Climate Intervention (July 2021)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Cloud Brightening
MARINE CLOUD BRIGHTENING Alan Gadian , John Latham, Mirek Andrejczuk, Keith Bower, Tom Choularton, Hugh Coe, Paul Connolly, Ben Parkes, Phillip Rasch, Stephen Salter, Hailong Wang and Rob Wood . Contents:- • Background to the philosophical approach • Some L.E.M . and climate model results • Technological issues. • Future plans and publications. Science Objectives:- • To explain the science of how stratocumulus clouds can have a significant effect on the earth’s radiation balance • To present some modelling results from Latham et al 2011 Marine Cloud Brightening, WRCP October 2011 1 Stratocumulus clouds cover more than 30% of ocean surface Stratocumulus clouds have a high reflectance, which depends on droplet number and mean droplet size. Twomey Effect .:- Smaller drops produce whiter clouds . Proposal :- To advertently to enhance the droplet concentration N in low-level maritime stratocumulus clouds, so increasing cloud albedo (Twomey, JAS, 1977 ) and longevity ( Albrecht, Science, 1989 ) Technique:- To disseminate sea-water droplets of diameter about 1um at the ocean surface. Some of these ascend via turbulence to cloud-base where they are activated to form cloud droplets, thereby enhancing cloud droplet number concentration, N (Latham, Nature 1990 ; Phil Trans Roy Soc 2008 and 2011, under review ) 2 Above:- Computed spherical albedo for increasing pollution in THIN, MEDIUM and THICK clouds. ( Twomey, JAS, 1977 ) Right:- Frequency distributions of the reflectances at 1,535 nm versus reflectances at 754 nm. From ACE-2. Isolines of geometrical thickness (H) and droplet number concentration (N): higher reflectance in polluted cloud, normalised by a similar geometrical thickness (Brenguier et al. 2000 ). 3 Figure 1. Panel (a): Map of MODIS-derived annual mean cloud droplet concentration N 0 for stratiform marine warm clouds. -
Assessing the Role of Carbon Dioxide Removal in Companies' Climate
Net Expectations Assessing the role of carbon dioxide removal in companies’ climate plans. Briefing by Greenpeace UK January 2021 ~ While a few companies plan to deliver CDR Executive in specific projects, many plan to simply purchase credits on carbon markets, summary which have been beset with integrity problems and dubious accounting, even where certified. To stabilise global temperatures at any level – whether 1.5˚C, 2˚C, 3˚C or 5˚C Limits and uncertainties – carbon dioxide (CO2) emissions must The IPCC warns that reliance on CDR is a major reach net zero at some point, because risk to humanity’s ability to achieve the Paris goals. of CO2’s long-term, cumulative effect. The uncertainties are not whether mechanisms to remove CO2 “work”: they all work in a laboratory According to the Intergovernmental at least. Rather, it is whether they can be delivered Panel on Climate Change (IPCC), at scale, with sufficient funding and regulation, to store CO2 over the long term without unacceptable limiting warming to 1.5˚C requires net- social and environmental impacts. zero CO2 to be reached by about 2050. To illustrate the need for regulation, the carbon A small proportion of emissions is likely to be dioxide captured by forests is highly dependent on unavoidable and must be offset by carbon dioxide their specific circumstances, including their removal (CDR), such as by tree-planting (afforestation/ species diversity, the prior land use, and future reforestation) or by technological approaches like risks to the forest (such as fires or pests). In some bioenergy with carbon capture and storage (BECCS) cases, forests and BECCS can increase rather than or direct air carbon capture with storage (DACCS). -
C2G Evidence Brief: Carbon Dioxide Removal and Its Governance
Carnegie Climate EVIDENCE BRIEF Governance Initiative Carbon Dioxide Removal An initiative of and its Governance 2 March 2021 Summary This briefing summarises the latest evidence relating to Carbon Dioxide Removal (CDR) techniques and their governance. It describes a range of techniques currently under consideration, exploring their technical readiness, current research, applicable governance frameworks, and other socio-political considerations in section I. It also provides an overview of some generic CDR governance issues and the key instruments relevant for the governance of CDR in section II. About C2G The Carnegie Climate Governance Initiative (C2G) seeks to catalyse the creation of effective governance for climate-altering approaches, in particular for solar radiation modification (SRM) and large-scale carbon dioxide removal (CDR). In 2018, the Intergovernmental Panel on Climate Change (IPCC) reaffirmed that large-scale CDR is required in all pathways to limit global warming to 1.5°C with limited or no overshoot. Some scientists say SRM may also be needed to avoid that overshoot. C2G is impartial regarding the potential use of specific approaches, but not on the need for their governance - which includes multiple, diverse processes of learning, discussion and decision-making, involving all sectors of society. It is not C2G’s role to influence the outcome of these processes, but to raise awareness of the critical governance questions that underpin CDR and SRM. C2G’s mission will have been achieved once their governance is taken on board by governments and intergovernmental bodies, including awareness raising, knowledge generation, and facilitating collaboration. C2G has prepared several other briefs exploring various CDR and SRM technologies and associated issues. -
