Rapid Evaluation of Sediment Budgets

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Evaluation of Sediment Budgets See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/247332796 Rapid Evaluation of Sediment Budgets Book · January 1996 CITATIONS READS 211 250 2 authors: Leslie Margaret Reid Thomas Dunne US Forest Service University of California, Sa… 44 PUBLICATIONS 1,668 178 PUBLICATIONS 13,713 CITATIONS CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Modeling of hillslope evolution by water erosion View project All content following this page was uploaded by Thomas Dunne on 17 September 2015. The user has requested enhancement of the downloaded file. Leslie M. Reid & Thomas Dunne RAPID EVALUATION OF SEDIMENT BUDGETS GeoEcology paperback Die Deutsche Bibliothek - CIP Einheitsaufnahme Reid, Leslie M.: Rapid evaluation of sediment budgets / Leslie M. Reid & Thomas Dunne. - Reiskirchen : Catena Verl., 1996 (GeoEcology paperback) ISBN 3-923881-39-5 NE: Dunne, Thomas: © Copyright 1996 by CATENA VERLAG GMBH, 35447 Reiskirchen, Germany All rights are reserved. No part of this publication may be reproduced. stored in a retrieval system or transmitted in any form or by any means, electronic. mechanical, photocopying. recording or otherwise, without prior permission of the publisher. This publication has been registered with the Copyright Clearance Center, Inc. Submission of an article for publication implies the transfer of the copyright from the author(s) to the publisher. ISBN 3-923381-39-5 Table of Contents List of Figures List of Tables List of Boxes List of Symbols Abstract Acknowledgements 1 INTRODUCTION 1 1.1 Definition and description 3 1.2 Relation to other methods 5 1.3 Misconceptions 6 1.4 How to use this volume 7 2 PROCEDURE FOR SEDIMENT BUDGET CONSTRUCTION 9 Step 1. Define the problem 9 Step 2. Acquire background information 10 Step 3. Subdivide area 13 Step 4. Interpret aerial photographs 14 Step 5. Conduct fieldwork 16 Step 6. Analyze data 19 Step 7. Check results 20 3 EVALUATING SEDIMENT PRODUCTION FROM HILLSLOPES AND CHANNELS 20 3.1 Overview of shillslope sediment production 22 3.2 Identification of sediment sources 25 3.3 Rates of discrete erosion processes 27 3.3.1 Landslides 27 3.3.2 Debris flows 30 3.3.3 Gullies 31 3.3.4 Treethrow 34 3.3.5 Animal burrows 35 3.4 Rates of chronic erosion processes 36 3.4.1 Sheetwash erosion 36 3.4.2 Wind erosion 41 3.4.3 Dry ravel 43 3.4.4 Bank erosion 43 3.5 Other hillslope sediment transport processes 44 3.6 Sediment delivery from hillslopes to channels 47 3.7 Grain-size composition 50 3.8 Calculation of long-term rates 52 3.9 Predicting future erosion rates 59 4 EVALUATING SEDIMENT TRANSPORT AND STORAGE IN CHANNELS 60 4.1 Overview of channel processes 62 4.2 Characterization of channels 63 4.2.1 Qualitative characterization 63 4.2.2 Selection of measurement sites 65 4.2.3 Slope measurements 67 4.2.4 Channel geometry measurements 68 4.2.5 Channel roughness 69 4.2.6 Definition of flow characteristics 70 4.2.7 Identification of channel changes 71 4.3 Grain-size distributions 73 4.4 Initiation of bed-material transport 83 4.5 Determination of scour depths 90 4.6 Sediment transport rates in channels 92 4.6.1 Sediment transport equations 93 4.6.2 Comparison of transport predictions and measurements 94 4.6.3 Applying sediment transport equations 106 4.6.4 Use of field observations 113 4.6.5 Evaluation of the washload component 114 4.6.6 Limits of sediment transport predictions 116 4.7 Sediment storage 116 4.7.1 Identifying storage elements in channels 117 4.7.2 Defining trends in channel-related sediment storage 118 4.8 Computations of sediment yield 123 5 EXAMPLES OF SEDIMENT BUDGET APPLICATIONS 124 5.1 West slope of the Sierra Nevada, Californai 127 5.2 Shinyanga Region, Tanzania 130 5.3 Snoqualmie River basin, Washington 132 5.4 Olympic Peninsula rivers, Washington 133 6 CONCLUSIONS 135 APPENDIX 1. GLOSSARY 138 APPENDIX 2. ADDITIONAL READING AND USEFUL COMPENDIA 144 Background information 144 Manuals and descriptions of particular methods 146 Data compendia 147 REFERENCES 149 List of Figures 1. Simple flowchart of sediment transport on hillslopes and in channels 4 2. Definition of subareas based on bedrock and vegetation