Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models EPA/600/R-03/139 September 2003 Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models By Latif Kalin Oak Ridge Institute for Science and Education Cincinnati, Ohio 45268 and Mohammed M. Hantush National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development funded the research described here. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. This research was supported in part by an appointment to the Post Doctoral Research Program at the National Risk Management Research Laboratory, administered by the Oak Ridge Institute for Science and Education through Interagency Agreement No DW89939836 between the U.S. Department of Energy and the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory (NRMRL) is the Agency’s center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory’s research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL’s research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This publication has been produced as part of the Laboratory’s strategic long-term research plan. It is published and made available by EPA’s Office of Research and Development to assist the user community and to link researchers with their clients. Lee A. Mulkey, Acting Director National Risk Management Research Laboratory iii Abstract Suspended solids and sediments are regarded as the two leading pollutants of nation’s streams and waterbodies. They serve as carriers for various pesticides, radioactive materials and nutrients. Section 303(d) of the 1972 Clean Water Act requires states, territories, and authorized tribes to identify and list impaired waters every two years and to develop Total Maximum Daily Loads (TMDLs) for pollutants in these waters. Mathematical models are widely accepted, effective and powerful tools for TMDL development, and evaluating performances of Best Management Practices (BMP). The rapid pace of computer technology has been a milestone for mathematical models in hydrology, hydrodynamics and recently water quality. The high demand on computer models resulted in development of many models and placed a new burden on model users, that is model selection. The selection of the right model under certain constraints requires a comprehensive knowledge of the capabilities and features of available models. This report provides an overview and evaluation of sediment models and compares two distributed, watershed scale models by application to an experimental watershed. A probabilistic, risk-based mathematical optimization framework is presented and proposed as a strategy for solving the TMDL-BMP problem involving multiple stressors in feature endeavors. Future modeling efforts may benefit from exploring the use of system analysis approaches to obtain cost-effective, optimal load reductions using BMPs. The report is comprised of two parts. The first part evaluates and summarizes some of the key features of the most widely cited watershed scale, hydrodynamic and water quality models with the emphasis on TMDLs and BMPs. Reviewed models were selected based on minimum criteria. Water quality models, specifically those that can simulate nutrients in the environment are also considered since transport and fate of sediments and nutrients are intimately related phenomena. Among the reviewed loading models SWAT and AGNPS offer the most BMP alternatives at agricultural watersheds. For urban areas SWMM, and for mixed land uses, i.e. rural and urban, HSPF are identified as the most suitable loading models. These models need to be used with hydrodynamic and water quality models for a complete TMDL analysis and BMP development. BASINS and MIKE-SHE are comprehensive watershed-water quality modeling systems, with varying degrees of complexity. WMS offers a tractable watershed-modeling platform if fully developed can be used for sediment TMDLs allocation. Available and potential model linkages between loading, hydrodynamic and water quality models are also discussed. It is observed that most physically based models are incapable for a complete BMP assessment. As a future need in modeling, enhancement of such models to simulate more BMPs is recommended along with development of more linkages between loading and hydrodynamic/water quality models. The second part of the report evaluates, by application to an experimental watershed, two promising distributed watershed-scale sediment models in detail: KINEROS-2 and GSSHA. Sensitivity of KINEROS­ 2 to model parameters was evaluated within a probabilistic framework using Monte Carlo simulations to identify key model parameters for calibration. It was shown that the order of parameter sensitivities changes with the quantity of interest (peak flow, total sediment yield, etc.). The calibration/verification procedure performed over KINEROS-2 has shown that the Manning’s roughness and soil erosion parameters show systematic seasonal variations. Both models were calibrated and verified and the results clearly highlight the challenges modelers face when applying complex, distributed watershed models. The results are discussed and compared. They highlight the importance for numerical application of different watershed models to gauged watersheds as means for models evaluation. Future efforts aiming at the evaluation of hydrologic and water quality models should migrate from qualitative analysis to actual comparative applications to real case studies. iv Contents Foreword ....................................................................................................................................................... iii Abstract ..........................................................................................................................................................iv Figures ............................................................................................................................................................vi