Validating ML in the Context of GMP

Total Page:16

File Type:pdf, Size:1020Kb

Validating ML in the Context of GMP Validating ML in the context of GMP Prepared By: Shire Enterprise Analytics Aug 25, 2017 Acquiring knowledge by extracting patterns from raw data cGMP – Continuous Good Manufacturing Practice • GMP refers to the Good Manufacturing Practice Regulations promulgated by the US Food and Drug Administration • Requires that manufacturers, processors, and packagers of drugs, medical devices, some food, and blood take proactive steps to ensure that their products are safe, pure, and effective. • GMP regulations require a quality approach to manufacturing, to minimize or eliminate instances of contamination, mixups, and errors. • Failure of firms to comply can result in very serious consequences including recall, seizure, fines, and jail time. 2 How do we achieve this • GMP regulations address issues including recordkeeping, personnel qualifications, sanitation, cleanliness, equipment verification, process validation, and complaint handling. • Most GMP requirements are very general and open-ended, allowing each manufacturer to decide individually how to best implement the necessary controls. • Manufacturers interpret the requirements in a manner which makes sense for each individual business. 3 Reduce Risk and Uncertainty • Predictable, Reliable, Repeatable • SOPs • Training • Measuring & Testing • Qualification of Technologies • Root cause analysis • Qualify by Design (QbD) • Discrete, Batch, Continuous 4 Processes and Technologies Our integrated systems are diverse and complex • Quality Systems • Facilities and Equipment Systems • Materials Systems • Production Systems • Packaging and Labeling Systems • Laboratory Control Systems • ML Systems (stand alone & embedded) −Regression −Classification −Dimensionality Reduction 5 −Ensemble Learning Machine Learning • Machine Learning −To learn without being explicitly programmed −To learn and make predictions −To operate by building Models built from Observations (Inputs) to make data-driven predictions or decisions expressed as Outputs 6 Neurons - Building Blocks of the Nervous System • 1906 Nobel Prize in Physiology or Medicine Camillo Golgi Santiago Ramón y Cajal 7 1963 Nobel Prize in Physiology Alan Lloyd Hodgkin, Andrew Huxley, (Action Potential) John Eccles (Synapse) 8 Neuron Anatomy & Physiology 1970 Nobel Prize Bernard Katz, Julius Axelrod, Ulf von Euler (Neuro Transmitters) 1991 Nobel Prize Erwin Neher, Bert Sakmann 9 (Ion Channels) Artificial Neuron Neuron Artificial neuron (Perceptron) 10 The 1st Perceptron 11 Anatomy & Physiology of the Perceptron Weights & Bias & Activation Function 12 The 1st Perceptron Inventor: Dr. Frank Rosenblatt 1950’s “The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself an be conscious of its existence … Dr. Frank Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers” 13 SLP Architecture (Single Layer) 1 2 3 4 Features Classifier 14 AI Winter (1969 – 1986) 15 MLP – Multilayer Perceptron Known Known f(x) = Unknown 16 Training the MLP (Supervised Learning) Backpropagation – realized in 74; rediscovered in 86 Minimize error (cost or loss) 17 Anatomy & Physiology of the Retina • Rods & Cones • Horizontal Cells • Bipolar Cells Multilayered • Amacrine Cells • Ganglion Cells 18 Anatomy & Physiology of “Visual (Striate) Cortex” 1981 Nobel Prize David H. Hubel, Torsten Wiesel (Information Processing in the Visual System) 19 Learning Complicated Concepts building from Simpler Concepts 20 Deep Net “Seeing” – Multilayered (semi-supervised) A Hierarchy of Concepts Acquiring knowledge by extracting patterns from raw data 21 CNN (Convolutional Neural Network) 22 Growth of ML Training Datasets ImageNet Dataset MNIST Dataset 23 CNNs are amazing but can be fooled • Predicted at 99.99% confidence by CNN 24 The race is on… 1. Our labeled datasets were thousands of times too small. 2. Our computers were millions of times too slow. 3. We initialized the weights in a stupid way. 4. We used the wrong type of non-linearity 25 Gartner says we are peaking… 26 Technology Convergence on the Cloud Fuels the Analytics rEvolution 27 Data Connectedness in the Grid Fuels a new kind of Discovery 28 Analytics COMMUNITY 29 A Community of Convergence… 30 Skill level in ML (Survey N=111) 31 Quality is job 1 – Safe, Pure, Effective 32 Consider ML as new cog in the Machine… ML 33 Not all ML is a Black Box… 34 Don’t be caught in the hype… 35 Conduct Software Verification & Validation as you would for any system… 36 Perform Standard Verification & Validation activities 37 Perform Platform Qualification – Q’s DQ MQ IQ PQ OQ 38 Educate & Train • Develop a level of internal expertise 39 Incorporate an established Data Science methodology into current processes IBM’s Cross Industry Standard Process for Data Mining (CRISP-DM) Microsoft’s Team Data Science Process 40 Create Quality Metrics for ML Models Confusion Matrix for Classification • Error = (FP+FN) / (TP+FN+FP+TN) • Accuracy = (TP+TN) / (TP+FN+FP+TN) • Precision = TP / (TP+FP) • Recall = TP / (TP+FN) • F1 = 2TP / (2TP + FP + FN) ROC Curves 41 The future is fast becoming our new reality Meet Sophia from Hanson Robotics What do you think Sophia? How would you react? 42 Thank you 43.