type 13 3. Sequential aerial photographs 15 4. Examples of increasingly complex flowcharts 17 5. Flowchart that indicates typical relation between sediment mobilization, production, deposition, and yield 20 6. Examples of external growth nodes 28 7. Graph of cumulative landslide volume as a function of age of the landslide 29 8. Flowchart indicating the relation of sediment transported by debris flows to sediment produced from hillslopes 31 9. Relation between gully cross-sectional area and gully width 32 10. Use of root exposure and erosion mounds to estimate surface erosion rates 37 II. Correlation between erosion-intensity class and measured recent rates of erosion in Kenya 41 12. Grain-size distribution of average annual sediment yields from 6 small catchments 52 13. Calculation of long-term landsliding rate 54 14. The error function (erf) of Urn 55 15. Landslide frequency versus road age 58 16. Components of the sediment load in a channel 62 17. Example of the relation between low-flow and high-flow water-surface profiles 69 18. Grain-size distribution of colluvium in hollows and alluvium from channels in a 4th-order basin 74 19. Grain-size distributions of channel sediment at River Mile 22 of the Snoqualmie river, Washington 75 20. Contour map of bed elevations in a meander 81 21. Percent of a channel-bed pavement that is intermittently mobile at various shear stresses 87 22. Comparisons of shear stress for initial motion of particles of various sizes predicted using initial-motion equations and those measured by Milhouse 88 23. Phases in the erosion of landslide deposits or other sediment stored behind dams of organic debris 120 24. Flow chart illustrating relationships between various processes of colluvium transport into small streams studied in the N. Fork Kings River basin 128 25. Variation along the Humptulis River of average annual rates of bedload transport 135 List of Tables 1. Recent examples of rapidly constructed sediment budgets 2 2. Common problems addressed by hillslope-based sediment budgets 21 3. Common sources of sediment affected by various land uses 26 4. Ordinal-scale classification scheme for sheetwash erosion severity 40 5. Erosion measurements on roads and paths 42 6. Examples of questions concerning channels that can be addressed by sediment budgeting 61 7. Equations for initiation of motions 85 8. Sediment transport equations A. Bedload 94 B. Total bed-material load or suspended bed-material load 95 9. Tests of sediment transport equations in natural channels A. Gravel-bedded channels 96 B. Sand-bedded channels 97 10. Histograms of modal values for sediment load equations 99 II. Potentially useful sediment transport equations for channels of various types 100 12. Characteristics of streams used to test sediment transport formulas A. Gravel-bedded channels 102 B. Sand-bedded channels 103 13. Studies that compare transport equations with data from natural channels 104 14. Expected proportions of bedload in total load 114 15. Sediment budgeting studies 125 16. Results of selected sediment budget studies 126 17. Comparisons of measured sediment yields with those calculated using sediment budgets 137 List of Boxes 1. Typical resource assessment problem 1 2. Sediment budget definition 3 3. Is a new method applicable to your problem? 8 4. Steps in sediment budget construction 9 5. Acquiring aerial photographs and maps 12 6. Evidence for activity of erosion and sediment transport processes 23 7. Indicators of surface erosion 24 8. Sample calculation of soil creep input 46 9. Recognizing sediment deposits 48 10. Calculating total sediment from a grain size trapped 49 11. Why you can't describe the world from your desk 51 12. Calculation of long-term landslide frequencies 56 13. Selecting a useful channel reach for analysis 66 14. Recognizing bankfull stage 68 15. Considerations in the use of historical evidence 72 16. Evidence of channel bed stability 75 17. A rapid field method for sieving gravel 76 18. Determining the required sample size for a pebble count 79 19. Example of a calculation of required sample size for 0 50 80 20. How comparisons are noted in Table 9 98 21. Defining the zone of active transport 107 22. Checklist for applying sediment transport