Treatise in Geomorphology: Overview of Weathering and Soils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Daniel D. Richter CV 2021
2020 Daniel D. Richter, Jr. Nicholas School of the Environment Box 90328, A205, LSRC Duke University Durham, North Carolina 27708-0328 USA Office Tel 919-613-8031; Cell 919-475-7939, Fax 919-684-8741 [email protected], @suelos2010 http://criticalzone.org/calhoun/ h-index 66, i10-index 155, citations 15,369 Education Ph.D. Soil Science & Ecology, Minor Statistics, Duke University, Durham, 1980 Graduate coursework: Soil Science, Statistics, Ecology, and Forestry at Mississippi State and North Carolina State Universities, 1976-77 B.A., Philosophy, Lehigh University, Bethlehem, PA, 1973 Employment Full and Associate Professor of Soils and Ecology, Nicholas School of the Environment, 1987-present Visiting Associate Professor of Soils, Instituto Tecnologico de Costa Rica, Cartago, 1993-4 Assistant Professor of Soils and Watershed Management, School of Natural Resources, University of Michigan, 1984-87 Research Associate, Environmental Sciences Division, Oak Ridge National Laboratory, 1980-84 Leadership Lead-PI with 15 Co-Is, NSF and USFS Calhoun Critical Zone Observatory, 2013- present Chair, National CZO PI Committee of the nine USA CZOs, 2015 PI and Director, Long-Term Calhoun Experimental Forest Soil-Ecosystem Experiment, 1988-present PI and Director, International Network of Long-Term Soil-Ecosystem Experiments, 2005-present, (250 studies worldwide) Member, International Commission of Stratigraphy’s Working Group on the Anthropocene, 2012-present Co-Founder and Chair Working Groups on Soil Change, International Union of Soil Sciences and -
2009 Medals & Awards Mary C. Rabbitt History of Geology
2009 MEDALS & AWARDS MARY C. RABBITT emeritus since 2004. During his time at But there is more. As he is credited Calvin he was for a year a Fellow at the to be in several web sites, he is a noted HISTORY OF Calvin Center for Christian Scholarship. conservative evangelical Christian who is GEOLOGY AWARD He is a member of GSA, the Mineralogical also a geologist—and is a fine example of Society of America, the American Scientific both. As such, he has access to venues that Presented to Davis A. Young Affiliation, the Affiliation of Christian few of us can address, and is a spokesman Geologists, of which he has been president, for our science with a unique authority. His and the International Commission on the reviews of important books in the history of History of the Geological Sciences. geology speak to a wider audience than many In his long teaching career, I’m sure of us can reach. Dave will tell us more of his Dave has steered many a young person to journey. The Rabbitt Award is most fitting geology, and his department has just instituted recognition of Davis Young. a student Summer Research Fellowship in his name. He co-led a course on Hawaiian geology in the best of places, Hawaii itself. Response by Davis A. Young Reading the program for that, I envy the My profoundest gratitude to the History students who were able to take part in it. With of Geology Division for bestowing this student help, he has also assisted with the honor on me. -
History of Geology
FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth. -
"Erosion,' Surfaces Of" ' '" '"
· . ,'.' . .' . ' :' ~ . DE L'INSTITUTNATIONAL ' /PQi[JRJl.'El'UDJiAC;RO,NU1VII,QlUE, DU CONGO BELGE , , (I. N. E.A: C.) "EROSION,' SURFACES OF" ' '" '""",,,U ,,"GENTRALAFRICANINTERIOR' ,HIGH PLATEAUS" 'T.OCICAL SURVEYS ,BY Robert V. RUHE Geomorphologist ECA ' INEAC Soil Mission Belgian Congo. , SERIE SCIENTIFIQUE N° 59 1954 BRITISH GEOLOGICAL SURVEY 11111' IIII II IIIJ '11 III If II I 78 0207537 9 EROSION SURF ACES OF CENTRAL AFRICAN INTERIOR HIGH PLATEAUS I PUBLICATIONS DE L'INSTITUT NATIONAL POUR L'ETUDE AGRONOMIQUE DU CONGO BELGE I I (1. N. E.A. C.) ! I EROSION SURFACES OF CENTRAL AFRICAN INTERIOR HIGH PLATEAUS BY Robert V. RUHE Gcomorphologist ECA ' INEAC Soil Mission Belgian Congo. Ij SERIE SCIENTIFIQUE N° 59 1954 CONTENTS Abstract 7 'Introduction 9 Previous work. 12 Geographic Distribution of Major Erosion Surfaces 12 Ages of the Major Erosion Surfaces 16 Tertiary Erosion Surfaces of the Ituri, Belgian Congo 18 Post-Tertiary Erosion Surfaces of the Ituri, Belgian Congo 26 Relations of the Erosion Surfaces of the Ituri Plateaus and the Congo Basin 33 Bibliography 37 ILLUSTRATIONS FIG. 1. Region of reconnaissance studies. 