The Transuranium Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heavy Element Chemistry Contractors' Meeting Program and Abstracts
Department of Energy Office of Science Chemical Sciences, Geosciences and Biosciences Division Heavy Element Chemistry Contractors' Meeting Advanced Photon Source Office Building Argonne National Laboratory November 19 - 21, 2000 Program and Abstracts Heavy Element Chemistry Contractors' Meeting November 19 - 21, 2000 Program i Sunday, November 19, 2000; 1630 - 2100 Put up posters in APS Office Building Gallery Monday Morning, November 20, 2000 700 - 900 Breakfast at the hotel; Poster set up in APS Office Building Gallery 900 Start of meeting - APS Office Building - E1100 and E1200 Department of Energy, Office of Science, Chemical 900 - 905 Edelstein, Norman Welcome and Introductions Sciences, Geosciences and Biosciences Division Department of Energy, Office The View of Heavy Element of Science, Chemical 905 - 930 Smith, Paul Chemistry from DOE, Sciences, Geosciences and Washington Biosciences Division 930 Short presentations - Oral session I - APS Office Building - E1100 and E1200 Gas Phase GAS-PHASE ACTINIDE ION Oak Ridge National 930 Gibson, John P1-1 CHEMISTRY Laboratory Chemistry Department, SUPERHEAVY ELEMENT University of California, CHEMISTRY STUDIES AT Berkeley, Nuclear Science 940 Nitsche, H. P1-2 THE BERKELEY GAS- Division, The Glenn T. FILLED SEPARATOR Seaborg Center, Lawrence Berkeley National Laboratory ii Solid State STRUCTURAL RELATIONSHIPS AND Dorhout, Peter UNIQUE ASPECTS OF Department of Chemistry, 950 P1-3 K. ACTINIDE Colorado State University CHALCOPHOSPHATE MATERIALS: Th, U, Pu. SPECTROSCOPIC INVESTIGATIONS OF Oak Ridge National 1000 Assefa, Z. P1-4 ACTINIDES IN THE SOLID Laboratory STATE SYNTHESIS AND PHOTOPHYSICS OF HEAVY Chemistry Division, Argonne 1010 Beitz, J. V. P1-5 ELEMENT-CONTAINING National Laboratory NANOPHASES ACTINIDE CHEMISTRY UNDER NEAR-NEUTRAL Los Alamos National 1020 Dewey, H. -
Table 2.Iii.1. Fissionable Isotopes1
FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector. -
Thermal Transport in Thorium Dioxide Nuclear Engineering and Technology
Nuclear Engineering and Technology 50 (2018) 731e737 Contents lists available at ScienceDirect Nuclear Engineering and Technology journal homepage: www.elsevier.com/locate/net Original Article Thermal transport in thorium dioxide Jungkyu Park*, Eduardo B. Farfan, Christian Enriquez Kennesaw State University, Department of Mechanical Engineering, Kennesaw, GA 30144, USA article info abstract Article history: In this research paper, the thermal transport in thorium dioxide is investigated by using nonequilibrium Received 28 September 2017 molecular dynamics. The thermal conductivity of bulk thorium dioxide was measured to be 20.8 W/m-K, Received in revised form confirming reported values, and the phonon mean free path was estimated to be between 7 and 8.5 nm 20 December 2017 at 300 K. It was observed that the thermal conductivity of thorium dioxide shows a strong dependency Accepted 12 February 2018 on temperature; the highest thermal conductivity was estimated to be 77.3 W/m-K at 100 K, and the Available online 1 March 2018 lowest thermal conductivity was estimated to be 4.3 W/m-K at 1200 K. In addition, by simulating thorium dioxide structures with different lengths at different temperatures, it was identified that short Keywords: Molecular Dynamics Simulation wavelength phonons dominate thermal transport in thorium dioxide at high temperatures, resulting in Nuclear Fuel decreased intrinsic phonon mean free paths and minimal effect of boundary scattering while long Thermal Transport wavelength phonons dominate the thermal transport in thorium dioxide at low temperatures. Thorium Dioxide © 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Light Isotopes of Berkelium and Californium