equations 110 23. Evidence for channel aggradation 121 List of Symbols a constant a' factor in Hey's velocity equation A channel cross-sectional area Ab cross-sectional area of bankfull channel Aw area of catchment Awf area of catchment: future Awp area of catchment: past Agf agriculture factor in bank erosion equation b constant C constant dmax maximum depth of scour or fill in channel df cross-sectional average of fill depth in channel ds cross-sectional average of scour depth in channel D particle diameter Di particle diameter of interest Dg geometric mean of particle diameters D, diameter of tree D50sub median particle diameter in subsurface D IO median particle diameter D84 particle diameter than which 84% of the grains are smaller DD drainage density erf error function E(y) expected value ofy, given probability density of fiY) f Darcy-Weisbach friction factor fly) probability density of y g acceleration due to gravity (approximately 980 cm/s2) h flow depth he flow depth at which particle begins to move h.n height of root mound h.nax maximum flow depth H, hydraulic
Recommended publications
  • Daniel D. Richter CV 2021
    2020 Daniel D. Richter, Jr. Nicholas School of the Environment Box 90328, A205, LSRC Duke University Durham, North Carolina 27708-0328 USA Office Tel 919-613-8031; Cell 919-475-7939, Fax 919-684-8741 [email protected], @suelos2010 http://criticalzone.org/calhoun/ h-index 66, i10-index 155, citations 15,369 Education Ph.D. Soil Science & Ecology, Minor Statistics, Duke University, Durham, 1980 Graduate coursework: Soil Science, Statistics, Ecology, and Forestry at Mississippi State and North Carolina State Universities, 1976-77 B.A., Philosophy, Lehigh University, Bethlehem, PA, 1973 Employment Full and Associate Professor of Soils and Ecology, Nicholas School of the Environment, 1987-present Visiting Associate Professor of Soils, Instituto Tecnologico de Costa Rica, Cartago, 1993-4 Assistant Professor of Soils and Watershed Management, School of Natural Resources, University of Michigan, 1984-87 Research Associate, Environmental Sciences Division, Oak Ridge National Laboratory, 1980-84 Leadership Lead-PI with 15 Co-Is, NSF and USFS Calhoun Critical Zone Observatory, 2013- present Chair, National CZO PI Committee of the nine USA CZOs, 2015 PI and Director, Long-Term Calhoun Experimental Forest Soil-Ecosystem Experiment, 1988-present PI and Director, International Network of Long-Term Soil-Ecosystem Experiments, 2005-present, (250 studies worldwide) Member, International Commission of Stratigraphy’s Working Group on the Anthropocene, 2012-present Co-Founder and Chair Working Groups on Soil Change, International Union of Soil Sciences and
    [Show full text]
  • Soil and Land Use Catenas. a Case Study of Amani Sub-Catchment, East Usambara Mountains, Tanzania
    INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SUPERVISOR Dr W. Siderius CO-SUPERVISOR D. Shrestha MSc Submitted as a partial fulfilment of the requirements for the degree of Master of Science in Soil survey at the International Institute for Aerospace survey and Earth Sciences (ITC), Enschede, The Netherlands Degree Assessment Board Prof. Dr. J.A. Zinck Dr. M.A. Mulders (external examiner) Drs. L.A. Van Sleen Dr. W. Siderius INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES ITC ENSCHEDE THE NETHERLANDS ACKNOWLEDGEMENT This study could not have been successfully completed without appreciable contribution of many people who in one way or another rendered their painstaking efforts. I am extremely grateful for the support extended to me. Just to mention a few are:- Dr. W. Siderius, my supervisor and director of studies for SOL2 for his appreciable help, constructive criticism, constant incouragement and guidence and his petience in dealing with me. Mr Drhuba Shrestha, my co-supervisor for his support and constructive comments and ideas. Professor A. J. Zinck, the head of soil survey division for his advice and encouragements. Ir E.Bergsma, for his support during and after fieldwork. Ir Van Sleen also for his support during and after field work. Also I would like to thank all soil survey division staff for their academic and moral support I received from them during the whole period.
