GSA 2010 Barton Poster R4.Ai
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington Division of Geology and Earth Resources Open File Report
RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1. -
Horse Heaven Hills, OR135-02
Year 2009 Inventory Unit Number/Name: Horse Heaven Hills, OR135-02 FORM I DOCUMENTATION OF BLM WILDERNESS INVENTORY FINDINGS ON RECORD: 1. Is there existing BLM wilderness inventory information on all or part of this area? No X (Go to Form 2) Yes (if more than one unit is within the area, list the names/numbers ofthose units.): a) Inventory Source:-------- b) Inventory Unit Name(s)INumber(s): _________ c) Map Name(s)INumber(s):_________ d) BLM District(s)/Field Office(s): ________ 2. BLM Inventory Findings on Record: Existing inventory information regarding wilderness characteristics (if more than one BLM inventory unit is associated with the area, list each unit and answer each question individually for each inventory unit): 1 Existing inventory information regarding wilderness characteristics : Inventory Source: ______________ Unit#/ Size Natural Outstanding Outstanding Supplemental Name (historic Condition? Solitude? Primitive & Values? acres) YIN YIN Unconfined YIN Recreation? YIN FORM2 Use additional pages as necessary DOCUMENTATION OF CURRENT WILDERNESS INVENTORY CONDITIONS a. Unit Number/Name: Horse Heaven Hills, OR135-02 (1) Is the unit of sufficient size? Yes ____ No_~x~-- The lands are approximately 6,557 acres of public lands managed by the Bureau of Land Management, Spokane District, Border Field Office. The lands are located in Benton County, Washington and are approximately 1 mile south ofthe community of Benton City. The public lands are adjacent to several small parcels of lands owned by the State of Washington. The remainder of the boundary is private land parcels. There are no private lands in-holdings. The lands are broken in smaller subunits by the roads and the powerline. -
Periodically Spaced Anticlines of the Columbia Plateau
Geological Society of America Special Paper 239 1989 Periodically spaced anticlines of the Columbia Plateau Thomas R. Watters Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D. C. 20560 ABSTRACT Deformation of the continental flood-basalt in the westernmost portion of the Columbia Plateau has resulted in regularly spaced anticlinal ridges. The periodic nature of the anticlines is characterized by dividing the Yakima fold belt into three domains on the basis of spacings and orientations: (1) the northern domain, made up of the eastern segments of Umtanum Ridge, the Saddle Mountains, and the Frenchman Hills; (2) the central domain, made up of segments of Rattlesnake Ridge, the eastern segments of Horse Heaven Hills, Yakima Ridge, the western segments of Umtanum Ridge, Cleman Mountain, Bethel Ridge, and Manastash Ridge; and (3) the southern domain, made up of Gordon Ridge, the Columbia Hills, the western segment of Horse Heaven Hills, Toppenish Ridge, and Ahtanum Ridge. The northern, central, and southern domains have mean spacings of 19.6,11.6, and 27.6 km, respectively, with a total range of 4 to 36 km and a mean of 20.4 km (n = 203). The basalts are modeled as a multilayer of thin linear elastic plates with frictionless contacts, resting on a mechanically weak elastic substrate of finite thickness, that has buckled at a critical wavelength of folding. Free slip between layers is assumed, based on the presence of thin sedimentary interbeds in the Grande Ronde Basalt separating groups of flows with an average thickness of roughly 280 m. -
The Missoula Flood
THE MISSOULA FLOOD Dry Falls in Grand Coulee, Washington, was the largest waterfall in the world during the Missoula Flood. Height of falls is 385 ft [117 m]. Flood waters were actually about 260 ft deep [80 m] above the top of the falls, so a more appropriate name might be Dry Cataract. KEENAN LEE DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING COLORADO SCHOOL OF MINES GOLDEN COLORADO 80401 2009 The Missoula Flood 2 CONTENTS Page OVERVIEW 2 THE GLACIAL DAM 3 LAKE MISSOULA 5 THE DAM FAILURE 6 THE MISSOULA FLOOD ABOVE THE ICE DAM 6 Catastrophic Flood Features in Eddy Narrows 6 Catastrophic Flood Features in Perma Narrows 7 Catastrophic Flood Features at Camas Prairie 9 THE MISSOULA FLOOD