Der CAMSIZER XT

Total Page:16

File Type:pdf, Size:1020Kb

Der CAMSIZER XT Creative Optimization with Additive Manufacturing Webinar - Additive Manufacturing with Particle Size and Shape Analysis Many Additive Manufacturing (also called 3D printing) techniques such as selective laser sintering (SLS), selective laser melting (SLM) and electro-beam melting (EBM) use metal particle powders as a raw material (Aluminum, Titanium, Steel, Nickel, Tungsten and many Alloys). The particle size, size distribution and shape have a strong effect on the manufacturing result. Therefore it is important for manufacturers and suppliers to control the particle size and shape of their powders used in this process. In order to control particle size and shape these parameters must be measured. We discuss how to use the CAMSIZER technology to improve additive manufacturing results by monitoring the incoming particles. Value of Dynamic Image Analysis in 3D additive manufacturing How does Dynamic Image Analysis work? Why two cameras can control and monitor dust and oversize? Check the manufacturing and production of Additive Manufacturing powders Check the incoming raw material and the recycled powder for reuse 1 CAMSIZER XT & CAMSIZER X2 Additive Manufacturing December 5th of 2017 Julie Chen HORIBA Scientific Gert Beckmann Retsch Technology GmbH Processes Classification Technology Description Materials Binder Jetting 3D Printing Creates objects by depositing a Metal, Polymer, Ink-Jetting binding agent to join powdered Ceramic S-Print material. M-Print Direct Energy Direct Metal Deposition Builds parts by using focused Metal powder, Deposition Laser Deposition thermal energy to fuse materials as Metal wire Laser Consolidation they are deposited on a substrate. Electron Beam Direct Melting Material Fused Deposition Modelling Creates objects by dispensing Polymer Extrusion material through a nozzle to build layers. Material Jetting Polyjet Builds parts by depositing small Photo-polymer, Ink-Jetting droplets of build material, which Wax Thermojet are then cured by exposure to light. Powder Bed Direct Metal Laser Sintering Creates objects by using thermal Metal, Polymer, Fusion Selective Laser Melting energy to fuse regions of a powder Ceramic Electron Beam Melting bed. Selective Laser Sintering Sheet Ultrasonic Consolidation Builds parts by trimming sheets of Hybrids, Lamination Laminated Object Manufacture material and binding them together Metallic, in layers. Ceramic VAT Photopoly- Stereolithography Builds parts by using light to Photo-polymer, merisation Digital Light Processing selectively cure layers of material in Ceramic a vat of photopolymer. 3 Processes Classification Technology Description Materials Binder Jetting 3D Printing Creates objects by depositing a Metal, Polymer, Ink-Jetting binding agent to join powdered Ceramic S-Print material. M-Print Direct Energy Direct Metal Deposition Builds parts by using focused Metal powder, Deposition Laser Deposition thermal energy to fuse materials as Metal wire Laser Consolidation they are deposited on a substrate. Electron Beam Direct Melting Material Fused Deposition Modelling Creates objects by dispensing Polymer Extrusion material through a nozzle to build Filament layers. Material Jetting Polyjet Builds parts by depositing small Photo-polymer, Ink-Jetting droplets of build material, which Wax Thermojet are then cured by exposure to light. Powder Bed Direct Metal Laser Sintering Creates objects by using thermal Metal, Selective Laser Melting energy to fuse regions of a powder Fusion Electron Beam Melting bed. Polymer, Selective Laser Sintering Ceramic Sheet Ultrasonic Consolidation Builds parts by trimming sheets of Hybrids, Lamination Laminated Object Manufacture material and binding them together Metallic, in layers. Ceramic VAT Photopoly- Stereolithography Builds parts by using light to Photo-polymer, merisation Digital Light Processing selectively cure layers of material in Ceramic a vat of photopolymer. 