Additive Manufacturing – Integration of Functions in EMI-Shields

Total Page:16

File Type:pdf, Size:1020Kb

Additive Manufacturing – Integration of Functions in EMI-Shields 1 Royal Institute of Technology Master Thesis Additive Manufacturing – Integration of Functions in EMI-shields Author: Author: André JOHANSSON KUCERA Alexandra LIDHOLM Course: Course: MG212X, Degree Project in Production SE202X, Degree Project Engineering and Management in Solid Mechanics Supervisor KTH: Supervisor KTH: Amir RASHID, Bo ALFREDSSON, professor in Industrial professor in Solid Production Mechanics Examiner KTH: Examiner KTH: Amir RASHID Bo ALFREDSSON Supervisor Saab AB: Mussie GEBRETNSAE June 2019 i Abstract Additive manufacturing enables a simplified production process of components with complex geometry based on computer aided three-dimensional design. The technology of creating components layer-by-layer allows an efficient process with the ability to design parts with specific properties which can be difficult to obtain when conventional manufacturing methods are used. In this master thesis, an EMI shield was analyzed where the choice of manufacturing process was of interest. Producing the shield with additive manufacturing, instead of conventional methods, and how to integrate different materials in the process were investigated. The possibility to produce the shield and its components in the same process would result in a shorter production process with less process steps and would be an effective approach for future applications. In the current EMI shield, each component has a specific function with high demands in terms of temperature resistance, weight and EMC. These requirements must be taken into account when choosing manufacturing method and suitable materials in order to obtain desired characteristics of the shield. In the analysis of creating an electromagnetic interference (EMI) shield with multi-materials, a comprehensive literature study was conducted where different AM methods and available materials were investigated. Based on the literature research, possible concepts were generated and 3 different concepts were suggested for the final solution. A Finite Element Method software was used to verify these concepts in terms of solid mechanics, where the final design of the shield was determined based on the choice of materials in addition to optimization of the geometry. To evaluate the function and electromagnetic compatibility of the final concepts, prototypes were manufactured and tested in an experimental setup. These results were compared to the results of the original shield in order to determine whether the concepts met the given requirements or not. Concept E showed similar EMI results as the current shielding solution, whereas concept C and D resulted in a decrease of shielding effectiveness. Keywords: EMI-shield, Additive Manufacturing, composites, multi-material, FEM, product development, gasket, absorber. ii Sammanfattning Additiv tillverkning möjliggör en förenklad produktionsprocess av komponenter med komplexa geometrier utifrån en tredimensionell design. Att skapa komponenter lager för lager möjliggör en effektiv tillverkningsprocess av komponenter som skulle varit svåra att framställa med konventionalla tillverkningsprocesser. I detta arbete har ett EMI-lock analyserats där valet av tillverkningsmetod varit av intresse. Möjligheten att framställa produkten med additiv tillverkning istället för att använda konventionella processer samt hur man kan integrera olika material i tillverkningen har undersökts. Möjligheten att tillverka locket och dess komponenter i en och samma process skulle resultera i en kortare produktionsprocess med färre processteg, vilket skulle vara ett effektivt tillvägagångssätt i tillverkningen av framtida applikationer. I nuvarande EMI-lock har varje komponent en betydelsefull funktion och höga krav i form av temperatur, vikt och EMC ställs på produkten. Dessa krav måste beaktas vid val av möjlig tillverkningsmetod och lämpliga material för att erhålla önskade egenskaper hos slutprodukten. För att utvärdera möjligheten att tillverka ett EMI-lock med flera material har en omfattande litteraturstudie genomförts där olika tillverkningsmetoder och tillgängliga material undersökts. Baserat på litteraturstudien har generering av potentiella koncept genomförts där 3 koncept har föreslagits för den slutliga lösningen. För att verifiera dessa koncept har FEM-program används för att utvärdera hållfastheten. Baserat på dessa resultat har den slutliga designen av locket fastställts utifrån val av material och optimering av geometrin. Funktionen hos de slutliga koncepten och dess elektromagnetiska kompatibilitet har utvärderats genom att tillverka flera prototyper och sedan testa dessa i ett experimentellt utförande. Resultaten av detta jämfördes sedan med det ursprungliga EMI-locket för att avgöra om koncepten uppfyllde de givna kraven. Koncept E visade liknande resultat som det ursprungliga EMI-locket, medan koncept C och D påvisade en minskad skärmningseffekt. Nyckelord: EMI-lock, additiv tillverkning, komposit, multi-material, FEM, produktutveckling, packning, absorbent. iii Acknowledgement This master thesis was supported and carried out by Saab AB Surveillance in Gothenburg between January and June of 2019. The project is conducted as part of the Solid Mechanics track and Production Engineering and Management track at the Royal Institute of Technology (KTH) in Stockholm. We would like to thank Stefan Linders and Mattias Skogsberg at Saab for guidance and support throughout the work. A special thanks to our supervisor Mussie Gebretnsae who provided us with expertise, insight and knowledge. His encouragement and dedication made it possible to accomplish this project and achieve our common goal. We also thank everyone at the Gothenburg site for the welcoming atmosphere during this time. We are grateful to Mauricio Saldes, for giving us access to the Järfälla site, and Richard Ingman with the rest of the employees and lab technicians at the EW department in Järfälla for their help and support when it was needed. We thank Hans Nordström for assistance of knowledge in the field of electromagnetic radiation. It was a new subject for us to learn, but his guidance and commitment made it possible for us to create an understanding of EMI which we have conveyed in this work. We would also like to show our gratitude to our supervisors at KTH, Bo Alfredsson and Amir Rashid, for their help and dedication during this master thesis. André Johansson Kucera Alexandra Lidholm Stockholm, June 2019 iv Contents 1. Introduction.......................................................................................................................................... 