Tables ........................................................................................................................................................... vii 1 Introduction............................................................................................................................................1 1.1 Overview............................................................................................................................................1 1.2 Total Maximum Daily Loading (TMDL)...........................................................................................3 1.3 Mathematical Models.........................................................................................................................3 1.3.1 Brief History of Sediment Modeling ..................................................................................4 1.4 Risk Management Watershed Modeling ............................................................................................4 2 Model Classifications.............................................................................................................................8 3 Model Evaluation Criteria....................................................................................................................10 3.1 Screening Criteria ............................................................................................................................10 3.2 Evaluation Criteria ...........................................................................................................................10
Recommended publications
  • Daniel D. Richter CV 2021
    2020 Daniel D. Richter, Jr. Nicholas School of the Environment Box 90328, A205, LSRC Duke University Durham, North Carolina 27708-0328 USA Office Tel 919-613-8031; Cell 919-475-7939, Fax 919-684-8741 [email protected], @suelos2010 http://criticalzone.org/calhoun/ h-index 66, i10-index 155, citations 15,369 Education Ph.D. Soil Science & Ecology, Minor Statistics, Duke University, Durham, 1980 Graduate coursework: Soil Science, Statistics, Ecology, and Forestry at Mississippi State and North Carolina State Universities, 1976-77 B.A., Philosophy, Lehigh University, Bethlehem, PA, 1973 Employment Full and Associate Professor of Soils and Ecology, Nicholas School of the Environment, 1987-present Visiting Associate Professor of Soils, Instituto Tecnologico de Costa Rica, Cartago, 1993-4 Assistant Professor of Soils and Watershed Management, School of Natural Resources, University of Michigan, 1984-87 Research Associate, Environmental Sciences Division, Oak Ridge National Laboratory, 1980-84 Leadership Lead-PI with 15 Co-Is, NSF and USFS Calhoun Critical Zone Observatory, 2013- present Chair, National CZO PI Committee of the nine USA CZOs, 2015 PI and Director, Long-Term Calhoun Experimental Forest Soil-Ecosystem Experiment, 1988-present PI and Director, International Network of Long-Term Soil-Ecosystem Experiments, 2005-present, (250 studies worldwide) Member, International Commission of Stratigraphy’s Working Group on the Anthropocene, 2012-present Co-Founder and Chair Working Groups on Soil Change, International Union of Soil Sciences and
    [Show full text]
  • A Statistical Vertically Mixed Runoff Model for Regions Featured
    water Article A Statistical Vertically Mixed Runoff Model for Regions Featured by Complex Runoff Generation Process Peng Lin 1,2, Pengfei Shi 1,2,*, Tao Yang 1,2,*, Chong-Yu Xu 3, Zhenya Li 1 and Xiaoyan Wang 1 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; [email protected] (P.L.); [email protected] (Z.L.); [email protected] (X.W.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China 3 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (T.Y.) Received: 6 June 2020; Accepted: 11 August 2020; Published: 19 August 2020 Abstract: Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood.
    [Show full text]
  • Sediment Transport and the Genesis Flood — Case Studies Including the Hawkesbury Sandstone, Sydney
    Sediment Transport and the Genesis Flood — Case Studies including the Hawkesbury Sandstone, Sydney DAVID ALLEN ABSTRACT The rates at which parts of the geological record have formed can be roughly determined using physical sedimentology independently from other dating methods if current understanding of the processes involved in sedimentology are accurate. Bedform and particle size observations are used here, along with sediment transport equations, to determine rates of transport and deposition in various geological sections. Calculations based on properties of some very extensive rock units suggest that those units have been deposited at rates faster than any observed today and orders of magnitude faster than suggested by radioisotopic dating. Settling velocity equations wrongly suggest that rapid fine particle deposition is impossible, since many experiments and observations (for example, Mt St Helens, mud- flows) demonstrate that the conditions which cause faster rates of deposition than those calculated here are not fully understood. For coarser particles the only parameters that, when varied through reasonable ranges, very significantly affect transport rates are flow velocity and grain diameter. Popular geological models that attempt to harmonize the Genesis Flood with stratigraphy require that, during the Flood, most deposition believed to have occurred during the Palaeozoic and Mesozoic eras would have actually been the result of about one year of geological activity. Flow regimes required for the Flood to have deposited various geological cross- sections have been proposed, but the most reliable estimate of water velocity required by the Flood was attained for a section through the Tasman Fold Belt of Eastern Australia and equalled very approximately 30 ms-1 (100 km h-1).
