Advanced Manufacturing Choices

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Manufacturing Choices Advanced Manufacturing Choices Additive Manufacturing Techniques J.Ramkumar Dept of Mechanical Engineering IIT Kanpur [email protected] 2 Table of Contents 1. Introduction: What is Additive Manufacturing 2. Historical development 3. From Rapid Prototyping to Additive Manufacturing (AM) – Where are we today? 4. Overview of current AM technologies 1. Laminated Object Manufacturing (LOM) 2. Fused Deposition Modeling (FDM) 3. 3D Printing (3DP) 4. Selected Laser Sintering (SLS) 5. Electron Beam Melting (EBM) 6. Multijet Modeling (MJM) 7. Stereolithography (SLA) 5. Modeling challenges in AM 6. Additive manufacturing of architected materials 7. Conclusions 3 From Rapid Prototyping to Additive Manufacturing What is Rapid Prototyping - From 3D model to physical object, with a “click” - The part is produced by “printing” multiple slices (cross sections) of the object and fusing them together in situ - A variety of technologies exists, employing different physical principles and working on different materials - The object is manufactured in its final shape, with no need for subtractive processing How is Rapid Prototyping different from Additive Manufacturing? The difference is in the use and scalability, not in the technology itself: Rapid Prototyping: used to generate non-structural and non-functional demo pieces or batch-of-one components for proof of concept. Additive Manufacturing: used as a real, scalable manufacturing process, to generate fully functional final components in high-tech materials for low-batch, high-value manufacturing. 4 Why is Additive Manufacturing the Next Frontier? EBF3 = Electron Beam Freeform Fabrication (Developed by NASA LaRC) 5 Rapid Prototyping vs Additive Manufacturing today AM breakdown by industry today Wohlers Report 2011 ~ ISBN 0-9754429-6-1 6 From Rapid Prototyping to Additive Manufacturing A limitation or an opportunity? Rapid Prototyping in a nutshell 1. 3D CAD model of the desired object is generated 2. The CAD file is typically translated into STL* format 3. The object described by the STL file is sliced along one direction (the ‘z’ or ‘printing’ direction) 4. Each slice is manufactured and layers are fused together (a variety of techniques exist). The material can be deposited by dots (0D), lines (1D) or sheets (2D) *The STL (stereo lithography) file format is supported by most CAD packages, and is is widely used in most rapid prototyping / additive A voxel (volumetric pixel or, more manufacturing technologies. correctly, Volumetric Picture STL files describe only the surface geometry of Element) is a volume element, a three dimensional object without any representing a value on a regular representation of color, texture or other common grid in three dimensional space. CAD model attributes. The STL file describes a This is analogous to a pixel, discretized triangulated surface by the unit which represents 2D image data normal and vertices coordinates for each in a bitmap. triangle (ordered by the right-hand rule). 7 Compromises in Additive Manufacturing Another key compromise is among process speed, volume and tolerances. • Laminated Object Modeling (LOM) • Fused Deposition Modeling (FDM) • 3D Printing (3DP) • Selective Laser Sintering (SLS) • Electron Beam Melting (EBM) • Multijet Modeling (MJM) • Stereolithography (SLA, STL) • Micro-stereolithography (serial and projected) • Two photon lithography 8 Laminated Object Manufacturing (LOM) 1. Sheets of material (paper, plastic, ceramic, or composite) are either precut or rolled. 2. A new sheet is loaded on the build platform and glued to the layer underneath. 3. A laser beam is used to cut the desired contour on the top layer. 4. The sections to be removed are diced in cross-hatched squares; the diced scrap remains in place to support the build. 5. The platform is lowered and another sheet is loaded. The process is repeated. 