    [Show full text]
  • Rain Sim Drop Sizes, Distributions and Energies
    1 DRAFT 3/4/2011 2 Rainfall Simulation Studies – A Review of Designs, Performance and 3 Erosion Measurement Variability 4 5 Mark E. Grismer 6 Depts. of Hydrologic Sciences and Biological & Agricultural Engineering 7 UC Davis 8 9 Table of Contents pages 10 INTRODUCTION 1-2 11 12 EROSION PROCESSES – Model Development 2-16 13 Universal Soil Loss Equation (USLE) 4-8 14 Water Erosion & Prediction Project (WEPP) 8-12 15 Characterizing Erosion - Continued Developments 12-16 16 17 NATURAL & SIMULATED RAINFALL ENERGIES AND INTENSITIES 16-25 18 19 RAINFALL SIMULATOR (RS) DESIGNS 26-57 20 Basic RS Designs – Overview 26-29 21 Table AA. Summary of RS performance characteristics 29-34 22 Basic RS Designs –Drop sizes, Distribution & Intensity Uniformity 23 Drop-former type RSs 35-37 24 Spray-nozzle type RSs 37-46 25 Basic RS Designs –Drop-size Distribution & Intensity Effects on KEs 46-57 26 27 FIELD RS METHODOLOGIES – Effects of measurement methods & plot conditions 28 57-72 29 APPLICABILITY OF FIELD RS-DERIVED EROSION RATES – Up-scalability? 30 72-76 31 32 Recent Rainfall Simulation Studies in the Tahoe Basin 76-83 33 34 SUMMARY & CONCLUSIONS 83-87 35 36 REFERENCES 88-101 37 38 0 39 INTRODUCTION 40 The unpredictability, infrequent and random nature of natural rainfall makes 41 difficult the study of its effects on soils while rainfall is occurring. The use of rainfall 42 simulators (RSs) and perhaps runoff simulators for rill erosion can overcome some of 43 these difficulties, enabling a precise, defined storm centrally located over runoff 44 measurement “frames”.
    [Show full text]
  • Treatise in Geomorphology: Overview of Weathering and Soils
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Treatise on Geomorphology, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Pope G.A. (2013) Overview of Weathering and Soils Geomorphology. In: John F. Shroder (ed.) Treatise on Geomorphology, Volume 4, pp. 1-11. San Diego: Academic Press. © 2013 Elsevier Inc. All rights reserved. Author's personal copy 4.1 Overview of Weathering and Soils Geomorphology GA Pope, Montclair State University, Montclair, NJ, USA r 2013 Elsevier Inc. All rights reserved. 4.1.1 Previous Major Works in Weathering and Soils Geomorphology 1 4.1.1.1 Relevant Topics not Covered in this Text 3 4.1.2 What Constitutes Weathering Geomorphology? 5 4.1.2.1 Weathering Voids 5 4.1.2.2 Weathering-Resistant Landforms 6 4.1.2.3 Weathering Residua: Soils and Sediments 6 4.1.2.4 Weathered Landscapes 6 4.1.3 Major Themes, Current Trends, and Overview of the Text 6 4.1.3.1 Synergistic Systems 7 4.1.3.2 Environmental Regions 7 4.1.3.3 Processes at Different Scales 8 4.1.3.4 Soils Geomorphology, Regolith, and Weathering Byproducts 8 4.1.4 Conclusion 9 References 9 Abstract Weathering and soil geomorphology constitutes a specific subfield of earth surface processes, equally important in the process system in creating the surface landscape.