Principles for Thinking About Carbon Dioxide Removal in Just Climate Policy
ll Commentary Principles for Thinking about Carbon Dioxide Removal in Just Climate Policy David R. Morrow,1,* Michael S. Thompson,2 Angela Anderson,3 Maya Batres,4 Holly J. Buck,5 Kate Dooley,6 Oliver Geden,7,8 Arunabha Ghosh,9 Sean Low,10 Augustine Njamnshi,11 John Noel,€ 4 Olu´ fẹ́mi O. Ta´ ı´wo` ,12 Shuchi Talati,3 and Jennifer Wilcox13 1Institute for Carbon Removal Law and Policy, American University, Washington, DC, USA 2Carnegie Climate Governance Initiative, New York, NY, USA 3Union of Concerned Scientists, Washington, DC, USA 4Independent scholar, USA 5UCLA School of Law, Los Angeles, CA, USA 6Australian-German Climate and Energy College, University of Melbourne, Melbourne, Australia 7German Institute for International and Security Affairs, Berlin, Germany 8International Institute for Applied Systems Analysis, Laxenburg, Austria 9Council on Energy, Environment, and Water, New Delhi, India 10Institute for Advanced Sustainability Studies, Potsdam, Germany 11Pan-African Climate Justice Alliance, Nairobi, Kenya 12Department of Philosophy, Georgetown University, Washington, DC, USA 13Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA *Correspondence: [email protected] https://doi.org/10.1016/j.oneear.2020.07.015 Carbon dioxide removal (CDR) is rising up the climate-policy agenda. Four principles for thinking about its role in climate policy can help ensure that CDR supports the kind of robust, abatement-focused long-term climate strategy that is essential to fair and effective implementation. Carbon dioxide removal (CDR), some- agencies are wrestling with the chal- Different people and institutions will times called carbon removal or negative lenge of forming positions on CDR, have different expectations about long- emissions, is the practice of capturing including whether to support it at all term climate strategies. -
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2. -
Marine Cloud Brightening
MARINE CLOUD BRIGHTENING Authors:- John Latham1,4 , Keith Bower4 , Tom Choularton4 , Hugh Coe4, Paul Connelly4 , Gary Cooper7 ,Tim Craft4, Jack Foster7, Alan Gadian5, Lee Galbraith7 Hector Iacovides4 , David Johnston7 , Brian Launder4, Brian Leslie7 , John Meyer7, Armand Neukermans7, Bob Ormond7, Ben Parkes5 , Phillip Rasch3, John Rush7, Stephen Salter6, Tom Stevenson6, Hailong Wang3, Qin Wang7 & Rob Wood2 . Affiliations:- 1 National Centre for Atmospheric Research, Boulder, CO. 2 U Washington, Seattle, 3 PNNL, Richland, WA., 4 U Manchester, 5 U of Leeds, 6 U of Edinburgh, 7 Silver Lining, CA. Abstract The idea behind the marine cloud brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre seawater particles could significantly enhance the cloud droplet number concentration thus increasing the cloud albedo and longevity – thereby producing a cooling, which computations suggest could be adequate to balance the warming associated with a doubling of atmospheric carbon dioxide. We review herein recent research on a number of critical issues associated with MCB: (1) general circulation model (GCM) studies, which are our primary tools to evaluate globally the effectiveness of marine cloud brightening and to assess its climate impacts on rainfall amounts and distribution, as well as on polar sea-ice cover and thickness: (2) high resolution modeling of the effects of seeding on marine stratocumulus, which are required to understand the complex array -
Permafrost Carbon Feedbacks Threaten Global Climate Goals Downloaded by Guest on October 1, 2021 [EU] Member States Were Included in the EU’S Commitment)
Permafrost carbon feedbacks threaten global BRIEF REPORT climate goals Susan M. Natalia,1, John P. Holdrenb, Brendan M. Rogersa, Rachael Treharnea, Philip B. Duffya, Rafe Pomerancea, and Erin MacDonalda aWoodwell Climate Research Center, Falmouth, MA 02540; and bBelfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138 Edited by Robert E. Dickinson, University of California, Los Angeles, CA, and approved March 9, 2021 (received for review January 5, 2021) Rapid Arctic warming has intensified northern wildfires and is wildfires (8, 9) that emit large amounts of carbon both directly thawing carbon-rich permafrost. Carbon emissions from perma- from combustion and indirectly by accelerating permafrost thaw. frost thaw and Arctic wildfires, which are not fully accounted for Fire-induced permafrost thaw and the