6. The product comes out as a rectangular block of laminated material containing the prototype and the scrap cubes. The scrap/support material is separated from the prototype part. 9 Laminated Object Manufacturing (LOM) Current market leaders - Mcor Technologies (Ireland) Laminated Object Manufacturing (LOM) - Solido (Israel) was developed by Helisys of Torrance, CA, - Strataconception (France) in the 1990s. Helisys went out of business - Kira Corporation (Japan) in 2000 and their LOM equipment is now serviced by Cubic Technologies. Equipment picture Mcor Technologies Matrix 300+ (uses A4 paper and water-based adhesive) Courtesy, Cubic Technologies 10 Laminated Object Manufacturing (LOM) KEY METRICS ADVANTAGES Maximum build size 40in x 40in x 20in • Relatively high-speed process • Low cost (readily available materials) Resolution in (x,y) +/- .004 in • Large builds possible (no chemical Resolution in z Variable reactions) • Parts can be used immediately after the Speed Medium process (no need for post-curing) Cost Low • No additional support structure is required (the part is self-supported) Available materials Paper, Plastic Sheet DISADVANTAGES KEY APPLICATION AREAS • Removal of the scrap material is laborious • The ‘z’ resolution is not as high as for other • Pattern Making technologies • Decorative Objects • Limited material set • Need for sealing step to keep moisture out 11 Fused Deposition Modeling (FDM) 5. The sacrificial support material (if available) 1. A spool of themoplastic wire (typically is dissolved in a heated sodium hydroxide acrylonitrile butadiene styrene (ABS)) with (NaOH) solution with the assistance of a 0.012 in (300 μm) diameter is ultrasonic agitation. continuously supplied to a nozzle 2. The nozzle heats up the wire and extrudes a hot, viscos strand (like squeezing toothpaste of of a tube). 3. A computer controls the nozzle movement along the x- and y-axes, and each cross- section of the prototype is produced by melting the plastic wire that solidifies on cooling. 4. In the newest models, a second nozzle carries a support wax that can easily be removed afterward, allowing construction of more complex parts. The most common support material is marketed by Stratasys under the name WaterWorks 12 Fused Deposition Modeling (FDM) Current market leaders The fused deposition modeling (FDM) technology - Stratasys, Inc. was developed by S. Scott Crump in the late 1980s and was commercialized in 1990. The double material approach was developed by Stratasys in 1999. "Ribbon Tetrus" (Carlo Séquin) www.nybro.com.au Stratasys Dimension SST 1200 Courtesy, Dr. Robin Richards, University College London, UK 13 FDM process parameters 14 Fused Deposition Modeling (FDM) KEY METRICS ADVANTAGES Maximum build size 20” x 20” x 20” • Economical (inexpensive materials) • Enables multiple colors Resolution in (x,y) +/- (0.002” - 0.005”) • Easy to build DIY kits (one of the most Resolution in z +/- (0.002” - 0.01”) common technologies for home 3D printing) Speed Slow • A wide range of materials possible by Cost Medium loading the polymer Available materials Thermoplastics (ABS, PC, ULTEM…) KEY APPLICATION AREAS • Conceptual Models www.redeyeondemand.com • Engineering Models • Functional Testing Prototypes DISADVANTAGES • Materials suite currently limited to thermoplastics (may be resolved by loading) 15 Fused Deposition Modeling (FDM) Do it Yourself FDM rapid prototyping systems FAB@Home RepRap • First multi-material printer available to the public • Open-source system • Open-source system • Founded in 2005 by Dr. A. Bowyer at the University of • Project goal: open-source mass-collaboration Bath (UK) developing personal fabrication technology aimed at bringing personal fabrication to your home (project • Project goal: Deliver a 3D printer that can print itself! started by H. Lipson and E. Malone at Cornell in 2006). • 1st machine in 2007 (Darwin) • Popular Mechanics Breakthrough Award 2007 • Replication achieved in 2008 16 Fused Deposition Modeling (FDM) Do it Yourself FDM rapid prototyping systems Cubify Cube • Commercially available fully built for $1,200 • Resolution 0.2mm • 16 colors • Prints in ABS and PLA • Awarded 2012 Popular Mechanics Breakthrough Award 17 3D Printing (3DP) 1. A layer of powder (plaster, ceramic) is spread across the build area 2. Inkjet-like printing of binder over the top layer densifies and compacts the powder locally 3. The platform is lowered and the next layer of dry powder is spread on top of the previous layer 4. Upon extraction from the machine, the dry powder is brushed off and recycled 18 3D Printing (3DP) Current market leaders - Z Corporation Z Corporation first introduced high- - Exone resolution, 24-color, 3DP (HD3DP™) in - Voxeljet 2005 (600 dpi). Z Corp was later bought by 3D Systems. Olaf Diegel Atom 3D printed guitar Zcorp Z510 19 3D Printing (3DP) KEY METRICS ADVANTAGES Maximum3D Printing build size 14 in x(3DP) 10 in x 8 in • Can create extremely Resolution in (x,y) 640 dpi realistic multi-color parts (24-bit color) Resolution in z Variable using inkjet technology Speed Fast • Can generate complex components with Cost Low internal degrees of Available materials Plaster, sand, oxide freedom ceramics, sugar • Economical and starch for food • Versatile Printed with Z Corp 650 printing KEY APPLICATION AREAS DISADVANTAGES • Widely used to print colorful and complex • Very limited materials suite parts for demonstration purposes • Low resolution (lowest of all AM technologies) • Molds for sand casting of metals • Negligible mechanical properties (unusable for any structural application) 20 Selective Laser Sintering (SLS) 1. A continuous layer of powder is deposited on the fabrication