BELOW THE ICE DAM 13 Rathdrum Prairie and Spokane 13 Cheny – Palouse Scablands 14 Grand Coulee 15 Wallula Gap and Columbia River Gorge 15 Portland to the Pacific Ocean 16 MULTIPLE MISSOULA FLOODS 17 AGE OF MISSOULA FLOODS 18 SOME REFERENCES 19 OVERVIEW About 15 000 years ago in latest Pleistocene time, glaciers from the Cordilleran ice sheet in Canada advanced southward and dammed two rivers, the Columbia River and one of its major tributaries, the Clark Fork River [Fig. 1]. One lobe of the ice sheet dammed the Columbia River, creating Lake Columbia and diverting the Columbia River into the Grand Coulee. Another lobe of the ice sheet advanced southward down the Purcell Trench to the present Lake Pend Oreille in Idaho and dammed the Clark Fork River. This created an enormous Lake Missoula, with a volume of water greater than that of Lake Erie and Lake Ontario combined [530 mi3 or 2200 km3]. -
HHH Appraisal Study Phasei
PHASE 1 REPORT: HORSE HEAVEN WATER STORAGE APPRAISAL ASSESSMENT WRIA 31 Prepared for: WRIA 31 Planning and Advisory Committee Project No. 090045-009-01 August 15, 2012 Final Funded by Ecology Grant No. G1100215 + Prepared in collaboration with e a r t h w a t e r pect CONSULTING e a r t h + w a t e r Aspect Consulting, LLC 401 2nd Avenue S. Suite 201 Seattle, WA 98104 206.328.7443 www.aspectconsulting.com ASPECT CONSULTING Contents Executive Summary ...................................................................................... ES-1 1 Introduction .............................................................................................. 1-1 1.1 Phased Appraisal Approach .......................................................................1-2 1.2 Organization of Phase 1 Report .................................................................1-3 2 Assessment of Pumped Storage Potential (Alder and Switzler Reservoirs) ................................................................................................ 2-1 2.1 Description of Pumped Storage .................................................................2-1 2.2 Hydroelectric Potential ................................................................................2-2 2.2.1 Alder Reservoir .................................................................................. 2-3 2.2.2 Switzler Reservoir .............................................................................. 2-3 2.2.3 Potential Annual Power Production ................................................... -
Yakima Valley Sr Appellation 823 Exit 26 Selah
A B C D E F G H I J 1 1 SR WINERIES AND VINEYARDS OF THE 821 WASHINGTON Seattle Harrison 150 miles YAKIMA VALLEY SR APPELLATION 823 EXIT 26 SELAH N. Wenas YAKIMA VALLEY 82 YAKIMA Yakima Valley Wineries & Vineyards: Wilridge Selah Rd WINE COMMUNITY Vineyard, US EXIT Ackley Rd Gilbert EXIT 30 Yakima Wine Community Wineries Winery 12 Cellars WINERY LOCATION KEY 2 & Distillery W Powerhouse Rd EXIT 31 2 Zillah Wine Community Wineries 14 Hands Winery...........................G6 Dineen Vineyards............................ C4 Maison de Padgett Winery ............. C4 Tapteil Vineyard Winery...................I5 Naches Heights Rd AntoLin Wine Yakima Valley N 40th N Cellars Mon–Fri, 8:30a–5:00p Prosser Wine Community Wineries Airfield Estates.................................F6 Domanico Cellars .................. G6 & F6 Masset Winery.................................B3 Terra Blanca Winery.........................I5 2nd St 2nd Ehler Rd Ehler AntoLin Cellars............................... A2 Fortuity Cellars ................................F6 Milbrandt Vineyards.........................F6 Thurston Wolfe Winery..................F6 EXIT 33 Wilridge Summitview Yakima Red Mountain & Vicinity Wine Community Wineries Barrel Springs Winery.....................F5 Gilbert Cellars........................A2 & A3 Owen Roe .......................................B3 Treveri Sparkling Cellars..................B3 Vineyard Southard 9th St 9th 2nd Ave 2nd Chandler Reach Vineyards..............H6 Hightower Cellars.............................I5 Paradisos del Sol............................ -
Thesis, "Structure and Evolution of the Horse Heaven Hills in South