Recommended publications
  • 2 Lez Concept of Synapses
    Synapse • Gaps Between Neurons A synapse is a specialised junction between 2 neurones where the nerve impulse is passed from one neuron to another Santiago Ramón Camillo Golgi y Cajal The Nobel Prize in Physiology or Medicine 1906 was awarded jointly to Camillo Golgi and Santiago Ramón y Cajal "in recognition of their work on the structure of the nervous system Reticular vs Neuronal Doctrine The 1930 s and 1940s was a time of controversy between proponents of chemical and electrical theories of synaptic transmission. Henry Dale was a pharmacologist and a principal advocate of chemical transmission. His most prominent adversary was the neurophysiologist, JohnEccles. Otto Loewi, MD Nobel Laureate (1936) Types of Synapses • Synapses are divided into 2 groups based on zones of apposition: • Electrical • Chemical – Fast Chemical – Modulating (slow) Chemical Gap-junction Channels • Connect communicating cells at an electrical synapse • Consist of a pair of cylinders (connexons) – one in presynaptic cell, one in post – each cylinder made of 6 protein subunits – cylinders meet in the gap between the two cell membranes • Gap junctions serve to synchronize the activity of a set of neurons Electrical synapse Electrical Synapses • Common in invertebrate neurons involved with important reflex circuits. • Common in adult mammalian neurons, and in many other body tissues such as heart muscle cells. • Current generated by the action potential in pre-synaptic neuron flows through the gap junction channel into the next neuron • Send simple depolarizing
    [Show full text]
  • The Hippocampus Marion Wright* Et Al
    WikiJournal of Medicine, 2017, 4(1):3 doi: 10.15347/wjm/2017.003 Encyclopedic Review Article The Hippocampus Marion Wright* et al. Abstract The hippocampus (named after its resemblance to the seahorse, from the Greek ἱππόκαμπος, "seahorse" from ἵππος hippos, "horse" and κάμπος kampos, "sea monster") is a major component of the brains of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. It belongs to the limbic system and plays important roles in the consolidation of information from short-term memory to long-term memory and spatial memory that enables navigation. The hippocampus is located under the cerebral cortex; (allocortical)[1][2][3] and in primates it is located in the medial temporal lobe, underneath the cortical surface. It con- tains two main interlocking parts: the hippocampus proper (also called Ammon's horn)[4] and the dentate gyrus. In Alzheimer's disease (and other forms of dementia), the hippocampus is one of the first regions of the brain to suffer damage; short-term memory loss and disorientation are included among the early symptoms. Damage to the hippocampus can also result from oxygen starvation (hypoxia), encephalitis, or medial temporal lobe epilepsy. People with extensive, bilateral hippocampal damage may experience anterograde amnesia (the inability to form and retain new memories). In rodents as model organisms, the hippocampus has been studied extensively as part of a brain system responsi- ble for spatial memory and navigation. Many neurons in the rat and mouse hippocampus respond as place cells: that is, they fire bursts of action potentials when the animal passes through a specific part of its environment.