Recommended publications
  • Rapid Prototyping Technology- Classification and Comparison
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072 Rapid Prototyping Technology- Classification and Comparison Dharipalli Hyndhavi1, S.Bhanu Murthy2 1M.Tech Student, Mechanical Engineering Department, VNRVJIET, Hyderabad, India. 2Assistant Professor, Mechanical Engineering Department, VNRVJIET, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Rapid Prototyping is a group of techniques used ISO/ASTM52900-15 defines seven categories of AM to quickly fabricate a prototype, develop a product of high processes: binder jetting, directed energy deposition, quality, low cost in shortest period available, using three- material extrusion, material jetting, powder bed fusion, sheet dimensional CAD data, present in stereo lithography (.STL) file lamination and vat photo polymerization. format. Construction of the part or an assembly is usually done using 3D printing which is also known as additive 2. OVERVIEW OF RAPID PROTOTYPING manufacturing technology or Layer manufacturing. 3D TECHNOLOGY printing technology has guided the technology in advancing the design and development more quickly and at a much lower Prototypes were constructed by high skilled model makers cost than with that of the conventional methods. 3D printing from standardized 2 dimensional engineering drawing. The has wide applications in research and development of process was highly expensive and time consuming. With components ranging from simple structures to complicated advancement in technology of new CAD/CAM technologies products. This paper presents an overview of rapid and layer manufacturing, prototypes are being produced prototyping technology, its importance, classification and rapidly from 3D CAD models. Rapid Prototyping method has comparison of properties of products obtained by adopting two systems for two distinct markets.
    [Show full text]
  • Additive Manufacturing with Reprap Methodology: Current Situation and Future Prospects
    Additive manufacturing with RepRap methodology: current situation and future prospects L. Romero1, A. Guerrero1, M. M. Espinosa1, M. Jiménez 2, I.A. Domínguez1, M. Domínguez1 1 Design Engineering Area - Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain 2 Department of Mechanical Engineering, Technical School of Engineering - ICAI, Comillas University, Madrid, Spain Abstract In February 2004, Adrian Bowyer, from the University of Bath, began an open initiative called RepRap, with the purpose of creating an open source rapid prototyping machine which, moreover, could replicate itself. This article analizes the current status of the RepRap initiative, commenting the basic components of RepRap machines, the differences between the different 3D printers developed by the RepRap community so far, and the technical possibilities that opens this technology from the engineering point of view. In addition we propose some improvements that could be perfectly feasible in the short term. For this purpose, the assembly of a RepRap Mendel Prusa was performed, but with some modifications. 120 1. Introduction to RepRap community. A 3D printing machine (and any computing device in general) is composed of hardware (electric, electronic, electromechanic and mechanic physical components) and control software (the logical equipment as the operating system or software applications), usually both developed by companies that control them. However, there are several companies in the world that are dedicated to the development of hardware in a peculiar way: they publish the sources of their inventions and sharing them with the whole world, with the aim that users from all the planet can use them and propose improvements. This is the model of open source hardware: hardware whose design, components, tools and documentation are open and they are publicly available to anyone.
