. It also emphasizes the climate change context of these proposals and the enabling function of law. Extant international environmental law generally favors such field tests, in large part because, even though field trials may present uncertain risks to humans and the environment, climate engineering may reduce the greater risks of climate change. Notably, this favorable legal setting is present in those multilateral environmental agreements whose subject matter is closest to climate engineering. This favorable legal setting is also, in part, due to several relevant multilateral environmental agreements that encourage scientific research and technological development, along with the fact that climate engineering research is consistent with principles of international environmental law. Existing international law, however, imposes some procedural duties on States who are responsible for climate engineering field research as well as a handful of particular prohibitions and constraints. Table of Contents I. Introduction ...........................................................................................
    [Show full text]
  • Buying Time with Climate Engineering? an Analysis of the Buying Time Framing in Favor of Climate Engineering
    Buying Time with Climate Engineering? An analysis of the buying time framing in favor of climate engineering Zur Erlangung des akademischen Grades einer DOKTORIN DER PHILOSOPHIE (Dr. phil.) von der KIT-Fakultät für Geistes- und Sozialwissenschaften des Karlsruher Instituts für Technologie (KIT) angenommene DISSERTATION von Frederike Neuber KIT-Dekan: Prof. Dr. Michael Schefczyk 1. Gutachter: Prof. Dr. Gregor Betz 2. Gutachter: Prof. Dr. Armin Grunwald Tag der mündlichen Prüfung: 10.04.2018 This document is licensed under a Creative Commons Attribution- NoDerivatives 4.0 International License (CC BY-ND 4.0): https://creativecommons.org/licenses/by-nd/4.0/deed.en Forewor This work is the outcome of three and a half years of research in the *,- priority program SPP 1689 QClimate Engineering P Risks, Challenges, 2pportunities'R as part of the proAect C-E-thics. The main obAectives of ) E thics was to sort, scrutinize and evaluate the main moral arguments about climate engineering. 7hile my colleagues worked, among others, on the trade-off argument, the lesser evil argument, and the argument from political economy, I myself was concerned with the buying time argument P an argument in favor of potential climate engineering deployment. It was a challenging argument in many ways: ,irstly, it was challenging to reconstruct a reasonable version of this argument, that adds to and clarifies the current discussion about a potential buying time deployment of climate engineering. Secondly, it challenged my own point of view about climate engineering. 7hile intuitively, I would headlong reAect any use of climate engineering, analyzing the buying time argument made me concede that there might be forms of deployment that actually could be beneficial and morally sound, albeit in very strict boundary conditions.
    [Show full text]
  • Accelerating Offshore Carbon Capture and Storage Opportunities and Challenges for CO2 Removal
    Accelerating Offshore Carbon Capture and Storage Opportunities and Challenges for CO2 Removal Report on October 2020 Workshop 1 TABLE OF CONTENTS Summary 2 Motivation 4 Background 5 Workshop Design 6 Essential Project Criteria 7 Workshop Process 8 Discussion Flow 8 Polling and Numerical Data 9 Data Summary and Observations 10 Average U Values by Criterion and Project Design 10 Specific Observations 11 Conclusions and Next Steps 11 Appendices 13 Appendix 1. Participant Biographies 14 Appendix 2. Workshop Agenda 23 Appendix 3. Major and Sub-Criteria for Each Project Design 24 Additional Readings 25 SUMMARY In October 2020, Columbia World Projects (CWP) held a 3-day workshop to discuss the challenge of scoping the uncertainties for offshore carbon dioxide (CO2) capture and mineralization. The workshop is a critical first step in moving potential new and essential technologies towards large-scale implementation. CWP was pleased to help participants envision how they could launch effective demonstration of field projects in the offshore environment. Climate change, caused by anthropogenic CO2 and other greenhouse gas emissions, is one of the most urgent and extensive global threats confronting us today. The need to rapidly reduce emissions has prompted growing interest in CO2 capture and sequestration (CCS). However, there are many technical and non-technical challenges associated with implementing CCS technologies, particularly offshore. These include issues associated with long-term liabilities, various engineering and ecological concerns, as well as public acceptance. Workshop discussions focused on two potential offshore locations where designs for future demonstration projects are being considered. 1 Like other climate mitigation activities, offshore CCS poses a dynamic risk management problem.
    [Show full text]