Lawrence Berkeley National Laboratory Recent Work Title LIGHT ISOTOPES OF BERKELIUM AND CALIFORNIUM Permalink https://escholarship.org/uc/item/1fm7b1fp Author Chetham-Strode, Alfred Publication Date 1956-06-26 eScholarship.org Powered by the California Digital Library University of California .... I UCRL 3322 UNIVERSITY OF CALIF-ORNIA .. i/ I / LIGHT ISOTOPES OF BERKELIUM AND CALIFORNIUM •' TWO-WEEK LOAN COPY This is a Library Circulating Copy r 'which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dioision, Ext. 5545 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of · California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. UCRL- 3322 Chemistry Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48 LIGHT ISOTOPES OF BERKELIUM AND CALI~ORNIUM Alfred Chetham-Strode, Jr. -
The Development of the Periodic Table and Its Consequences Citation: J
Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1. -
INFORMATION O a a .Aoi Chemistry-Traniuranie Elements
INFORMATION o a a .aoi Chemistry-Traniuranie Elements UNIVERSITY O r CALIFORNIA Radiation Laboratory Contract No. W-7405-eng~48 CUBSITIClTIOH CAKCBLUD IV. TT Ftv«Jbs Itti'.s fJ«cR'otsdLisV^ CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS D. H. Templeton and Carol H. Dauben February 3, 1953 RESTRICTEO^JCTA This document cqpm pLrw ricted data as defined in ttagSrarfic Energy Act of 1944. Its tsn fip rtfa l or disclosure of Its contents ^p*ny manner to an unautor- ised person is prohibited. Berkeley, California UNIVERSITY Of CALIFORNIA Rodiotiofl Loborotory 42RC8 Cover Shoot INDE X NO. Ill K£ ■ -10/ Do not rsrtovt Tbit document eo nto in t__ IL- pages Tbit is copy ^ of tor lot tL Glassification Eoch perton who rtcoivot thltdocument must tipn the cover thstt I Route to Notsd by Date Route to Noted by D aft OHO A im *[|S 5(M) CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS1 D. H. Templeton and Carol H. Dauben Department of Chemistry and Radiation Laboratory University of California, Berkeley, California February 3, 1953 ABSTRACT The crystal structures of several compounds of americium, element 95, have been determined by the X-ray powder diffraction method. AisF^ is hexagonal (LaF^ type) with a = 4. 067 t 0.001 X and c « 7. 225 t 0.002 Si for the pseudoceil which explains the powder data. AmO^ is cubic (CaF^ type) with 1 a = 5. 38) t 0.001 X AmOCl is tetragonal (PbFCl type) with a = 4.00+O.OlX, c = 6.78 t 0.01 X. The metal parameter la 0.18 t 0.01. -
1. Public Health Statement
AMERICIUM 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about americium and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal cleanup activities. Americium has been found in at least 8 of the 1,636 current or former NPL sites. However, the total number of NPL sites evaluated for americium is not known. As more sites are evaluated, the sites at which americium is found may increase. This information is important because exposure to americium may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are normally exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. However, since americium is radioactive, you can also be exposed to its radiation if you are near it. External or internal exposure to radiation may occur from natural or man-made sources. Naturally occurring sources of radiation are cosmic radiation from space or naturally occurring radioactive materials in our body or in soil, air, water, or building materials. Man-made sources of radiation are found in consumer products, industrial equipment, atom bomb fallout, and to a smaller extent, from hospital waste and nuclear reactors. -
Radiological Implications of Plutonium Recycle and the Use of Thorium Fuels in Power Reactor Operations