    [Show full text]
  • Rapid Prototyping Rev II
    Rapid Prototyping Rev II DR. TAREK A. TUTUNJI REVERSE ENGINEERING PHILADELPHIA UNIVERSITY, JORDAN 2 0 1 5 Prototype A prototype can be defined as a model that represents a product or system. This model is usually used for functionality testing and product visualization. Prototyping is essential in the development of products and all industrial nations have prototyping centers. In fact, prototyping plays a major role in the advancement of technology. Prototype In the prototyping development cycle, initial prototypes are built, tested, and then reworked as necessary until an acceptable prototype is finally achieved from which the complete system or product can be developed. Three types of prototyping PCB Prototyping Virtual Prototyping Rapid Prototyping PCB Prototyping The production of a functional Printed Circuit Board (PCB). The product can then be tested for its functionality and reliability Virtual Prototyping Computer-based without the option of a physical part or object. It uses virtual reality to create product prototypes and test their properties. It provides a virtual 3-D prototype that can be manipulated from all views and angles. The computer program can then test many aspects of the product such as vibration, forces, materials and weight. Rapid Prototyping Produces physical prototypes in short time (within hours or days rather than weeks). These prototypes are frequently used to quickly test the product's look, dimension, and feel. Rapid prototyping usually result in plastic objects. Prototyping Advantages Provides
    [Show full text]
  • Future of Manufacturing Technology Rapid Prototyping Technique
    International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 5, September–October 2016, pp.117–126, Article ID: IJMET_07_05_014 Available online at http://iaeme.com/Home/issue/IJMET?Volume=7&Issue=5 Journal Impact Factor (2016): 9.2286 (Calculated by GISI) www.jifactor.com ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication FUTURE OF MANUFACTURING TECHNOLOGY RAPID PROTOTYPING TECHNIQUE Yembadi Koushik Varma B. Tech, Mechatronics (Mechanical) Engineering Department, Mahatma Gandhi Institute of Technology, Hyderabad, India Samatham Madhukar B. Tech, Mechanical Engineering Department, VidyaJyothi Institute of Technology, Hyderabad, India Bootla Akhil B. Tech, Mechanical Engineering Department, VidyaJyothi Institute of Technology, Hyderabad, India Pokala Saiprasanna Kumar B.Tech, Mechanical Engineering Department, Joginpally B.R Engineering College, Hyderabad, India ABSTRACT The term “Rapid Prototyping” (RP) refers to a class of technologies that can automatically construct physical models from computer-Aided Design (CAD) data or is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. The edges and surfaces of a complex solid model and their information are used for defining a product which is further manufactured as a finished product by CNC machining. They make excellent visual aids for communicating ideas with co-workers or customers apart from design testing. Across the world, Engineering has the common language and common goal-“Improving the Quality of Life” of mankind without any boundary restrictions. The common goal can be attained by the engineers in less time by RAPID PROTOTYPING TECHNIQUE and this paper provides a better platform for researchers, new learners and product manufacturers for various applications of RP models.
    [Show full text]
  • Photopolymers in 3D Printing Applications
    Photopolymers in 3D printing applications Ramji Pandey Degree Thesis Plastics Technology 2014 DEGREE THESIS Arcada Degree Programme: Plastics Technology Identification number: 12873 Author: Ramji Pandey Title: Photopolymers in 3D printing applications Supervisor (Arcada): Mirja Andersson Commissioned by: Abstract: 3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photo- polymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particular focus on photopolymer based sys- tems. The thesis includes extensive literature research on 3D printing and photopolymer systems, which was supported by visit to technology fair and demo experiments. Further, useful information about recent technological advancements in 3D printing and materials was acquired by discussions with companies’ representatives at the fair. This analysis method was helpful to see the industrial based 3D printers and how companies are creat- ing digital materials on its own. Finally, the demo experiment was carried out with fusion deposition modeling (FDM) 3D printer at the Arcada lab. Few objects were printed out using polylactic acid (PLA) material. Keywords: Photopolymers, 3D printing, Polyjet technology, FDM
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2012 State of the Industry History of additive This 26-page document is a part of Wohlers Report 2012 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial commercialization of by Terry Wohlers and Tim Gornet stereolithography in 1987 to May 2011. Developments from May 2011 to May 2012 are available in the complete 287-page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light- sensitive liquid polymer using a laser. The SLA-1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba-Geigy partnered in SL materials development and commercialized the first-generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D-MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D-MEC (now D-MEC) called its product Solid Creation System (SCS).