    [Show full text]
  • Sir Charles Sherrington'sthe Integrative Action of the Nervous System: a Centenary Appreciation
    doi:10.1093/brain/awm022 Brain (2007), 130, 887^894 OCCASIONAL PAPER Sir Charles Sherrington’sThe integrative action of the nervous system: a centenary appreciation Robert E. Burke Formerly Chief of the Laboratory of Neural Control, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD, USA Present address: P.O. Box 1722, El Prado, NM 87529,USA E-mail: [email protected] In 1906 Sir Charles Sherrington published The Integrative Action of the Nervous System, which was a collection of ten lectures delivered two years before at Yale University in the United States. In this monograph Sherrington summarized two decades of painstaking experimental observations and his incisive interpretation of them. It settled the then-current debate between the ‘‘Reticular Theory’’ versus ‘‘Neuron Doctrine’’ ideas about the fundamental nature of the nervous system in mammals in favor of the latter, and it changed forever the way in which subsequent generations have viewed the organization of the central nervous system. Sherrington’s magnum opus contains basic concepts and even terminology that are now second nature to every student of the subject. This brief article reviews the historical context in which the book was written, summarizes its content, and considers its impact on Neurology and Neuroscience. Keywords: Neuron Doctrine; spinal reflexes; reflex coordination; control of movement; nervous system organization Introduction The first decade of the 20th century saw two momentous The Silliman lectures events for science. The year 1905 was Albert Einstein’s Sherrington’s 1906 monograph, published simultaneously in ‘miraculous year’ during which three of his most celebrated London, New Haven and New York, was based on a series papers in theoretical physics appeared.
    [Show full text]
  • Cajal, Golgi, Nansen, Schäfer and the Neuron Doctrine
    Full text provided by www.sciencedirect.com Feature Endeavour Vol. 37 No. 4 Cajal, Golgi, Nansen, Scha¨ fer and the Neuron Doctrine 1, Ortwin Bock * 1 Park Road, Rosebank, 7700 Cape Town, South Africa The Nobel Prize for Physiology or Medicine of 1906 was interconnected with each other as well as connected with shared by the Italian Camillo Golgi and the Spaniard the radial bundle, whereby a coarsely meshed network of Santiago Ramo´ n y Cajal for their contributions to the medullated fibres is produced which can already be seen at 2 knowledge of the micro-anatomy of the central nervous 60 times magnification’. Gerlach’s work on vertebrates system. In his Nobel Lecture, Golgi defended the going- helped to consolidate the evolving Reticular Theory which out-of-favour Reticular Theory, which stated that the postulated that all the cells of the central nervous system nerve cells – or neurons – are fused together to form a were joined together like an electricity distribution net- diffuse network. Reticularists like Golgi insisted that the work. Gerlach was one of the most influential anatomists of axons physically join one nerve cell to another. In con- his day and the author of many books, not least the 1848 trast, Cajal in his lecture said that his own studies Handbuch der Allgemeinen und Speciellen Gewebelehre des confirmed the observations of others that the neurons Menschlichen Ko¨rpers: fu¨ r Aerzte und Studirende. For are independent of one another, a fact which is the twenty years he lent his considerable credibility to the anatomical basis of the now-accepted Neuron Doctrine Reticular Theory.
    [Show full text]
  • English Summary
    English summary The Nobel Prize Career of Ragnar Granit. A Study of the Prizes of Science and the Science of the Prizes This study is concerned with two closely related themes: the reward system of science – i .e . the various means by which scientists express their admiration and esteem for their colleagues – and the role played by social networks within this broader framework . The study approa- ches its topic from the viewpoint of the Nobel Prize for Physiology or Medicine, often referred to as the Nobel Prize in Medicine . The focus of the study is on the lengthy process that led to the granting of the 1967 Nobel Prize to Ragnar Granit (1901–1991) for his discoveries concer- ning the primary physiological visual processes in the eye . His award was preceded by one of the most dramatic conflicts within the prize authorities during the post-war decades, and serves here to illustrate the dynamics and the various strategies employed in the Nobel Com- mittee of the Karolinska Institute . In addition, Granit’s career as a No- bel Prize candidate is used as a window through which it is possible to examine the various ways in which elite networks in the scientific field operate . In order to enable comparison, the Nobel careers of Charles Best, Hugo Theorell, and John Eccles are also discussed . On a more ge- neral level the Nobel careers of other scientists who received the Nobel Prize in Physiology or Medicine in the period 1940–1960 are also dis- cussed, whereby, as an offshoot of the study, a general picture of the Nobel institution in the post-war decades emerges .
