A//J-Ai--473 FR0108170 COMPARISON OF RADIOTOXICITY OF URANIUM, PLUTONIUM, AND THORIUM SPENT NUCLEAR FUEL AT LONG-TERM STORAGE A. GERASIMOV, G. KISELEV, T. ZARITSKAYA, L. MYRTSYMOVA, SSC RFITEP 25, B.Cheremushkinskaya, Moscow 117259, Russia - E-mail:
[email protected] Key words: Spent Fuel, Radwaste, Storage The radiotoxicity of long-lived actinides and fission products of spent nuclear fuel is a measure of the radiological danger of radwaste during long-term storage. Radiotoxicity of fission products decreases by about five orders of magnitude after decay of Sr-90 and Cs-137. The rest of long-lived nuclides should be directed to final storage or transmutation. Situation with actinides is more serious as they have a high radiotoxicity for a long time. The problem of long-lived actinide management could be solved within the framework of closed nuclear fuel cycle using long-term controllable storage and some kind of nuclear transmutation. The design of long-term storage facility depends on radwaste radiation characteristics. Decay heat power along with radiotoxicity is an important radiation characteristic. Both decay heat power and radiotoxicity of actinides are determined by alpha decays. Thus time dependence of actinide decay and heat power repeats in general that of radiotoxicity. The development of nuclear power is closely related to new types of nuclear fuel. Plutonium MOX fuel and thorium fuel allow to extend the fuel base of nuclear power. The level of transplutonic nuclides accumulated in MOX fuel is higher than that in uranium fuel. On the contrary, accumulation of plutonium and more heavy nuclides in thorium fuel is much less than in uranium fuel.