    [Show full text]
  • Stereolithography the First 3D Printing Technology Designated May 18, 2016
    ASME Historic Mechanical Engineering Landmark Stereolithography The First 3D Printing Technology Designated May 18, 2016 The American Society of Mechanical Engineers Mr. Hull made two significant contributions that advanced the viability of 3D technology: • He designed/established the STL file format that is widely accepted for defining 3D images in 3D printing software. • He established the digital slicing and in-fill Historical Significance of the strategies common in most 3D printing processes. Landmark Mr. Hull obtained patent no. 4,575,330 (filed Stereolithography is recognized as the first August 8, 1984) for an “Apparatus for production commercial rapid prototyping device for what of three-dimensional objects by is commonly known today as 3D printing. 3D stereolithography.” In 1986, he co-founded 3D printing is revolutionizing the way the world Systems, Inc. (3D Systems) to commercialize the thinks and creates, and has been identified as technology. 3D Systems introduced their first 3D a ‘disruptive technology’ – an innovation that printer, the SLA-1, in 1987. has displaced established technologies and created new industries. ASME Landmark Plaque Text 3D Systems SLA-1 3D Printer | 1987 This is the first 3D printer manufactured for commercial sale and use. This system pioneered the rapid development of additive manufacturing, a method in which material is added layer-by-layer to form a solid object, as opposed to traditional manufacturing in which material is cut or machined away. The SLA-1 is based on stereolithography, using a precisely controlled beam of UV light to solidify liquid polymers one layer at a time. Stereolithography process Chuck Hull developed stereolithography in 1983 and formed 3D Systems to manufacture and While the origins of 3D printing date back to market a commercial printer.
    [Show full text]
  • The Reprap Project
    CASE STUDY: THE REPRAP PROJECT 3D PRINTING 3D Printing Today • 3D Printing in the news: 3D printed… • Organs, toys, cars, buildings, astronaut food • 3D printers (I’m so meta even this acronym…) • 3D Printing Materials commercially available today • Plastics • Ceramics (including food grade) • Metal • Rapid prototyping accessible for artists, engineers, etc. 3D PRINTING 3D Printing Technology for RepRap • Fused Deposition Modeling (FDM): Method of 3D printing in which thin filament of material is pushed through a heated nozzle and deposited layer-by-layer on a surface • Based on US Patent 5,121,329 (first full description of FDM technology; now expired) • Objective of the RepRap project: create an open source 3D printer capable of printing all of the parts necessary to build a new RepRap (assisted self replication) 3D PRINTING Anatomy of an FDM 3D Printer • 3 Axis CNC Platform: Provides motion for the tool head and print bed in the X, Y, and Z axes • Extruder: Geared mechanism which accepts filament and feeds it into the hot end • “Hot End”: Heated nozzle which receives filament from the extruder and deposits it on the print surface • Control Electronics: Used to control movement of tool head and print bed, heating controls for print bed and hot end, homing and other features • Sensors: Provide feedback to control electronics about the position of tool head and print bed, as well as other features 3D PRINTING Anatomy of an FDM 3D Printer • Filament: A “wire” of material on a reel which is used by the 3D printer to create the 3D shape •
    [Show full text]
  • Additive Manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date
    WPT3 D.T3.2.10 Virtual demonstration centre – Additive Version 1 manufacturing 03/2021 Project information Project Index Number: CE1519 Project Acronym: CHAIN REACTIONS Project Title: Driving smart industrial growth through value chain innovation Website: https://www.interreg-central.eu/Content.Node/CHAIN-REACTIONS.html Start Date of the Pro- 01.04.2019 ject: Duration: 36 Months Document Control page DT3.2.10 – Joint implementation report for the pilot in the advanced manu- Deliverable Title: facturing sector – virtual demonstration centre – additive manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date: Actual Delivery Date: 25.03.2021 Page I Table of content 1 Introduction ......................................................................................... 1 2 Division of 3D printing technologies ............................................................. 1 2.1 Selective Laser Sintering – SLS ............................................................................................... 1 2.2 Selective laser melting - SLM ................................................................................................. 2 2.3 Stereolithography - SLA ......................................................................................................... 2 2.4 Fused deposition Modelling - FDM ....................................................................................... 3 2.5 Electronic beam melting - EBM ............................................................................................