1 1.1 Background .................................................................................................................................... 2 1.2 Purpose........................................................................................................................................... 3 1.3 Problem description ....................................................................................................................... 3 1.4 Delimitations .................................................................................................................................. 4 2. Method ................................................................................................................................................. 5 2.1 Data collection................................................................................................................................ 5 2.2 Technology screening ..................................................................................................................... 6 2.3 Concept development .................................................................................................................... 7 2.4 CAD ................................................................................................................................................. 8 2.5 FEM ................................................................................................................................................. 8 2.6 Prototype manufacturing and EMC testing ................................................................................... 9 3. EMC and EMI ...................................................................................................................................... 10 3.1 Electromagnetic radiation ............................................................................................................ 10 3.2 EMC and EMI ................................................................................................................................ 10 3.3 Basic shield theory ....................................................................................................................... 11 3.4 EMI shielding components ........................................................................................................... 12 3.5 EMI shield solutions on the market ............................................................................................. 15 4. Additive Manufacturing ..................................................................................................................... 17 4.1 Vat Photopolymerization ............................................................................................................. 17 4.2 Material jetting ............................................................................................................................. 18 4.3 Binder jetting ...............................................................................................................................
Recommended publications
  • Advanced Manufacturing Choices
    Advanced Manufacturing Choices Additive Manufacturing Techniques J.Ramkumar Dept of Mechanical Engineering IIT Kanpur [email protected] 2 Table of Contents 1. Introduction: What is Additive Manufacturing 2. Historical development 3. From Rapid Prototyping to Additive Manufacturing (AM) – Where are we today? 4. Overview of current AM technologies 1. Laminated Object Manufacturing (LOM) 2. Fused Deposition Modeling (FDM) 3. 3D Printing (3DP) 4. Selected Laser Sintering (SLS) 5. Electron Beam Melting (EBM) 6. Multijet Modeling (MJM) 7. Stereolithography (SLA) 5. Modeling challenges in AM 6. Additive manufacturing of architected materials 7. Conclusions 3 From Rapid Prototyping to Additive Manufacturing What is Rapid Prototyping - From 3D model to physical object, with a “click” - The part is produced by “printing” multiple slices (cross sections) of the object and fusing them together in situ - A variety of technologies exists, employing different physical principles and working on different materials - The object is manufactured in its final shape, with no need for subtractive processing How is Rapid Prototyping different from Additive Manufacturing? The difference is in the use and scalability, not in the technology itself: Rapid Prototyping: used to generate non-structural and non-functional demo pieces or batch-of-one components for proof of concept. Additive Manufacturing: used as a real, scalable manufacturing process, to generate fully functional final components in high-tech materials for low-batch, high-value manufacturing. 4 Why is Additive Manufacturing the Next Frontier? EBF3 = Electron Beam Freeform Fabrication (Developed by NASA LaRC) 5 Rapid Prototyping vs Additive Manufacturing today AM breakdown by industry today Wohlers Report 2011 ~ ISBN 0-9754429-6-1 6 From Rapid Prototyping to Additive Manufacturing A limitation or an opportunity? Rapid Prototyping in a nutshell 1.