AN ABSTRACT OF THE THESIS OF Michael Curtis Hagood for the Master of Science in Geology presented February 21, 1985. Title: Structure-and Evolution of the Horse Heaven Hills in South-Central Washington. APPROVED BY MEMBERS OF THE THESIS COMMITTEE: Marvin H. Beeson, Chairman Michael L. Cummings Gilbert T. Benson Stephen P. Reidel The Horse Heaven Hills uplift in south-central Washington con- sists of distinct northwest and northeast trends which merge in the lower Yakima Valley. The northwest trend is adjacent to and parallels the Rattlesnake-Wallula alignment (RAW; a part of the Olympic-Wallowa lineament). The northwest trend and northeast trend consist of aligned or en echelon anticlines and monoclines whose axes are gener- ally oriented in the direction of the trend. At the intersection, La 2 folds in the northeast trend plunge onto and are terminated by folds of the northwest trend. The crest of the Horse Heaven Hills uplift within both trends is composed of a series of asymmetric, north vergent, eroded, usually double-hinged anticlines or monoclines. Some of these "major" anti- clines and monoclines are paralleled to the immediate north by lower- relief anticlines or monoclines. All anticlines approach monoclines in geometry and often change to a monoclinal geometry along their length. In both trends, reverse faults commonly parallel the axes of folds within the tightly folded hinge zones. Tear faults cut across the northern limbs of the anticlines and monoclines and are coincident with marked changes in the wavelength of a fold or a change in the trend of a fold. Layer-parallel faults commonly exist along steeply- dipping stratigraphic contacts or zones of preferred weakness in intraflow structures. -
Lake Missoula and Its Floods by Kendall L
Society for Range Management Lake Missoula and Its Floods By Kendall L. Johnson he city of Spokane lies astride the Spokane River, out of the earth over previous untold centuries. The winds some 40 miles from its origination near Coeur created dune-like deposits of variable orientation and depth d’Alene, Idaho. The convention center and that today make up fertile farmland in southeastern hotel, site of the 65th annual meeting of SRM, are Washington and adjacent Idaho. Bretz’s Flood followed the Tlocated right along the river, creating a beautiful and even path of the many earlier fl oods and recreated the effects over idyllic setting. These qualities make it even harder to imagine thousands of square miles in the Columbia Basin. These can a long-ago day when a miles-wide wall of water, measuring briefl y be considered in four major categories: 1) the chan- as much as 500 feet high, bore down on this site. Hours neled scablands, 2) the river canyon, 3) the Grand Coulee, before, a great ice dam on glacial Lake Missoula (present-day and 4) Lake Lewis. Clark Fork River) had failed. The dam was as much as 2,500 feet in height, impounded a lake up to 2,000 feet deep, The Channeled Scablands extended east in the intermontane valleys for 200 miles, and The enormous depth of the advancing front of water, covered some 3,000 square miles. It probably contained over 500 cubic miles of water, approximating half the volume of measured in the several hundreds of feet, moving at speeds Lake Michigan. -
This File Was Created by Scanning the Printed Publication
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions. -
Splay-Fault Origin for the Yakima Fold-And-Thrust Belt, Washington State 2 3 Thomas L
1 Splay-fault origin for the Yakima fold-and-thrust belt, Washington State 2 3 Thomas L. Pratt, United States Geological Survey, School of Oceanography, Box 357940, 4 University of Washington, Seattle, WA 98115 5 6 ABSTRACT 7 The Yakima fold-and-thrust belt (YFTB) is a set of anticlines above reverse faults in the 8 Miocene Columbia River Basalt (CRB) flows of Washington State. The YFTB is bisected by the 9 ~1100-km-long Olympic-Wallowa geomorphic lineament (OWL). There is considerable debate 10 about the origin and earthquake potential of the YFTB and OWL, which lie near six major dams 11 and a large nuclear waste storage site. Here I show that the trends of the YFTB anticlines relative 12 to the OWL match remarkably well the trends of the principal stresses determined from Linear 13 Elastic Fracture Mechanics (LEFM) modeling of the end of a vertical strike-slip fault. From this 14 comparison and the termination of some YFTB anticlines at the OWL, I argue that the YFTB 15 formed as splay faults caused by an abrupt decrease in the amount of strike-slip motion along the 16 OWL. If this hypothesis is correct, the OWL and YFTB are likely interconnected, deeply-rooted 17 structures capable of large earthquakes. 18 19 20 INTRODUCTION 21 The Yakima fold and thrust belt (YFTB) of central Washington State is a set of 22 prominent anticlines in the Miocene Columbia River Basalt flows (CRB; figure 1). The YFTB 23 anticlines form three distinct sets (Riedel et al., 1989 and 1994; Watters, 1989). -