01 RD/B/N3523 Central Electricity Generating Board Research Department Berkeley Nuclear Laboratories RADIOLOGICAL IMPLICATIONS OF PLUTONIUM RECYCLE AND THE USE OF THORIUM FUELS IN POWER REACTOR OPERATIONS By H. F. Macdonald XJ034 January 1976 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Radiological Implications of Plutonium Recycle and the Use of Thorium Fuels in Power Reactor Operations “ by - H.F. Macdonald Approved Head of Health Physics Research Section For inclusion in Nuclear Science Abstracts SUMMARY As economically attractive sources of natural uranium are gradually depleted attention will turn to recycling plutonium or the use of thorium fuels. In this study the radiological implications of these fuel cycles in terms of fuel handling and radioactive waste disposal are investigated in 235 relation to a conventional U enriched oxide fuel. It is suggested that a comparative study of this nature may be an important aspect of the overall optimisation of future fuel cycle strategies. It is shown that the use of thorium based fuels has distinct advan tages in terms of neutron dose rates from irradiated fuels and long term a decay heating commitment compared with conventional uranium/plutonium fuels. However, this introduces a y dose rate problem in the fabrication 233 and handling of unirradiated U fuels. For both plutonium and thorium fuels these radiological problems increase during storage of the fuel prior to reactor irradiation. Finally, the novel health physics problems which arise in the handling and processing of thorium fuels are reviewed in an appendix. -
Properties of Selected Radioisotopes
CASE FILE COPY NASA SP-7031 Properties of Selected Radioisotopes A Bibliography PART I: UNCLASSIFIED LITERATURE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-7031 PROPERTIES OF SELECTED RADIOISOTOPES A Bibliography Part I: Unclassified Literature A selection of annotated references to technical papers, journal articles, and books This bibliography was compiled and edited by DALE HARRIS and JOSEPH EPSTEIN Goddard Space Flight Center Greenbelt, Maryland Scientific and Technical Information Division / OFFICE OF TECHNOLOGY UTILIZATION 1968 USP. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. PREFACE The increasing interest in the application of substantial quantities of radioisotopes for propulsion, energy conversion, and various other thermal concepts emphasizes a need for the most recent and most accurate information available describing the nuclear, chemical, and physical properties of these isotopes. A substantial amount of progress has been achieved in recent years in refining old and developing new techniques of measurement of the properties quoted, and isotope processing. This has resulted in a broad technological base from which both the material and information about the material is available. Un- fortunately, it has also resulted in a multiplicity of sources so that information and data are either untimely or present properties without adequately identifying the measurement techniques or describing the quality of material used. The purpose of this document is to make available, in a single reference, an annotated bibliography and sets of properties for nine of the more attractive isotopes available for use in power production. Part I contains all the unclassified information that was available in the literature surveyed. Part II is the classified counterpart to Part I. -
CURIUM Element Symbol: Cm Atomic Number: 96
CURIUM Element Symbol: Cm Atomic Number: 96 An initiative of IYC 2011 brought to you by the RACI ROBYN SILK www.raci.org.au CURIUM Element symbol: Cm Atomic number: 96 Curium is a radioactive metallic element of the actinide series, and named after Marie Skłodowska-Curie and her husband Pierre, who are noted for the discovery of Radium. Curium was the first element to be named after a historical person. Curium is a synthetic chemical element, first synthesized in 1944 by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso at the University of California, Berkeley, and then formally identified by the same research tea at the wartime Metallurgical Laboratory (now Argonne National Laboratory) at the University of Chicago. The discovery of Curium was closely related to the Manhattan Project, and thus