    [Show full text]
  • All-Printed Smart Structures: a Viable Option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*A, Gregory Washingtonb Adept
    All-printed smart structures: a viable option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*a, Gregory Washingtonb aDept. of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, AL, USA 35487-0276; bDept. of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA 92697-3975 ABSTRACT The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure. Keywords: printed smart structures, 3D printing, printed electronics, printed strain sensor 1. INTRODUCTION Decades of research and development have seen the progression of a variety of different additive manufacturing processes [1]. From basic Fused Deposition modeling to the more intricate Energy Beam methods, the ability to print a diverse selection of structures, both complex and simple, on demand with accuracy and precision has become a reality.
    [Show full text]
  • Photopolymers in 3D Printing Applications
    Photopolymers in 3D printing applications Ramji Pandey Degree Thesis Plastics Technology 2014 DEGREE THESIS Arcada Degree Programme: Plastics Technology Identification number: 12873 Author: Ramji Pandey Title: Photopolymers in 3D printing applications Supervisor (Arcada): Mirja Andersson Commissioned by: Abstract: 3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photo- polymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particular focus on photopolymer based sys- tems. The thesis includes extensive literature research on 3D printing and photopolymer systems, which was supported by visit to technology fair and demo experiments. Further, useful information about recent technological advancements in 3D printing and materials was acquired by discussions with companies’ representatives at the fair. This analysis method was helpful to see the industrial based 3D printers and how companies are creat- ing digital materials on its own. Finally, the demo experiment was carried out with fusion deposition modeling (FDM) 3D printer at the Arcada lab. Few objects were printed out using polylactic acid (PLA) material. Keywords: Photopolymers, 3D printing, Polyjet technology, FDM
    [Show full text]
  • A Study on Ultrasonic Energy Assisted Metal Processing : Its Correeltion with Microstructure and Properties, and Its Application to Additive Manufacturing
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2019 A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing. Anagh Deshpande University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Manufacturing Commons, Metallurgy Commons, and the Other Materials Science and Engineering Commons Recommended Citation Deshpande, Anagh, "A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing." (2019). Electronic Theses and Dissertations. Paper 3239. https://doi.org/10.18297/etd/3239 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. A STUDY ON ULTRASONIC ENERGY ASSISTED METAL PROCESSING: ITS CORRELTION WITH MICROSTRUCTURE AND PROPERTIES, AND ITS APPLICATION TO ADDITIVE MANUFACTURING By Anagh Deshpande A Dissertation Submitted to the Faculty of the J.B. Speed School of Engineering of the University of Louisville in Fulfillment
    [Show full text]
  • Opas 3D-Tulostuksen Yleisimpiin Tekniikoihin Ja Niiden Haasteiden Ratkaisemiseen
    JOONAS KORTELAINEN Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen AUTOMAATIOTEKNOLOGIAN KOULUTUSOHJELMA 2019 Tekijä(t) Julkaisun laji Päivämäärä Kortelainen, Joonas Opinnäytetyö, ylempi AMK Joulukuu 2019 Sivumäärä Julkaisun kieli 91 Suomi Julkaisun nimi Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen Tutkinto-ohjelma Automaatioteknologian koulutusohjelma Tä ssä opinnäytetyössä tuotettiin opas 3D-tulostuksen yleisimpiin ongelmatilanteisiin ja niiden ratkaisemiseen. Käsiteltäviksi 3D-tulostusteknologioiksi valittiin FDM- ja MSLA-teknologiat niiden yleisyyden vuoksi. Tämä tutkimus toteutettiin konkreettisin menetelmin, kokeilemalla ja tuottamalla on- gelmatapauksia tarkoituksella, sekä ratkaisemalla niitä saatavilla olevin keinoin sekä kokemuksen tuoman ratkaisukeskeisen toimintatavan avulla. Tuloksena on tämä opinnäytetyön muotoon kirjoitettu opas valittujen 3D-tulostustek- niikoiden yleisimpiin ongelmiin ja niiden ratkaisuihin. Ratkaisut näihin ongelmiin on tuotu esille ytimekkäästi sekä konkreettisin askelein. Lopuksi oli hyvä huomata, kuinka paljon ongelmia 3D-tulostamisessa näillä valituilla teknologioilla oikeastaan on. Käsitellyt ongelmat ovat yleisimpiä näillä tulostusteknii- koilla esille tulevia ongelmia, mutta muitakin ongelmia saattaa esiintyä. Asiasanat 3D-tulostus, ongelmanratkaisu, 3D-tulostimet Author(s) Type of Publication Date Kortelainen, Joonas Master’s thesis December 2019 ThesisNumberAMK of pages Language of publication: 91 Finnish Title of publication
    [Show full text]
  • The Current Landscape for Additive Manufacturing Research