4 Processes Type Technologies Materials Fused deposition modeling Thermoplastics, Eutectic metals, Edible materials, Extrusion (FDM) or Fused Filament Rubbers, Modeling clay, Plasticine, Metal clay Fabrication (FFF) (including Precious Metal Clay) Robocasting or Direct Ink Writing Ceramic materials, Metal alloy, Cermet, Metal matrix (DIW) composite, Ceramic matrix composite Light polymerized Stereolithography (SLA) Photopolymer Digital Light Processing (DLP) Photopolymer Powder bed and inkjet head 3D Powder Bed Almost any metal alloy, Powdered polymers, Plaster Printing (3DP) Electron-Beam Melting (EBM) Almost any metal alloy including Titanium alloys Titanium alloys, Cobalt Chrome alloys, Selective Laser Melting (SLM) Stainless Steel, Aluminium Selective Heat Sintering (SHS) Thermoplastic powder Selective Laser Sintering (SLS) Thermoplastics, Metal powders, Ceramic powders Direct metal laser sintering Almost any metal alloy (DMLS) Laminated Object Manufacturing Laminated Paper, Metal foil, Plastic film (LOM) Powder Fed Directed Energy Deposition Almost any metal alloy Electron Beam Freeform Wire Almost any metal alloy Fabrication (EBF3) 5 Processes Type Technologies Materials Fused deposition modeling Thermoplastics, Eutectic metals, Edible materials, Extrusion (FDM) or Fused Filament Rubbers, Modeling clay, Plasticine, Metal clay Fabrication (FFF) (including Precious Metal Clay) Robocasting or Direct Ink Writing Ceramic materials, Metal alloy, Cermet, Metal matrix (DIW) composite, Ceramic matrix composite Light polymerized Stereolithography (SLA) Photopolymer Digital Light Processing (DLP) Photopolymer Powder bed and inkjet head 3D Powder Bed Almost any metal alloy, Powdered polymers, Plaster Printing (3DP) Electron-Beam Melting (EBM) Almost any metal alloy including Titanium alloys Titanium alloys, Cobalt Chrome alloys, Selective Laser Melting (SLM) Stainless Steel, Aluminium Selective Heat Sintering (SHS) Thermoplastic powder Selective Laser Sintering (SLS) Thermoplastics, Metal powders, Ceramic powders Direct metal laser sintering Almost any metal alloy (DMLS) Laminated Object Manufacturing Laminated Paper, Metal foil, Plastic film (LOM) Powder Fed Directed Energy Deposition Almost any metal alloy Electron Beam Freeform Wire Almost any metal alloy Fabrication (EBF3) 6 Manufacturing of Metal Powders Direct iron ore reduction (into iron powder) (+) Fast (-) but irregular particle shape Atomization (iron and other metals) Gas atomization (+) Smoother rounder shape and narrow size distribution (-) but slower and cost intensive Liquid atomization (+) Fast (-) but irregular particle shape and wider size distribution © Retsch Technology GmbH 7 Classification of Metal Powders Separating Particle Sizes and Shapes (for manufacturing and/or testing) Size Classification: - Sieving or Air Classification Shape Classification: - Sieving with special shaped meshes - Sieving (fast and slow) - Air Classification © Retsch Technology GmbH 8 Recycling of Metal Powders Separating Particle sizes by Sieving or Air Classification After Atomization (Sieving or Air Classification ) For Recycling (Sieving off defects, dust, twins, agglomerates) © Retsch Technology GmbH 9 Example of Additive Manufacturing with Laser Sintering 10 Example for 3D printing © Retsch Technology GmbH 11 AM (Metal, Polymer and Ceramic Powder) Applications Plastic, Ceramic & Metal Powder Automotive, Airospace Industry, Fast Prototyping => small numbers => individual modifications Paper => Plastics => Metal Laser Melting (3D Metal Printing) Vacuum or Nylon Casting © Retsch Technology GmbH 12 3D Printing of Metal Construstions 3D printing with metal: The final frontier of additive manufacturing © Retsch Technology GmbH 13 CAMSIZER XT 3D Printing & Rapid Prototyping © Retsch Technology GmbH 14 3D Printing © Retsch Technology GmbH 15 3D Printing © Retsch Technology GmbH 16 Measuring Principle Digital Image Analysis STATIC DYNAMIC (ISO 13322-1) (ISO 13322-2) • Particles do not move during measurement • Particles in motion relative to camera • High resolution > 0,5 μm • Few 100 particles are analyzed • Resolution > 1 μm (low statistic) • Few million particles are analyzed • Limited measurement range (representative measurement) • Time consuming • Wide measurement range • Particles detected in stable orientation • Fast (2 Dimensions) • Particles measured in random orientations (3 Dimensions) © Retsch Technology GmbH 17 Content Instrument 1. Measurement principle 2. Results Applications 3. Markets and applications 4. Alternative analysis methods © Retsch Technology GmbH 18 CAMSIZER P4 (What‘s new) CAMSIZER P4 © Retsch Technology GmbH 20 Measurement Range Accurate measurement of big particles is not possible, even if they fit into the field of view: Upper measurement Big particles are limit defined by the touching the edge too field of view often reliable quantification not possible. Particle size ~ 1/3 of field of view © Retsch Technology GmbH 21 Two Camera-System (CAMSIZER P4, XT and X2) Large amount Small particles in of big particles high resolution Basic Camera Zoom Camera © Retsch Technology GmbH 22 Resolution ISO 13322-2: Smallest detectable CCD Basic CCD Zoom particle: 1 pixel One pixel is element of a projection when at least half of the pixel is covered. © Retsch Technology GmbH 23 Measurement principle (CAMSIZER XT) Advanced, patented optics design Sample flow Basic Camera Light source 2 Zoom Camera Light source 1 © Retsch Technology GmbH 24 New Optical Design of CAMSIZER X2 Advanced, patented optical design © Retsch Technology GmbH 25 Comparison CAMSIZER XT CAMSIZER X2 Why is perpendicular orientation*