    [Show full text]
  • Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction, Distribution Or Commercial Use
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Treatise on Geomorphology, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Schaetzl R.J. Catenas and Soils. In: John F. Shroder (Editor-in-chief), Pope, G.A. (Volume Editor). Treatise on Geomorphology, Vol 4, Weathering and Soils Geomorphology, San Diego: Academic Press; 2013. p. 145-158. © 2013 Elsevier Inc. All rights reserved. Author's personal copy 4.9 Catenas and Soils RJ Schaetzl, Michigan State University, East Lansing, MI, USA r 2013 Elsevier Inc. All rights reserved. 4.9.1 Introduction 146 4.9.2 The Catena Concept 146 4.9.3 Elements and Characteristics of Catenas 148 4.9.3.1 Summits 148 4.9.3.2 Shoulders and Free Faces 149 4.9.3.3 Backslopes 149 4.9.3.4 Footslopes 149 4.9.3.5 Toeslopes 149 4.9.3.6 Catenary Variation as Affected by Sediments and Climate 150 4.9.4 Soil Variation on Catenas – Why? 150 4.9.5 Soil Drainage Classes along Catenas 154 4.9.6 The Edge Effect 155 4.9.7 Summary 156 References 156 Glossary Hydrosequence A sequence of related soils, usually along Catena A sequence of soils along a slope, having di- a slope, that differ, one from the other primarily with regard fferent characteristics due to variation in relief, ele- to wetness.
    [Show full text]
  • Nrs 2015 Gillin 001.Pdf
    Published March 13, 2015 Hydropedology Symposium: 10 Years Later and 10 Years into the Future Mapping of Hydropedologic Spatial Patterns in a Steep Headwater Catchment Cody P. Gillin A hydropedologic approach can be used to describe soil units affected by Dep. of Forest Resources and distinct hydrologic regimes. We used field observations of soil morphol- Environmental Conservation ogy and geospatial information technology to map the distribution of five Virginia Tech hydropedologic soil units across a 42-ha forested headwater catchment. Soils Blacksburg, VA 24061 were described and characterized at 172 locations within Watershed 3, the hydrologic reference catchment for the Hubbard Brook Experimental Forest, current address: New Hampshire. Soil profiles were grouped by presence and thickness of Trout Unlimited genetic horizons. Topographic and bedrock metrics were used in a logistic 103 Palouse Street, Suite 14 Wenatchee, WA 98801 regression model to estimate the probability of soil group occurrence. Each soil group occurred under specific settings that influence subsurface hydro- Scott W. Bailey* logic conditions. The most important metrics for predicting soil groups were US Forest Service Euclidean distance from bedrock outcrop, topographic wetness index, bed- Northern Research Station rock-weighted upslope accumulated area, and topographic position index. 234 Mirror Lake Road Catchment-scale maps of hydropedologic units highlight regions dominated North Woodstock, NH 03262 by lateral eluviation or lateral illuviation and show that only about half the catchment is dominated by podzolization processes occurring under vertical Kevin J. McGuire percolation at the pedon scale. A water table map shows the importance of Virginia Water Resources Research near-stream zones, typically viewed as variable source areas, as well as more Center distal bedrock-controlled zones to runoff generation.
    [Show full text]
  • Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models
    EPA/600/R-03/139 September 2003 Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models By Latif Kalin Oak Ridge Institute for Science and Education Cincinnati, Ohio 45268 and Mohammed M. Hantush National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development funded the research described here. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. This research was supported in part by an appointment to the Post Doctoral Research Program at the National Risk Management Research Laboratory, administered by the Oak Ridge Institute for Science and Education through Interagency Agreement No DW89939836 between the U.S. Department of Energy and the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.