    THE CURRENT LANDSCAPE FOR ADDITIVE MANUFACTURING RESEARCH A review to map the UK’s research activities in AM internationally and nationally 2016 ICL AMN report Dr. Jing Li Dr. Connor Myant Dr. Billy Wu Imperial College Additive Manufacturing Network Contents Executive Summary .............................................................................................................. 1 1. Introduction .................................................................................................................... 4 2. What is additive manufacturing? .................................................................................... 5 2.1. Advantages of additive manufacturing ......................................................................... 5 2.2. Types of additive manufacturing technology and challenges ........................................ 6 2.3. The manufacturing production chain and challenges ................................................... 9 2.4. Conclusions ................................................................................................................12 3. Mapping the international additive manufacturing research landscape ......................... 13 3.1. Global market trend ....................................................................................................13 3.1.1. Growth in market value ........................................................................................13 3.1.2 Additive manufacturing growth in industrial markets.............................................14
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2012 State of the Industry History of additive This 26-page document is a part of Wohlers Report 2012 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial commercialization of by Terry Wohlers and Tim Gornet stereolithography in 1987 to May 2011. Developments from May 2011 to May 2012 are available in the complete 287-page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light- sensitive liquid polymer using a laser. The SLA-1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba-Geigy partnered in SL materials development and commercialized the first-generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D-MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D-MEC (now D-MEC) called its product Solid Creation System (SCS).
    [Show full text]
  • Metal Parts Using Additive Technologies
    3/3/2017 Fundamentals of Additive Manufacturing for Aerospace Frank Medina, Ph.D. Technology Leader, Additive Manufacturing Director, Additive Manufacturing Consortium [email protected] 915-373-5047 Intent of This Talk Introduce the general methods for forming metal parts using additive manufacturing Give multiple examples of each type of method Compare and contrast the methods given Disclaimer: – This talk serves as an introduction to the various additive manufacturing technologies which work with metals. There are so many methods available we will not have time to discuss them all. – Once you determine the right approach for you, please investigate different machine manufacturers and service providers to determine the optimal solution for your needs. – I have tried to be objective in the presentation. Where I can I have given the affiliations for the materials used. If I’ve missed any I apologize in advance. About me and EWI I am a Technology Leader at EWI specializing in additive manufacturing (AM) with a focus on Metals AM. I have over 17 years of AM experience, collaborating with research scientists, engineers, and medical doctors to develop new equipment and devices. Non-profit applied manufacturing R&D company ─ Develops, commercializes, and implements leading-edge manufacturing technologies for innovative businesses Thought-leader in many cross-cutting technologies ─ >160,000 sq-ft in 3 facilities with full-scale test labs (expanding) ─ >$40 million in state of the art capital equipment (expanding) ─ >170 engineers, technicians, industry experts (expanding) 1 3/3/2017 Structural Gap between Research and Application Technology Maturity Scale Source: NIST AMNPO presentation Oct. 2012 EWI Applied R&D Bridges the Gap Between Research and Application EWI Applied R&D: Manufacturing Technology Innovation, Maturation, Commercialization, Insertion Technology Maturity Scale Source: NIST AMNPO presentation Oct.
    [Show full text]
  • Stereolithography the First 3D Printing Technology Designated May 18, 2016
    ASME Historic Mechanical Engineering Landmark Stereolithography The First 3D Printing Technology Designated May 18, 2016 The American Society of Mechanical Engineers Mr. Hull made two significant contributions that advanced the viability of 3D technology: • He designed/established the STL file format that is widely accepted for defining 3D images in 3D printing software. • He established the digital slicing and in-fill Historical Significance of the strategies common in most 3D printing processes. Landmark Mr. Hull obtained patent no. 4,575,330 (filed Stereolithography is recognized as the first August 8, 1984) for an “Apparatus for production commercial rapid prototyping device for what of three-dimensional objects by is commonly known today as 3D printing. 3D stereolithography.” In 1986, he co-founded 3D printing is revolutionizing the way the world Systems, Inc. (3D Systems) to commercialize the thinks and creates, and has been identified as technology. 3D Systems introduced their first 3D a ‘disruptive technology’ – an innovation that printer, the SLA-1, in 1987. has displaced established technologies and created new industries. ASME Landmark Plaque Text 3D Systems SLA-1 3D Printer | 1987 This is the first 3D printer manufactured for commercial sale and use. This system pioneered the rapid development of additive manufacturing, a method in which material is added layer-by-layer to form a solid object, as opposed to traditional manufacturing in which material is cut or machined away. The SLA-1 is based on stereolithography, using a precisely controlled beam of UV light to solidify liquid polymers one layer at a time. Stereolithography process Chuck Hull developed stereolithography in 1983 and formed 3D Systems to manufacture and While the origins of 3D printing date back to market a commercial printer.