subsequent decomposition in global emissions budgets, will greatly reduce the amount of of previously frozen organic matter may be a dominant source of greenhouse gases that humans can emit to remain below 1.5 °C Arctic carbon emissions during the coming decades (9). or 2 °C. The Paris Agreement provides ongoing opportunities to Despite the potential for a strong positive feedback from increase ambition to reduce society’s greenhouse gas emissions, permafrost carbon on global climate, permafrost carbon emissions which will also reduce emissions from thawing permafrost. In De- are not accounted for by most Earth system models (ESMs) or cember 2020, more than 70 countries announced more ambitious integrated assessment models (IAMs), including those that in- nationally determined contributions as part of their Paris Agree- formed the last assessment report of the Intergovernmental Panel ment commitments; however, the carbon budgets that informed on Climate Change (IPCC) and the IAMs which informed the these commitments were incomplete, as they do not fully account IPCC’s special report on global warming of 1.5 °C (10, 11). -
Accelerating Offshore Carbon Capture and Storage Opportunities and Challenges for CO2 Removal
Accelerating Offshore Carbon Capture and Storage Opportunities and Challenges for CO2 Removal Report on October 2020 Workshop 1 TABLE OF CONTENTS Summary 2 Motivation 4 Background 5 Workshop Design 6 Essential Project Criteria 7 Workshop Process 8 Discussion Flow 8 Polling and Numerical Data 9 Data Summary and Observations 10 Average U Values by Criterion and Project Design 10 Specific Observations 11 Conclusions and Next Steps 11 Appendices 13 Appendix 1. Participant Biographies 14 Appendix 2. Workshop Agenda 23 Appendix 3. Major and Sub-Criteria for Each Project Design 24 Additional Readings 25 SUMMARY In October 2020, Columbia World Projects (CWP) held a 3-day workshop to discuss the challenge of scoping the uncertainties for offshore carbon dioxide (CO2) capture and mineralization. The workshop is a critical first step in moving potential new and essential technologies towards large-scale implementation. CWP was pleased to help participants envision how they could launch effective demonstration of field projects in the offshore environment. Climate change, caused by anthropogenic CO2 and other greenhouse gas emissions, is one of the most urgent and extensive global threats confronting us today. The need to rapidly reduce emissions has prompted growing interest in CO2 capture and sequestration (CCS). However, there are many technical and non-technical challenges associated with implementing CCS technologies, particularly offshore. These include issues associated with long-term liabilities, various engineering and ecological concerns, as well as public acceptance. Workshop discussions focused on two potential offshore locations where designs for future demonstration projects are being considered. 1 Like other climate mitigation activities, offshore CCS poses a dynamic risk management problem. -
The Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP): Rationale and Experimental Design
Geosci. Model Dev., 11, 1–29, 2018 https://doi.org/10.5194/gmd-11-1-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP): rationale and experimental design David P. Keller1, Andrew Lenton2,3, Vivian Scott4, Naomi E. Vaughan5, Nico Bauer6, Duoying Ji7, Chris D. Jones8, Ben Kravitz9, Helene Muri10, and Kirsten Zickfeld11 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany TS1 2CSIRO Oceans and Atmospheres, Hobart, Australia 3Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia 4School of GeoSciences, University of Edinburgh, Edinburgh, UK TS2 5Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK 6Potsdam Institute for Climate Impact Research, Research Domain Sustainable Solutions, 14473 Potsdam, Germany 7College of Global Change and Earth System Science, Beijing Normal University, Beijing, China 8Met Office Hadley Centre, Exeter, UK 9Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA 10Department of Geosciences, University of Oslo, Oslo, Norway 11Department of Geography, Simon Fraser University, Burnaby, Canada Correspondence: David P. Keller ([email protected]) Received: 11 July 2017 – Discussion started: 17 August 2017 Revised: 7 December 2017 – Accepted: 19 December 2017 – Published: Abstract. TS3 TS4 CE1 The recent IPCC reports state that con- versibility”, the response of the Earth system to direct atmo- tinued anthropogenic greenhouse gas emissions are changing spheric CO2 removal (direct air capture and storage), and the the climate, threatening “severe, pervasive and irreversible” CDR potential and impacts of afforestation and reforestation, 25 impacts. -
Geoengineering: the Risk of Marine Cloud Brightening