Recommended publications
  • All-Printed Smart Structures: a Viable Option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*A, Gregory Washingtonb Adept
    All-printed smart structures: a viable option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*a, Gregory Washingtonb aDept. of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, AL, USA 35487-0276; bDept. of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA 92697-3975 ABSTRACT The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure. Keywords: printed smart structures, 3D printing, printed electronics, printed strain sensor 1. INTRODUCTION Decades of research and development have seen the progression of a variety of different additive manufacturing processes [1]. From basic Fused Deposition modeling to the more intricate Energy Beam methods, the ability to print a diverse selection of structures, both complex and simple, on demand with accuracy and precision has become a reality.
    [Show full text]
  • A Study on Ultrasonic Energy Assisted Metal Processing : Its Correeltion with Microstructure and Properties, and Its Application to Additive Manufacturing
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2019 A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing. Anagh Deshpande University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Manufacturing Commons, Metallurgy Commons, and the Other Materials Science and Engineering Commons Recommended Citation Deshpande, Anagh, "A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing." (2019). Electronic Theses and Dissertations. Paper 3239. https://doi.org/10.18297/etd/3239 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. A STUDY ON ULTRASONIC ENERGY ASSISTED METAL PROCESSING: ITS CORRELTION WITH MICROSTRUCTURE AND PROPERTIES, AND ITS APPLICATION TO ADDITIVE MANUFACTURING By Anagh Deshpande A Dissertation Submitted to the Faculty of the J.B. Speed School of Engineering of the University of Louisville in Fulfillment
    [Show full text]
  • 7 Families of Additive Manufacturing According to ASTM F2792 Standards
    7 Families of Additive Manufacturing According to ASTM F2792 Standards VAT Powder Bed Binder Material Photopolymerization Fusion (PBF) Jetting Jetting Alternative Names: Alternative Names: Alternative Names: Alternative Names: SLA™- Stereolithography Apparatus SLS™- Selective Laser Sintering; DMLS™- 3DP™- 3D Printing Polyjet™ DLP™- Digital Light Processing Direct Metal Laser Sintering; SLM™- Selective ExOne SCP™- Smooth Curvatures Printing 3SP™- Scan, Spin, and Selectively Photocure Laser Melting: EBM™- Electron Beam Melting; Voxeljet MJM - Multi-Jet Modeling CLIP™ – Continuous Liquid Interface Production SHS™- Selective Heat Sintering; Projet™ MJF™- Multi-Jet Fusion Description: Description: Description: Description: A vat of liquid photopolymer resin is cured Powdered materials is selectively consolidated Liquid bonding agents are selectively applied Droplets of material are deposited layer by layer through selective exposure to light (via a laser by melting it together using a heat source onto thin layers of powdered material to build up to make parts. Common varieties include jetting or projector) which then initiates polymerization such as a laser or electron beam. The powder parts layer by layer. The binders include organic a photcurable resin and curing it with UV light, and converts the exposed areas to a solid part. surrounding the consolidated part acts and inorganic materials. Metal or ceramic as well as jetting thermally molten materials that assupport material for overhanging features. powdered parts are typically fired in
    [Show full text]
  • The Current Landscape for Additive Manufacturing Research