    [Show full text]
  • Soil Moisture Modelling Using TWI and Satellite Imagery in the Stockholm Region
    Soil moisture modelling using TWI and satellite imagery in the Stockholm region Jan Haas Master’s of Science Thesis in Geoinformatics TRITA-GIT EX 10-001 School of Architecture and the Built Environment Royal Institute of Technology (KTH) 100 44 Stockholm, Sweden March 2010 TRITA-GIT EX 10-001 ISSN 1653-5227 ISRN KTH/GIT/EX--10/001-SE Abstract Soil moisture is an important element in hydrological land-surface processes as well as land- atmosphere interactions and has proven useful in numerous agronomical, climatological and meteorological studies. Since hydrological soil moisture estimates are usually point-based measurements at a specific site and time, spatial and temporal dynamics of soil moisture are difficult to capture. Soil moisture retrieval techniques in remote sensing present possibilities to overcome the abovementioned limitations by continuously providing distributed soil moisture data at different scales and varying temporal resolutions. The main purpose of this study is to derive soil moisture estimates for the Stockholm region by means of two different approaches from a hydrological and a remote sensing point of view and the comparison of both methods. Soil moisture is both modelled with the Topographic Wetness Index (TWI) based on digital elevation data and with the Temperature‐Vegetation Dryness Index (TVDI) as a representation of land surface temperature and Normalized Difference Vegetation Index (NDVI) ratio. Correlations of both index distributions are investigated. Possible index dependencies on vegetation cover and underlying soil types are explored. Field measurements of soil moisture are related to the derived indices. The results indicate that according to a very low Pearson correlation coefficient of 0.023, no linear dependency between the two indices existed.
    [Show full text]
  • CATENA an Interdisciplinary Journal of Soil Science - Hydrology - Geomorphology Focusing on Geoecology and Landscape Evolution
    CATENA An Interdisciplinary Journal of Soil Science - Hydrology - Geomorphology focusing on Geoecology and Landscape Evolution AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 0341-8162 DESCRIPTION . Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center AUDIENCE . Soil Scientists, Hydrologists, Geomorphologists. IMPACT FACTOR . 2020: 5.198 © Clarivate Analytics Journal Citation Reports 2021 AUTHOR INFORMATION PACK 26 Sep 2021 www.elsevier.com/locate/catena 1 ABSTRACTING AND INDEXING . Engineering Village - GEOBASE EMBiology Science Citation Index Current Contents - Agriculture, Biology & Environmental Sciences Research Alert Direct Web of Science Focus On: Global Change Chemical Abstracts Current Geographical Publications Dokumentation Wasser Elsevier BIOBASE Scopus EDITORIAL BOARD .
    [Show full text]
  • Sediment Transport in Coastal Waters
    Water | Special Issue : Sediment Transport in Coastal Waters http://www.mdpi.com/journal/water/special_issues/coastal_waters Special Issue "Sediment Transport in Coastal Waters" A special issue of Water (/journal/water) (ISSN 2073-4441). Deadline for manuscript submissions: closed (30 June 2017) Special Issue Editor Guest Editor Dr. Sylvain Ouillon Institut de Recherche Pour le Développement (IRD), LEGOS, Université de Toulouse, 14 av. Edouard Belin, 31400 Toulouse, France Website (http://www.legos.obs-mip.fr/ouillon) | E-Mail () Interests: sediment dynamics, sediment processes; watershed; estuaries; coastal oceanography; effects of climate change and human activity on sediment budget; ocean color in coastal waters and applications; numerical modeling Special Issue Information Dear Colleagues, Globally, while land erosion has increased in the last decades, sediment input to the ocean has decreased. Sediment transport and distribution at the land-ocean interface has huge impacts on morphodynamics of estuaries, deltas and coastal zones, on water quality (and related issues such as aquaculture), on navigation and harbor capability, on recreation areas, etc. Scientific objectives must be achieved to deepen our knowledge on processes based on field surveys, modeling, space observation or experiments in laboratory, to refine the sediment budget (bedload and suspension) between compartments, and to improve our observation and modelling capacities. Sediment transport which is mainly driven by varying dynamical forcings (currents, tides, wind, waves, turbulence, stratification, density currents, etc.) in the estuary, in the ROFI zone, on the shelf or in canyons may also be affected by chemical and biological processes. In this Special Issue, we invite scientists working on different aspects of sediment transport, in muddy, sandy or mixed environments, to share their most recent results and give reviews or examples encompassing different aspects of sediment transport in coastal zones at different scales.