    [Show full text]
  • U. S. Von Euler (1905-1983) Uif S. Von Euler's Contributions to Science
    296 fermentation of sugar. His mother, Astrld Cleve, daughter of the notable chemist P. T. Cleve, was a scientist in her own right, known for her studic~ tff f~ssil Diatomaceae. His godththeT was Svantc U. S. von Euler Arrhenius. Speaking of the scientific atmosphere at (1905-1983) his home and the regular opportunities for meeting scientists, von Euler stated that this Ulf von Euler, who was Professor of and testing substances from body fluids and "no doubt had a great part in my growing Physiology at the Karolinska Institute from tissues was sustained throughout his life. interest in research'. To his own work his 1939 to 1972, died in March this year at the The work suited his gifts - with their basic attitude was objective and he readily ack- age of 78 years. After his major discovery elements of technical skill, great care,' nowledged the contributions to his own in 1946 that consisted of the isolation and perseverance and industry - beyond ordi- field of interest by forerunners and content- identification of noradrenaline in sympathe- nary measures. He was richly rewarded poraries. His matter-of-fact attitude and tic ganglia and nerve fibres, he achieved an (see Bengt Pemow's contribution to this courteous manner contained elements of international reputation as a pioneer in issue of TINS). guarded prudence, producing a barrier catecholamine physiology. Von Euler's life seemed from the begin- which had to be penetrated by those who In 1921 Otto Loewi had found adrenaline ning to be destined for a scientific career. were his co-workers or just his friends.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • E Neurobiology of Learning and Memory – As Related in the Memoirs of Eric R
    www.surgicalneurologyint.com Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. SNI: Socioeconomics, Politics, and Medicine Editor James A Ausman, MD, PhD University of California at Los Angeles, Los Angeles, CA, USA Open Access Book Review e neurobiology of learning and memory – as related in the memoirs of Eric R. Kandel Miguel A. Faria Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. E-mail: *Miguel A. Faria - [email protected] Author : Eric R. Kandel Published by : W.W. Norton & Co., New York, NY, USA Price : $19.95 ISBN-13 : 978-0393329377 ISBN-10 : 9780393329377 Year : 2006 *Corresponding author: Miguel A. Faria, MD Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. [email protected] is magnificent tome by Eric R. Kandel, M.D., a psychoanalyst and neuroscience researcher, Received : 22 July 2020 is both a delightful autobiography and a scrupulously detailed history of the neurobiology of Accepted : 22 July 2020 learning and memory, a relatively new area of neuroscience that Kandel refers to as a “new [7] Published : 15 August 2020 science of mind.” His own fundamental work in this area made him a recipient of a Nobel Prize in Physiology or Medicine in 2000, which he shared with two other distinguished investigators, DOI Drs. Arvid Carlsson (for elucidating the effects of dopamine in Parkinson’s disease) and Paul 10.25259/SNI_458_2020 Greengard (for the discovery of signal transduction in neurons).
    [Show full text]
  • Vesicular Transport in Cells – from Analysis to Biogenesis
    Powered by Website address: https://www.gesundheitsindustrie- bw.de/en/article/news/vesicular-transport-in-cells-from- analysis-to-biogenesis Vesicular transport in cells – from analysis to biogenesis COPI vesicles, one of the three major types of intracellular transport vesicles, are an excellent example of how the molecular analysis of individual vesicle components can lead to an understanding of the biogenesis and transport mechanisms of membrane vesicles as a whole. The research carried out by Dr. Felix T. Wieland’s team at the University of Heidelberg has made a decisive contribution to such detailed insights. Eukaryotic cells are characterised by complex membrane systems that separate different metabolic compartments from each other at the same time as transporting metabolic products and messenger substances to specific destinations inside the cell and into the extracellular space. The transport is mediated by vesicles that detach from the folded and branched cisternae of intracellular membranes. They either then fuse with intracellular membranes again or with the plasma membrane where the contents of the vesicles, secretory proteins for example, are discharged to the outside of the cell. This process is referred to as exocytosis. The opposite process is known as endocytosis, in which cells take up molecules from the exterior by enveloping them in their cell membrane before releasing them inside the cell. Camillo Golgi (1843-1926). © Universitá degli studi di Pavia The Golgi apparatus, named after the Italian physiologist Camillo Golgi who discovered a method to 1 stain nervous tissue with silver, which led to his discovery in 1898 of the "apparato reticulare interno" in the hippocampal neurons, is integral in modifying and packaging macromolecules for exocytosis or use within the cell (endocytosis).