    THE CURRENT LANDSCAPE FOR ADDITIVE MANUFACTURING RESEARCH A review to map the UK’s research activities in AM internationally and nationally 2016 ICL AMN report Dr. Jing Li Dr. Connor Myant Dr. Billy Wu Imperial College Additive Manufacturing Network Contents Executive Summary .............................................................................................................. 1 1. Introduction .................................................................................................................... 4 2. What is additive manufacturing? .................................................................................... 5 2.1. Advantages of additive manufacturing ......................................................................... 5 2.2. Types of additive manufacturing technology and challenges ........................................ 6 2.3. The manufacturing production chain and challenges ................................................... 9 2.4. Conclusions ................................................................................................................12 3. Mapping the international additive manufacturing research landscape ......................... 13 3.1. Global market trend ....................................................................................................13 3.1.1. Growth in market value ........................................................................................13 3.1.2 Additive manufacturing growth in industrial markets.............................................14
    [Show full text]
  • Metal Parts Using Additive Technologies
    3/3/2017 Fundamentals of Additive Manufacturing for Aerospace Frank Medina, Ph.D. Technology Leader, Additive Manufacturing Director, Additive Manufacturing Consortium [email protected] 915-373-5047 Intent of This Talk Introduce the general methods for forming metal parts using additive manufacturing Give multiple examples of each type of method Compare and contrast the methods given Disclaimer: – This talk serves as an introduction to the various additive manufacturing technologies which work with metals. There are so many methods available we will not have time to discuss them all. – Once you determine the right approach for you, please investigate different machine manufacturers and service providers to determine the optimal solution for your needs. – I have tried to be objective in the presentation. Where I can I have given the affiliations for the materials used. If I’ve missed any I apologize in advance. About me and EWI I am a Technology Leader at EWI specializing in additive manufacturing (AM) with a focus on Metals AM. I have over 17 years of AM experience, collaborating with research scientists, engineers, and medical doctors to develop new equipment and devices. Non-profit applied manufacturing R&D company ─ Develops, commercializes, and implements leading-edge manufacturing technologies for innovative businesses Thought-leader in many cross-cutting technologies ─ >160,000 sq-ft in 3 facilities with full-scale test labs (expanding) ─ >$40 million in state of the art capital equipment (expanding) ─ >170 engineers, technicians, industry experts (expanding) 1 3/3/2017 Structural Gap between Research and Application Technology Maturity Scale Source: NIST AMNPO presentation Oct. 2012 EWI Applied R&D Bridges the Gap Between Research and Application EWI Applied R&D: Manufacturing Technology Innovation, Maturation, Commercialization, Insertion Technology Maturity Scale Source: NIST AMNPO presentation Oct.
    [Show full text]
  • The Processing of Binder Jet Multi-Material 3D Printing to Improve Upon Material Properties
    Clemson University TigerPrints All Theses Theses December 2019 The Processing of Binder Jet Multi-Material 3D Printing to Improve upon Material Properties Sara Mohammed Damas Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Damas, Sara Mohammed, "The Processing of Binder Jet Multi-Material 3D Printing to Improve upon Material Properties" (2019). All Theses. 3224. https://tigerprints.clemson.edu/all_theses/3224 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE PROCESSING OF BINDER JET MULTI-MATERIAL 3D PRINTING TO IMPROVE UPON MATERIAL PROPERTIES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Sara M. Damas December 2019 Accepted by: Dr. Cameron J. Turner, Committee Chair Dr. Gang Li Dr. Suyi Li ABSTRACT Additive manufacturing methods are becoming more prominent in the world of design and manufacturing due to their reduction of material waste versus traditional machining methods such as milling. As their demand rises, a need to improve their methodologies and produce higher quality products arises. The technology to 3D print has been in around since the 1970’s, and thanks to Scott Crump as of 1989, it is possible to 3D print in layers to obtain a solid component. In today’s present time, we now can multi- material 3D print. However, even though we have the technology for multi-material 3D printing, standards in this field are severely lacking.