    [Show full text]
  • The Phosphorus Concentration of Common Rocks—A Potential Driver of Ecosystem P Status
    Plant Soil DOI 10.1007/s11104-012-1490-2 REGULAR ARTICLE The phosphorus concentration of common rocks—a potential driver of ecosystem P status Stephen Porder & Sohini Ramachandran Received: 21 June 2012 /Accepted: 3 October 2012 # Springer Science+Business Media Dordrecht 2012 Abstract (several alkali basalts). Median P was significantly Background Soil phosphorus (P) availability can be an lower in common silica-rich rocks (e.g. granite - important regulator of ecosystem processes. Changes in 436 ppm) and higher in common iron-rich rocks (e.g. P availability over time have long been studied, but the andesite - 1,000 ppm). In sedimentary rocks, which P concentration of soil parent materials—which deter- make up 70 % of the ice-free land surface, median P mines ecosystem P concentration at the onset of soil was highest in mudstone (1,135 ppm) and decreased formation—have never been systematically explored. with increasing grainsize (siltstone-698 ppm, Here we ask two questions: 1) how does P concentration sandstone-500 ppm). Where soil P and parent material vary among soil parent materials? and 2) under what P were measured in the same site, parent material P range of conditions do those differences influence soil P explained 42 % of the variance in total soil P (n062), concentration? and explanatory power was higher for sites with sim- Methods We used the Earthchem webportal to com- ilar climate. pile the P concentration of 263,539 rocks. We then Conclusion The variation in P concentration among gathered data from 62 sites (MAT ranging from 200– common rock types is on a comparable scale to the 5,000 mmyr-1 and soil age from 0.3–4,100 ky) and changes in total P, and several P pools, over long-term assessed the correlation between rock and soil P soil development.
    [Show full text]
  • The Pedogenesis of Soil Derived from Carbonate Rocks Along a Climosequence in a Subtropical Mountain, China
    Article The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China Jin Hu 1, En Ci 1,2,*, Song Li 1, Maoshan Lian 1,3 and Shouqin Zhong 1,2 1 Key Laboratory of Eco-Environments in Three Gorges Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; [email protected] (J.H.); [email protected] (S.L.); [email protected] (M.L.); [email protected] (S.Z.) 2 State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China 3 Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] Abstract: Revealing the pedogenesis of soil on carbonate rocks is a key step in determining the boundaries of soil types along a climosequence. However, related research is lacking for a subtropical mountain. In this study, eight pedons were sampled across an elevation gradient (789–2322 m) having large variation in mean annual precipitation (MAP) (1189–1764 mm) and mean annual temperature (MAT) (5.7–14.9 ◦C). General processes were performed, including physical, chemical, and morpho- logical characterizations, X-ray diffraction (XRD), total elements’ content, and soil classification of the carbonate rock. In the climo-toposequence, the illite had been transformed into illite-smectite ◦ below 1300–1500 m of elevation, 1300–1370 mm of MAP, and above 10.5–11.5 C of MAT, and into vermiculite above this climate. These findings indicated that the effects of temperature on soil Citation: Hu, J.; Ci, E.; Li, S.; Lian, mineral transformation had weakened with the gradual increases in elevation.
    [Show full text]