    [Show full text]
  • Curt Von Euler 528
    EDITORIAL ADVISORY COMMITTEE Albert J. Aguayo Bernice Grafstein Theodore Melnechuk Dale Purves Gordon M. Shepherd Larry W. Swanson (Chairperson) The History of Neuroscience in Autobiography VOLUME 1 Edited by Larry R. Squire SOCIETY FOR NEUROSCIENCE 1996 Washington, D.C. Society for Neuroscience 1121 14th Street, NW., Suite 1010 Washington, D.C. 20005 © 1996 by the Society for Neuroscience. All rights reserved. Printed in the United States of America. Library of Congress Catalog Card Number 96-70950 ISBN 0-916110-51-6 Contents Denise Albe-Fessard 2 Julius Axelrod 50 Peter O. Bishop 80 Theodore H. Bullock 110 Irving T. Diamond 158 Robert Galambos 178 Viktor Hamburger 222 Sir Alan L. Hodgkin 252 David H. Hubel 294 Herbert H. Jasper 318 Sir Bernard Katz 348 Seymour S. Kety 382 Benjamin Libet 414 Louis Sokoloff 454 James M. Sprague 498 Curt von Euler 528 John Z. Young 554 Curt von Euler BORN: Stockholm County, Sweden October 22, 1918 EDUCATION: Karolinska Institute, B.M., 1940 Karolinska Institute, M.D., 1945 Karolinska Institute, Ph.D., 1947 APPOINTMENTS: Karolinska Institute (1948) Professor Emeritus, Karolinska Institute (1985) HONORS AND AWARDS (SELECTED): Norwegian Academy of Sciences (foreign member) Curt von Euler conducted pioneering work on the central control of motor systems, brain mechanisms of thermoregulation, and on neural systems that control respiration. Curt von Euler Background ow did I come to devote my life to neurophysiology rather than to a clinical discipline? Why, in the first place, did I choose to study H medicine rather than another branch of biology or other subjects within the natural sciences? And what guided me to make the turns on the road and follow what appeared to be bypaths? There are no simple answers to such questions, but certainly a number of accidental circum- stances have intervened in important ways.
    [Show full text]
  • Syllabus for Introduction to Neuroscience (Honors-‐ NROSCI 1003)
    Syllabus for Introduction to Neuroscience (Honors- NROSCI 1003) This HONORS course provides an introduction to the structure and function of the nervous system. The course is comprised of four sections: 1) The molecular and cellular physiology of neurons, 2) Sensory systems, 3) Somatic and Visceral motor systems, 4) Complex Brain Functions (Emotions, Memory, Language, Disease). This course will also integrate weekly, in depth discussions of journal articles that correspond to Nobel Prize winning neuroscience research. Time: Tuesday, Thursday & Friday 11:00-12:15 pm Location: Crawford 241 Course Textbook: Neuroscience 5th Edition, 2012, Editors: Purves et al. Required: Scientific calculator with logarithmic function (NO graphing, phone or programmable calculators will be allowed for exams) Instructor: Dr. Oswald, [email protected] Office: A458 Langley, Mailbox: A210 Langley Office Hours: Thursday 10:00 am -11:00 am, or by appointment Teaching Assistants UTA: Samantha Golden, Julia Strother, Wyatt Laskey Weekly Assignments: Each Monday a reading assignment and three associated questions will be posted on CourseWeb. Answers are due before class on the day the reading assignment is discussed. Assignments are worth 10% of final grade. Weekly Quizzes: Quizzes will be every Tuesday in the first 15 min of class (No quiz during exam weeks). Each quiz will be worth 5 points. The quizzes will be on the material from lectures of the preceding week. Quizzes are optional but may be applied toward grade (see grading below). Grading: Grades will be determined based on the four in-class exams during the semester (90% of grade, see weighting below). There are no make-up exams.
    [Show full text]
  • Scientific References for Nobel Physiology & Medicine Prizes
    Dr. John Andraos, http://www.careerchem.com/NAMED/NobelMed-Refs.pdf 1 Scientific References for Nobel Physiology & Medicine Prizes © Dr. John Andraos, 2004 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ 1901 - Emil Adolf von Behring "for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths." 1902 - Ronald Ross "for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it." Ross, R. Yale J. Biol. Med. 2002, 75 , 103 (reprint) Ross, R. Wilderness Environ. Med. 1999, 10 , 29 (reprint) Ross, R. J. Communicable Diseases 1997, 29 , 187 (reprint) Ross, R.; Smyth, J. Ind. J. Malarialogy 1997, 34 , 47 1903 - Niels Ryberg Finsen "in recognition of his contributions to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science." 1904 - Ivan Petrovich Pavlov "in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged." 1905 - Robert Koch "for his investigations and discoveries in relation to tuberculosis." 1906 - Camillo Golgi and Santiago Ramón y Cajal "in recognition of their work on the structure of the nervous system." Golgi, C.
    [Show full text]