    [Show full text]
  • Numerical Modeling and Simulation of Selective Laser Sintering in Polymer Powder Bed Xin Liu
    Numerical modeling and simulation of selective laser sintering in polymer powder bed Xin Liu To cite this version: Xin Liu. Numerical modeling and simulation of selective laser sintering in polymer powder bed. Thermics [physics.class-ph]. Université de Lyon, 2017. English. NNT : 2017LYSEI012. tel-01920677 HAL Id: tel-01920677 https://tel.archives-ouvertes.fr/tel-01920677 Submitted on 13 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2017LYSEI012 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de (Institut National des Sciences Appliquées de Lyon) Ecole Doctorale N° ED162 (MEGA de Lyon) Spécialité/ discipline de doctorat : Thermique et Energétique Soutenue à huis clos le 28/02/2017, par : Xin LIU Numerical Modeling and Simulation of Selective Laser Sintering in Polymer Powder bed Devant le jury composé de : BARRES Claire Maître de conférences HDR INSA-Lyon Examinateur BERGHEAU Jean-Michel Professeur des Universités ENISE-St.Etienn Examinateur REGNIER Gilles Professeur des Universités ENSAM-Paris Rapporteur SCHMIDT Fabrice Professeur des Universités MINES-Albi Rapporteur BOUTAOUS M'hamed Maître de conférences HDR INSA-Lyon Directeur de thèse XIN Shihe Professeur des Universités INSA-Lyon Co-directeur de thèse 1 Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI012/these.pdf © [X.
    [Show full text]
  • Additive Manufacturing Is Changing the Way Manufacturing
    Additive Manufacturing is changing the way manufacturing gets done, but what is it? How does it work? What are the benefits and limitations? What industries are benefiting the most? ITAMCO answers these questions and examines how 3D printing compares to traditional manufacturing. GUIDE TO ADDITIVE MANUFACTURING TABLE OF CONTENTS WHAT IS ADDITIVE MANUFACTURING?. 3 ADDITIVE MANUFACTURING PROCESSES . .4 MATERIAL TYPES. 9 ADDITIVE MANUFACTURING PROCESSES INFOGRAPHIC . 10 BENEFITS . 12 LIMITATIONS . .12 APPLICATIONS. .14 ADDITIVE MANUFACTURING VERSUS TRADITIONAL MANUFACTURING . 15 2 WHAT IS ADDITIVE MANUFACTURING? Additive manufacturing (AM) or 3D printing is layer-by-layer GROWING NEED FOR AM fabrication of three-dimensional (3D) objects. AM now meets a broad range of needs throughout many industries including: Traditional manufacturing is a subtractive process in which material is removed to produce the final shape. Examples include milling, cutting, • Visualization tool or parts in design turning, drilling, boring, etc. AM offers many advantages in the production • Means to create customized products of parts, but the key benefits are unparalleled design freedom, less hard • Industrial tooling tooling and assembly, and the ability to manufacture single or multiple • Small runs of production parts components from a wide range of materials. • Full-strength, rapid prototyping Surprisingly this seemingly modern technology has been around for nearly • Test complex geometries 40 years. In 1981 automatic methods for producing 3D models were detailed by Hideo Kodama. His published paper described techniques for forming 3D plastic models using ultraviolet (UV) cured layers of photopolymer material. In 1984 Chuck Hull filed a patent coining the term stereolithography, a technique utilizing UV light lasers and a bed or vat or photopolymer resin to produce 3D objects.