Cultural Resources Report Cover Sheet
CULTURAL RESOURCES REPORT COVER SHEET DAHP Project Number: 2020-04-02572 Author: David Sheldon, M.S. Title of Report: Cultural Survey Report for the Proposed Laser Interferometer Gravitational-Wave Observatory STEM Exploration Center at Hanford near Richland, Benton County, Washington (HCRC#2020-600-004) Date of Report: May 2020 County(ies): Benton Section: 10, 11, 14 Township: 11 North Range: 27 East Quad: Horn Rapids Dam, WA 7.5’ Acres: 25.5 PDF of report submitted (REQUIRED) Yes Historic Property Inventory Forms to be Approved Online? Yes No Archaeological Site(s)/Isolate(s) Found or Amended? Yes No TCP(s) found? Yes No Replace a draft? Yes No Satisfy a DAHP Archaeological Excavation Permit requirement? Yes # No Were Human Remains Found? Yes DAHP Case # No DAHP Archaeological Site #: 45BN2067 • Submission of PDFs is required. • Please be sure that any PDF submitted to DAHP has its cover sheet, figures, graphics, appendices, attachments, correspondence, etc., compiled into one single PDF file. • Please check that the PDF displays correctly when opened. Revised 9-26-2018 Proposed Laser Interferometer Gravitational- Wave Observatory STEM Exploration Center at Hanford near Richland, Benton County, Washington Cultural Survey Report HCRC#2020-600-004 Final May 7, 2020 Prepared for: National Science Foundation Document No. (JETT) Cultural Survey Report HCRC#2020-600-004 Executive Summary The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a national facility for gravitational- wave research. LIGO is funded by the National Science Foundation (NSF) and operated by the California Institute of Technology (Caltech) and the Massachusetts Institute of Technology. The interferometer in Hanford, Washington (LIGO Hanford) is located on land owned by the United States and administered by the U.S. -
Em3966 1975.Pdf (889.3Kb)
EM 3966 October 1975 The Vegetahle and Specialty Crop Regions of Eastern Washington CONTENTS Introduction . .3 Physical Features of Eastern Washington .4 Climate of Eastern Washington . 5 Soils and Water of Eastern Washington .6 The Vegetable and Specialty Crop Industries of Eastern Washington .7 Location of Research and Extension Centers . 8 Description of Vegetable and Specialty Crop Regions .9 The Palouse Hills . , . 10 Columbia Basin Region 10 Kittitas Valley . 11 Klickitat-Horse Heaven Hills 11 Touchet-Walla Walla Valleys 12 Spokane Valley 12 Yakima Valley 13 Appendix 14 Prepared by Robert E. Thornton, Extension horticulturist, and Arthur L. Antonelli, Extension entomology assistant, Washington State University, Pullman. COOPERATIVE EXTENSION SERVICE • COLLEGE OF AGRICULTURE • WASHINGTON STATE UNIVERSITY • PULLMAN In cooperation with the United States Department of Agriculture luued in furtherance of the Acts of May 8 and June 30, 1914, by the Washington State University Cooperative Extension Service, J. 0. Young, Director INTRODUCTION apples, sweet cherries, hops, spearmint, and dry peas. It ranked second in fall potatoes, pears, The state of Washington is located in the most green peas, asparagus, peppermint, and alfalfa northwest comer of the United States. It is seed, and third in strawberries, grapes, and bounded by the Pacific Ocean on the west, the Merion Kentucky bluegrass. Washington's rank Canadian province of British Columbia on the in the production of many other crops was north, the state of Idaho on the east, and the nearly as high. state of Oregon on the south. The Columbia River makes much of this southern boundary. The city of Spokane, near the Idaho border, is the major center of commerce in eastern Washington is one of the smallest states west of Washington.