results were kept confidential until after the end of World War II. Seaborg finally announced the discovery of Curium (and Americium) in November 1945 on ‘The Quiz Kids!’, a children’s radio show, five days before an official presentation at an American Chemical Society meeting. The first radioactive isotope of Curium discovered was Curium-242, which was made by bombarding alpha particles onto a Plutonium-239 target in a 60-inch cyclotron (University of California, Berkeley). Nineteen radioactive isotopes of Curium have now been characterized, ranging in atomic mass from 233 to 252. The most stable radioactive isotopes are Curium- 247 with a half-life of 15.6 million years, Curium-248 (half-life 340,000 years), Curium-250 (half-life of 9000 years), and Curium-245 (half-life of 8500 years). -
Subject Index
SUBJECT INDEX Vol. 1: 1–698, Vol. 2: 699–1395, Vol. 3: 1397–2111, Vol. 4: 2113–2798, Vol. 5: 2799–3440. Page numbers suffixed by t and f refer to Tables and Figures respectively. Absorption spectra in aqueous solution, 752–770 of americium, 1364–1368 compounds of, 721–752 americium (III), 1364–1365, 1365f coordination complexes in solution, americium (IV), 1365 771–782 americium (V), 1366, 1367f history of, 699–700 americium (VI), 1366, 1367f isotope production, 702–703 americium (VII), 1367–1368, 1368f metallic state of, 717–721 of liquid plutonium, 963 in nature, 703–704 of neptunium, 763–766, 763f, 786–787 nuclear properties of, 700–702 neptunium (VII) ternary oxides, 729 separation and purification, 704–717 of plutonium plutonium hexafluoride, 1088, 1089f atomic properties of, 857–862 ions, 1113–1117, 1116t compounds of, 987–1108 plutonium (IV), 849 metal and intermetallic compounds of, polymerization, 1151, 1151f 862–987 tetrachloride, 1093–1094, 1094f natural occurrence of, 822–824 tribromide, 1099t, 1100 nuclear properties of, 815–822 trichloride, 1099, 1099t separation and purification of, 826–857 Accelerator mass spectrometry (AMS), of solution chemistry of, 1108–1203 neptunium, 790 Actinide elements Acetates atomic volumes of, 922–923, 923f of americium, 1322, 1323t extraction of of plutonium, 1177, 1180 DIDPA, 1276 Acetone, derived compounds, of americium, HDEHP, 1275 1322, 1323t, 1324 organophosphorus and Acids carbamoylphosphonate reagents, for Purex process, 711 1276–1278 for solvent extraction, 839 stripping of, 1280–1281 Actinide -
Removal of Plutonium from Plutonium Hexafluoride--Uranium Hexafluoride
United States Patent n?) [in 3,708,568 Golliher et al. [45] Jan. 2,1973 [54] REMOVAL OF PLUTONIUM FROM 2,843,453 7/1958 Connicketal. .23/332 PLUTONIUM HEXAFLUORIDE- 3,165,376 1/1965 Golliher.. .23/337 URANIUM HEXAFLUORIDE 3,178,258 4/1965 Cathersetal 23/337 MIXTURES 3,423,190 1/1969 Steindler et al .23/326 [75] Inventors: Waldo R. Golliher; Robert L. Har- Primary Examiner—Carl D. Quarforth ris; Reynold A. LeDoux, Jr., all ol Assistant Examiner—F. M. Gittes Paducah, Ky. Attorney—Roland A. Anderson [73] Assignee: The United States of America as represented by the United State: [57] ABSTRACT Atomic Energy Commission This invention relates to a method of selectively [22] Filed: Oct. 20,1970 removing plutonium values from a fluid mixture con- [21] Appl. No.: 82,508 taining plutonium hexafluoride and uranium hex- afluoride by passing the mixture through a bed of pel- [52] U.S. C! 423/6,423/19, 252/301.1 R letized cobaltous fluoride at a temperature in the [51] Int. CI COlg 56/00 range 134° to 1,000° F. to effect removal of plutonium [58] Field of Search 55/74; 252/301.1 R; 23/332, by the cobaltous fluoride. 23/326, 337, 344, 352; 423/19, 6, 11, 251, 258 [56] References Cited 3 Claims, No Drawings UNITED STATES PATENTS 3,615,267 10/1971 Golliher et al. 23/343 3,725,661 3 4 REMOVAL OF PLUTONIUM FROM PLUTONIUM recovered. The cobaltous fluoride can then be HEXAFLUORIDE-URANIUM HEXAFLUORIDE processed for reuse by contacting with gaseous MIXTURES hydrogen at a temperature in the range 400° to 500° F.