10 FIG. 2. Areas of detailed and semi-detailed studies. 11 FIG. 3. Classification of erosion surfaces by LEPERsONNE and DE HEINZELlN. 14 FIG. 4. Area-altitude distribution curves of erosion surfaces of Loluda Watershed. 27 FIG. 5. Interfluve summit profiles and adjacent longitudinal stream profiles in Loluda Watershed . 29 FIG. 6. Composite longitudinal stream profile in Loluda Watershed. 30 FIG. 7. Diagrammatic explanation of cutting of Quaternary surfaces- complex (Bunia-Irumu Plain) . 34 PLATES I Profiles of end-Tertiary erosion surface. -
Petrology, Mineralogy, and Geochemistry Northern California
Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Di.stribution of Platinum-Group Elements Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Distribution of Platinum-Group Elements By NORMAN J PAGE, FLOYD GRAY, and ANDREW GRISCOM U.S. GEOLOGICAL SURVEY BULLETIN 2014 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text edited by George Havach Illustrations edited by Carol L. Ostergren UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Page, Norman J Petrology, mineralogy, and geochemistry of the Lower Coon Mountain pluton, northern California, with respect to the distribution of platinum-group elements I by Norman J Page, Floyd Gray, and Andrew Griscom. p. em.- (U.S. Geological Survey bulletin ; 2014) Includes bibliographical references. 1. Rocks, Igneous-California-Del Norte County. 2. Geochemistry California-Del Norte County. I. Gray, Floyd. II. Griscom, Andrew. Ill. Title. IV. Series. QE75.89 no. 2014 [QE461] 557.3 s-dc20 92-27975 [552'.3'0979411] CIP CONTENTS Abstract 1 Introduction 2 Regional geologic setting 2 Geology 2 Shape, size, -
Soil and Land Use Catenas. a Case Study of Amani Sub-Catchment, East Usambara Mountains, Tanzania
INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SUPERVISOR Dr W. Siderius CO-SUPERVISOR D. Shrestha MSc Submitted as a partial fulfilment of the requirements for the degree of Master of Science in Soil survey at the International Institute for Aerospace survey and Earth Sciences (ITC), Enschede, The Netherlands Degree Assessment Board Prof. Dr. J.A. Zinck Dr. M.A. Mulders (external examiner) Drs. L.A. Van Sleen Dr. W. Siderius INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES ITC ENSCHEDE THE NETHERLANDS ACKNOWLEDGEMENT This study could not have been successfully completed without appreciable contribution of many people who in one way or another rendered their painstaking efforts. I am extremely grateful for the support extended to me. Just to mention a few are:- Dr. W. Siderius, my supervisor and director of studies for SOL2 for his appreciable help, constructive criticism, constant incouragement and guidence and his petience in dealing with me. Mr Drhuba Shrestha, my co-supervisor for his support and constructive comments and ideas. Professor A. J. Zinck, the head of soil survey division for his advice and encouragements. Ir E.Bergsma, for his support during and after fieldwork. Ir Van Sleen also for his support during and after field work. Also I would like to thank all soil survey division staff for their academic and moral support I received from them during the whole period. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Syllabus: Petrology of Igneous and Metmorphic
Course Syllabus GEOL 333 PETROLOGY OF IGNEOUS AND METAMORPHIC ROCKS Course Description: Study of the properties and genesis of two major rock groups. Megascopic and microscopic techniques in rock classification. Environments of formation. Case studies from the Maryland Piedmont. Field trips required. Six contact hours (three lecture hours and three laboratory hours), four credits. Prerequisite: GEOL 331. Schedule of lecture and laboratory topics: subject to change with notice: WEEK MONDAY: Laboratory Topic WEDNESDAY: Lecture/Lab Topic TEXT Types of Intrusions; Composition, Introduction to Course; Igneous 1/30-2/1 Textures & Structures of Igneous 1–3 Rocks in Hand Sample Rocks; Classification Volcanism; Formation of Magma; 2/6-8 Igneous Textures in Thin Section 4–6 Crystallization of Magma Igneous Rocks of the Oceanic 2/13-15 Felsic