Geoengineering: The Risk of Marine Cloud Brightening Victoria Garito Briarcliff High School Table of Contents Abstract………………………………………………………………….page 3 Review of Literature…………………………….…………………...….page 4 Research Questions and Hypotheses…….………………………....…...page 6 Methods………………………………………………....….....................page 7 Results………………………………………………....….......................page 7 Discussion………………………………………………....….................page 12 Acknowledgements………………………………………………..….....page 13 Bibliography………………………………………………....…..............page 13 Figures and Tables Figure 4.1.1………………………………………………....…..............page 8 Figure 4.1.2………………………………………………....…..............page 8 Figure 4.2.1………………………………………………....…..............page 10 Figure 4.2.2………………………………………………....…..............page 10 Figure 4.3.1………………………………………………....…..............page 11 Figure 4.3.2………………………………………………....…..............page 11 Abstract Background: In recent years, the overall solar radiation emissions have been extremely high due to ozone depletion from pollution. In order to prevent this unstable-climate- inducing trend, scientists proposed numerous ideas to intervene. The deliberate alteration of the climate is known as geoengineering, and is favored by many professionals. Geoengineering helps reduce the recent increase in temperature, while stabilizing the climate. Its main focus is on lowering the solar radiation emissions, mainly using reflective methods or otherwise known as solar radiation management (SRM). One specific SRM proposal is cloud whitening. Seawater would -
Hysteresis of the Earth System Under Positive and Negative CO2 Emissions
Environ. Res. Lett. 15 (2020) 124026 https://doi.org/10.1088/1748-9326/abc4af Environmental Research Letters LETTER Hysteresis of the Earth system under positive and negative CO2 OPEN ACCESS emissions RECEIVED 3 June 2020 Aurich Jeltsch-Thömmes∗, Thomas F Stocker and Fortunat Joos REVISED Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, 22 September 2020 Switzerland ACCEPTED FOR PUBLICATION ∗ 26 October 2020 Author to whom any correspondence should be addressed. PUBLISHED E-mail: [email protected] 3 December 2020 Keywords: carbon dioxide removal, positive and negative emissions, hysteresis of the Earth system, carbon cycle, climate modeling Original Content from this work may be used under the terms of the Creative Commons Abstract Attribution 4.0 licence. Carbon dioxide removal (CDR) from the atmosphere is part of all emission scenarios of the IPCC Any further distribution that limit global warming to below 1.5 ◦C. Here, we investigate hysteresis characteristics in of this work must maintain attribution to 4× pre-industrial atmospheric CO2 concentration scenarios with exponentially increasing and the author(s) and the title of the work, journal decreasing CO2 using the Bern3D-LPX Earth system model of intermediate complexity. The citation and DOI. equilibrium climate sensitivity (ECS) and the rate of CDR are systematically varied. Hysteresis is quantified as the difference in a variable between the up and down pathway at identical cumulative carbon emissions. Typically, hysteresis increases non-linearly with increasing ECS, while its dependency on the CDR rate varies across variables. Large hysteresis is found for global surface air temperature (∆SAT), upper ocean heat content, ocean deoxygenation, and acidification. -
Arctic Climate Feedbacks: Global Implications
for a living planet ARCTIC CLIMATE FEEDBACKS: GLOBAL IMPLICATIONS ARCTIC CLIMATE FEEDBACKS: GLOBAL IMPLICATIONS Martin Sommerkorn & Susan Joy Hassol, editors With contributions from: Mark C. Serreze & Julienne Stroeve Cecilie Mauritzen Anny Cazenave & Eric Rignot Nicholas R. Bates Josep G. Canadell & Michael R. Raupach Natalia Shakhova & Igor Semiletov CONTENTS Executive Summary 5 Overview 6 Arctic Climate Change 8 Key Findings of this Assessment 11 1. Atmospheric Circulation Feedbacks 17 2. Ocean Circulation Feedbacks 28 3. Ice Sheets and Sea-level Rise Feedbacks 39 4. Marine Carbon Cycle Feedbacks 54 5. Land Carbon Cycle Feedbacks 69 6. Methane Hydrate Feedbacks 81 Author Team 93 EXECUTIVE SUMMARY VER THE PAST FEW DECADES, the Arctic has warmed at about twice the rate of the rest of the globe. Human-induced climate change has Oaffected the Arctic earlier than expected. As a result, climate change is already destabilising important arctic systems including sea ice, the Greenland Ice Sheet, mountain glaciers, and aspects of the arctic carbon cycle including altering patterns of frozen soils and vegetation and increasing “Human-induced methane release from soils, lakes, and climate change has wetlands. The impact of these changes on the affected the Arctic Arctic’s physical systems, earlier than expected.” “There is emerging evidence biological and growing concern that systems, and human inhabitants is large and projected to grow arctic climate feedbacks throughout this century and beyond. affecting the global climate In addition to the regional consequences of arctic system are beginning climate change are its global impacts. Acting as the to accelerate warming Northern Hemisphere’s refrigerator, a frozen Arctic plays a central role in regulating Earth’s climate signifi cantly beyond system.