    [Show full text]
  • Additive Manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date
    WPT3 D.T3.2.10 Virtual demonstration centre – Additive Version 1 manufacturing 03/2021 Project information Project Index Number: CE1519 Project Acronym: CHAIN REACTIONS Project Title: Driving smart industrial growth through value chain innovation Website: https://www.interreg-central.eu/Content.Node/CHAIN-REACTIONS.html Start Date of the Pro- 01.04.2019 ject: Duration: 36 Months Document Control page DT3.2.10 – Joint implementation report for the pilot in the advanced manu- Deliverable Title: facturing sector – virtual demonstration centre – additive manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date: Actual Delivery Date: 25.03.2021 Page I Table of content 1 Introduction ......................................................................................... 1 2 Division of 3D printing technologies ............................................................. 1 2.1 Selective Laser Sintering – SLS ............................................................................................... 1 2.2 Selective laser melting - SLM ................................................................................................. 2 2.3 Stereolithography - SLA ......................................................................................................... 2 2.4 Fused deposition Modelling - FDM ....................................................................................... 3 2.5 Electronic beam melting - EBM ............................................................................................
    [Show full text]
  • University of California, Irvine
    UNIVERSITY OF CALIFORNIA, IRVINE Application of Fused Deposition Modeling and Stereolithography Processes for Fabrication of Point-of-Care Bioassay Platforms THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Materials Science and Engineering by Yang-chung Lee Thesis Committee: Professor Marc Madou, Chair Project Scientist Lawrence Kulinsky Professor James Earthman 2016 © 2016 Yang-chung Lee TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii ABSTRACT OF THE THESIS viii 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Background 2 1.2.1 History of Additive Manufacturing 2 1.2.2 CAD-file Preparation for Additive Manufacturing 3 1.2.3 Introduction to Additive Manufacturing Technologies – FDM and SLA 4 1.2.4 Advantages of Additive Manufacturing Techniques for the Microfluidic Device 8 1.3 Researches on FDM Microfluidics 9 1.4 Researches on SLA Microfluidics 12 1.5 Objective of Thesis 13 2. MALARIA – AB IMMUNOASSAY 15 3. FDM IMMUNOASSAY PROTOTYPES - DESIGN FOR ADDITIVE MANUFACTURING 17 3.1 Printing TPU with Airwolf AW3D HD2x (FDM) Printer 17 3.2 Difference between ABS and TPU Printing 21 ii 3.3 Design for TPU Prototypes 22 3.4 Minimize Surface Defects on the Prototypes 23 3.5 Design of TPU Prototypes for the Malaria-Ab Immunoassay 26 3.5.1 3D Printed ABS Device for the Malaria-Ab Immunoassay 26 3.5.2 First Generation of TPU Prototypes for the Malaria-Ab Immunoassay 27 3.5.3 Second Generation of TPU Prototypes for the Malaria-Ab Immunoassay 30 3.6 Discussion on TPU Immunoassay Prototypes 31 4.
    [Show full text]
  • Direct and Indirect Laser Sintering of Metals
    Direct and Indirect Laser Sintering of Metals By Montasser Marasy A. Dewidar A Thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mechanical Engineering Leeds UK May 2002 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. Abstract 11 ABSTRACT Manufacturing functional prototypes and tools using conventional methods usually is a time consuming procedure with multiple steps. The pressure to get products to market faster has resulted in the creation of several Rapid Prototyping (RP) techniques. However, potentially one of the most important areas of Rapid Manufacturing (RM) technology lies in the field of Rapid Tooling (RT). Layer manufacture technologies are gaining increasing attention in the manufacturing sector for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered an effective way of producing rapid tooling. Selective Laser Sintering (SLS) is one of available layer manufacture technologies. SLS is a sintering process in which shaped parts are built up layer by layer from bottom to top of powder material. A laser beam scans the powder layer, filling in the outline of each layers CAD-image, and heats the selected powder to fuse it. This work reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production metal tooling for manufacture of polymer components.
    [Show full text]