Article The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China Jin Hu 1, En Ci 1,2,*, Song Li 1, Maoshan Lian 1,3 and Shouqin Zhong 1,2 1 Key Laboratory of Eco-Environments in Three Gorges Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China;
[email protected] (J.H.);
[email protected] (S.L.);
[email protected] (M.L.);
[email protected] (S.Z.) 2 State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China 3 Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China * Correspondence:
[email protected] Abstract: Revealing the pedogenesis of soil on carbonate rocks is a key step in determining the boundaries of soil types along a climosequence. However, related research is lacking for a subtropical mountain. In this study, eight pedons were sampled across an elevation gradient (789–2322 m) having large variation in mean annual precipitation (MAP) (1189–1764 mm) and mean annual temperature (MAT) (5.7–14.9 ◦C). General processes were performed, including physical, chemical, and morpho- logical characterizations, X-ray diffraction (XRD), total elements’ content, and soil classification of the carbonate rock. In the climo-toposequence, the illite had been transformed into illite-smectite ◦ below 1300–1500 m of elevation, 1300–1370 mm of MAP, and above 10.5–11.5 C of MAT, and into vermiculite above this climate. These findings indicated that the effects of temperature on soil Citation: Hu, J.; Ci, E.; Li, S.; Lian, mineral transformation had weakened with the gradual increases in elevation.