Extrusive Rocks 8 Lithosphere Intermediate and Mafic Extrusive Igneous Rocks of Convergent 2/20-22 9,10 Rocks Margins; Layered Mafic Intrusions 2/27-29 Felsic Intrusive Rocks Mafic Intrusive Rocks 3/5-7 Work on Igneous Case Study Ellicott City Field Trip 3/12-14 Work on Igneous Case Study Igneous Case Study due 3/19-21 SPRING BREAK Metamorphic Isograds, Facies, P-T 3/26-28 Quartz Microstructures Evolution; Metamorphic Textures and 17,18 Classification Metamorphic Assemblages, 4/2-4 Metamorphic Index Minerals 19-20 Reactions, and Equilibrium Metamorphism of Mafic & 4/9-11 Foliated Metamorphic Rocks 21 Ultramafic Rocks Metamorphism of Aluminous Clastic 4/16-18 Non-foliated Metamorphic Rocks 22 Rocks 4/23-26 Determining P-T-t Histories Maryland Piedmont: Lang articles 4/30-5/2 Work on Piedmont Project Hunt Valley Field Trip 5/7-9 Work on Piedmont Project Work on Piedmont Project 5/14 Present Piedmont Project Piedmont Project due Friday, May 18th, 8:00 – 10:00 a.m. -
2. Petrology and Mineralogy
2. Petrology and Mineralogy In the period from 1999 to 2002, many studies on petrology and mineralogy have been made by Japanese earth scientists as well as the previous period. Significant progress has been made at the Japanese-USA cooperative studies on Hawaiian volcanoes (Naka et al., 2000; see section VII of this report), including deep-sea survey with the submersible "Shinkai 6500", the world's most advanced deep-sea probe. Major part of the outcome was published as a monograph (Takahashi, E. et al., 2002), including petrological and geochemical studies on products collected by the deep-sea survey (Kaneoka et al., 2002; Sherman et al., 2002; Shinozaki et al., 2002; Tanaka et al., 2002) and melting experiments on basalt+peridotite (Takahashi, E. and Nakajima, 2002). Other studies on the Hawaii project were appeared as individual papers (e.g., Lipman et al., 2000). Research on Unzen volcano also progressed significantly after its eruption of 1990-1995 (Chen, C. H. et al., 1999; Kusakabe et al., 1999; Nakada and Motomura, 1999; Sato et al., 1999; Tateyama et al., 2002; Watanabe, Ko. et al., 1999). At the volcano, international scientific drilling project (Unzen volcano Scientific Drilling Project) is going on (Sakuma and Nakada, 2002; Sakuma and Saito, 2000; Uto et al., 2000; see section VII of this report) and many publications will be appeared in the next period. Research on subduction-zone magmatism around Japan was made energetically. As for Northeast Japan, spatial distribution of volcanoes was noticed (Umeda et al., 1999), and a new concept of "hot fingers" in the mantle wedge was proposed (Tamura, Y. -
Stratigraphy, Structure, and Petrology of the Mt. Cube Area, New Hampshire by Jarvis B
BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA STRATIGRAPHY, STRUCTURE, AND PETROLOGY OF THE MT. CUBE AREA, NEW HAMPSHIRE BY JARVIS B. HADLEY CONTENTS Page Abstract.................................................................................................................................. 115 Introduction.......................................................................................................................... 115 Acknowledgments................................................................................................................. 117 Stratified rocks....................................................................................................................... 117 General statement........................................................................................................ 117 Orfordville formation................................................................................................... 119 General statement................................................................................................ 119 Post Pond volcanic member............................................................................... 119 Black schist............................................................................................................ 121 Hardy Hill qu&rtzite............................................................................................ 122 Sunday Mountain volcanic member................................................................. 123 Low-grade rocks of the Orfordville -