    [Show full text]
  • Additive Manufacturing: Analysis of the Economic Context and Evaluation of the Indoor Air Quality, with a Total Quality Management Approach
    DIPARTIMENTO DI ECONOMIA, SOCIETÀ, POLITICA CORSO DI DOTTORATO DI RICERCA IN Economia, Società, Diritto CURRICULUM Economia e Management CICLO XXXI Additive Manufacturing: analysis of the economic context and evaluation of the indoor air quality, with a Total Quality Management approach SETTORE SCIENTIFICO DISCIPLINARE: SECS-P/13-SCIENZE MERCEOLOGICHE RELATORE DOTTORANDA Chiar.ma Prof.ssa Federica Murmura Dott.ssa Laura Bravi CO TUTOR Ing. Francesco Balducci Anno Accademico 2017/2018 Summary INTRODUCTION CHAPTER 1: ADDITIVE MANUFACTURING: IS IT THE FUTURE? ABSTRACT .......................................................................................................................... 10 1.1 Additive and Subtractive Manufacturing ...................................................................... 10 1.2 The road towards Additive Manufacturing ................................................................... 13 1.2.1 Prehistory of AM .................................................................................................... 14 1.2.2 First attempts to modern AM ................................................................................. 16 1.2.3 The RepRap project ................................................................................................ 19 1.2.4 The Fab@Home project ......................................................................................... 23 1.3 AM today: 3D printing in the digitalization of manufacturing ..................................... 24 1.3.1 The main Additive Manufacturing
    [Show full text]
  • 3D Printing As an Alternative Manufacturing Method for the Micro­Gas Turbine Heat Exchanger
    3D Printing as an Alternative Manufacturing Method for the Micro­gas Turbine Heat Exchanger Wolfgang Seiya and Sherry Zhang July 2015 Department of Energy Technology Royal Institute of Technology Stockholm, Sweden Pratt School of Engineering, Smarthome Program Duke University Durham, North Carolina, USA 1 Acknowledgements We would like to thank InnoEnergy, Compower, and the ‘‘STandUP for Energy’’ project for providing resourceful background information for this study. We owe our deepest gratitude to our advisor, Anders Malmquist for his continuous support for this study throughout the summer. His guidance, motivation, and expertise were invaluable assets in all areas of the study. Our sincere thanks goes to Joachim Claesson at KTH for his time and knowledge on the subject of heat exchangers. We take this opportunity to thank all the company correspondents that took their time and interest to help us with the vast information needed for this study. Lastly, we are immensely grateful to Duke Smart Home Program and its director Jim Gaston for providing us with the opportunity and necessary funds to live in Sweden while conducting this study. 2 I. Table of Contents List of Figures …………………………………………………………………………….… 6 ​ List of Tables ……………………………………………………………………………….. 7 ​ Abbreviations and Equation Nomenclature ………………………………………………… 8 ​ Abstract …………………………………………………………………………………...… 9 ​ Introduction …………………………………………………………………………………. 9 ​ Methodology ……………………………………………………………………………….. 10 ​ Materials ……………………………………………………………………………….. 10 ​ Manufacturing ………………………………………………………………………….
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2014 History of Additive Manufacturing History of additive This 34‐page document is a part of Wohlers Report 2014 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial by Terry Wohlers and Tim Gornet commercialization of stereolithography in 1987 to May 2013. Developments from May 2013 through April 2014 are available in the complete 276‐page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light‐sensitive liquid polymer using a laser. The SLA‐1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba‐Geigy partnered in SL materials development and commercialized the first‐generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D‐MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D‐MEC (now D‐MEC) called its product Solid Creation System (SCS).
    [Show full text]
  • Additive Manufacturing – Integration of Functions in EMI-Shields
    1 Royal Institute of Technology Master Thesis Additive Manufacturing – Integration of Functions in EMI-shields Author: Author: André JOHANSSON KUCERA Alexandra LIDHOLM Course: Course: MG212X, Degree Project in Production SE202X, Degree Project Engineering and Management in Solid Mechanics Supervisor KTH: Supervisor KTH: Amir RASHID, Bo ALFREDSSON, professor in Industrial professor in Solid Production Mechanics Examiner KTH: Examiner KTH: Amir RASHID Bo ALFREDSSON Supervisor Saab AB: Mussie GEBRETNSAE June 2019 i Abstract Additive manufacturing enables a simplified production process of components with complex geometry based on computer aided three-dimensional design. The technology of creating components layer-by-layer allows an efficient process with the ability to design parts with specific properties which can be difficult to obtain when conventional manufacturing methods are used. In this master thesis, an EMI shield was analyzed where the choice of manufacturing process was of interest. Producing the shield with additive manufacturing, instead of conventional methods, and how to integrate different materials in the process were investigated. The possibility to produce the shield and its components in the same process would result in a shorter production process with less process steps and would be an effective approach for future applications. In the current EMI shield, each component has a specific function with high demands in terms of temperature resistance, weight and EMC. These requirements must be taken into account when choosing manufacturing method and suitable materials in order to obtain desired characteristics of the shield. In the analysis of creating an electromagnetic interference (EMI) shield with multi-materials, a comprehensive literature study was conducted where different AM methods and available materials were investigated.
    [Show full text]