    [Show full text]
  • $200 Vs. $20,000
    $200 vs. $20,000 The Real Difference Between Hobbyist and Professional 3D Printers From futuristic concept to creative hobby to new industrial revolution, 3D printing has had a tumultuous journey of self-actualization since it first emerged in the 1980s. Originally conceived as rapid prototyping technology during the expansion phase of 3D CAD, early 3D printers rarely saw use outside of form modeling in well-funded R&D centers. The specialized labor requirements (3D CAD was still considered a rare skill in the 90s!) and high costs made it prohibitively expensive for the average prototype. As the technology matured through the 1990s and 2000s and early patents neared expiration, 3D printers proliferated through open source initiatives like RepRap and became commercially available. Around the same time, Maker culture made a comeback in the form of makerspaces and fablabs across the world, as whitecollar workers sought a tangible escape from spreadsheets and paperwork. A second wave of 3D printing entrepreneurs rose from the Maker movement, invoking imagery of the Star Trek replicator, and championing the democratization of manufacturing. 3D printing was hyped up in the media with promises of liberation from large corporations $200 vs $20,000: The Real Difference Between Hobbyist and Professional 3D Printers 1 and futuristic innovations that would change solution scalability. While some 3D printer the world; yet, by the time the bubble finally companies focused internally on cutting costs burst in 2015, most of the industry had not to improve the value of their product offerings, progressed beyond form models, home DIY others focused externally on new materials projects, and tabletop figurines.
    [Show full text]
  • University of California, Irvine
    UNIVERSITY OF CALIFORNIA, IRVINE Application of Fused Deposition Modeling and Stereolithography Processes for Fabrication of Point-of-Care Bioassay Platforms THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Materials Science and Engineering by Yang-chung Lee Thesis Committee: Professor Marc Madou, Chair Project Scientist Lawrence Kulinsky Professor James Earthman 2016 © 2016 Yang-chung Lee TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii ABSTRACT OF THE THESIS viii 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Background 2 1.2.1 History of Additive Manufacturing 2 1.2.2 CAD-file Preparation for Additive Manufacturing 3 1.2.3 Introduction to Additive Manufacturing Technologies – FDM and SLA 4 1.2.4 Advantages of Additive Manufacturing Techniques for the Microfluidic Device 8 1.3 Researches on FDM Microfluidics 9 1.4 Researches on SLA Microfluidics 12 1.5 Objective of Thesis 13 2. MALARIA – AB IMMUNOASSAY 15 3. FDM IMMUNOASSAY PROTOTYPES - DESIGN FOR ADDITIVE MANUFACTURING 17 3.1 Printing TPU with Airwolf AW3D HD2x (FDM) Printer 17 3.2 Difference between ABS and TPU Printing 21 ii 3.3 Design for TPU Prototypes 22 3.4 Minimize Surface Defects on the Prototypes 23 3.5 Design of TPU Prototypes for the Malaria-Ab Immunoassay 26 3.5.1 3D Printed ABS Device for the Malaria-Ab Immunoassay 26 3.5.2 First Generation of TPU Prototypes for the Malaria-Ab Immunoassay 27 3.5.3 Second Generation of TPU Prototypes for the Malaria-Ab Immunoassay 30 3.6 Discussion on TPU Immunoassay Prototypes 31 4.
    [Show full text]
  • Preliminary Component Integration Utilizing Rapid Prototyping Techniques Ken Cooper, NASA Marshall Space Flight Center Pat Salvail, IITRI
    Preliminary Component Integration Utilizing Rapid Prototyping Techniques Ken Cooper, NASA Marshall Space Flight Center Pat Salvail, IITRI Abstract employs an ultraviolet laser to selectively cure the epoxy into One of the most costly errors the shape desired. committed during the development of an 2. Selective Laser Sintering, a element to be used in the space industry powder-based process which is the lack of communication between uses a laser to melt cross design and manufacturing engineers. A sections of polymer or semi- very important tool that should be metallic powders into the utilized in the development stages by shape desired. both design and manufacturing 3. Laminated Object disciplines is rapid prototyping. Manufacturing, a solid-based Communication levels are intensified process which adheres layers with the injection of functional models of paper, plastic or composite that are generated from a drawing. and cuts each cross section with a laser. At the Marshall Space Flight 4. Fused Deposition Modeling, Center, this discipline is utilized on a another solid-based process more frequent basis as a manner by which extrudes a semi-molten which hardware may be tested for design thermoplastic through a and material compatibility. moving XY orifice to form the necessary shape. Background 5. Multi Jet Modeling builds solid wax patterns by printing layers Rapid prototyping in this text of hot wax directly through refers to a collective set of solid standard print jets. freeform fabrication technologies, which 6. Three Dimensional Printing build physical models directly from prints layers of binder into a computer aided design (CAD) data. The polymer powder matrix.
    [Show full text]