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • The Role of Geology in Sediment Supply and Bedload Transport Patterns in Coarse Grained Streams
    The Role of Geology in Sediment Supply and Bedload Transport Patterns in Coarse Grained Streams Sandra E. Ryan USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own “bedload signal,” in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that system. However, when rates of bedload transport were normalized by dividing by the watershed area, the results were similar for many sites. Typically, streams exhibited normalized rates of bedload transport between 0.001 and 0.003 kg s-1 km-2 at bankfull discharges. Given the inherent difficulty of obtaining a reliable estimate of mean rates of bedload transport, the relatively narrow range of values observed for these systems is notable. While many of these sites are underlain by different geologic terrane, they appear to have comparable patterns of mass wasting contributing to sediment supply under current climatic conditions. There were, however, some sites where there was considerable departure from the normalized range of values. These sites typically had different patterns and qualitative rates of mass wasting, either higher or lower, than observed for other watersheds. The gross differences in sediment supply to the stream network have been used to account for departures in the normalized rates of bedload transport observed for these sites. The next phase of this work is to better quantify the contributions from hillslopes to help explain variability in the normalized rate of bedload transport.
    [Show full text]
  • Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2008 Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments Adam M. Milewski Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Geology Commons Recommended Citation Milewski, Adam M., "Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments" (2008). Dissertations. 3378. https://scholarworks.wmich.edu/dissertations/3378 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. REMOTE SENSING SOLUTIONS FOR ESTIMATING RUNOFF AND RECHARGE IN ARID ENVIRONMENTS by Adam M. Milewski A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillmentof the requirements forthe Degree of Doctor of Philosophy Department of Geosciences Dr. Mohamed Sultan, Advisor WesternMichigan University Kalamazoo, Michigan June 2008 Copyright by Adam M. Milewski 2008 ACKNOWLEDGMENTS Just like any great accomplishment in life, they are often completed with the help of many friends and family. I have been blessed to have relentless support from my friends and family on all aspects of my education. Though I would like to thank everyone who has shaped my life and future, I cannot, and therefore for those individuals and groups of people that I do not specifically mention, I say thank you. First and foremost I would like to thank my advisor, Mohamed Sultan, whose advice and mentorship has been tireless, fair, and of the highest standard.
    [Show full text]
  • Modeling and Practice of Erosion and Sediment Transport Under Change
    water Editorial Modeling and Practice of Erosion and Sediment Transport under Change Hafzullah Aksoy 1,* , Gil Mahe 2 and Mohamed Meddi 3 1 Department of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Turkey 2 IRD, UMR HSM IRD/ CNRS/ University Montpellier, Place E. Bataillon, 34095 Montpellier, France 3 Ecole Nationale Supérieure d’Hydraulique, LGEE, Blida 9000, Algeria * Correspondence: [email protected] Received: 27 May 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Climate and anthropogenic changes impact on the erosion and sediment transport processes in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes from natural areas to cultivated areas, and then from degraded areas to desertification. Such areas, under the effect of anthropogenic activities, are more sensitive to erosion, and are therefore prone to erosion. On the other hand, with an increase in the number of dams in watersheds, a great portion of sediment fluxes is trapped in the reservoirs, which do not reach the sea in the same amount nor at the same quality, and thus have consequences for coastal geomorphodynamics. The Special Issue “Modeling and Practice of Erosion and Sediment Transport under Change” is focused on a number of keywords: erosion and sediment transport, model and practice, and change. The keywords are briefly discussed with respect to the relevant literature. The papers in this Special Issue address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.
    [Show full text]
  • State Standard for Hydrologic Modeling Guidelines
    ARIZONA DEPARTMENT OF WATER RESOURCES FLOOD MITIGATION SECTION State Standard For Hydrologic Modeling Guidelines Under the authority outlined in ARS 48-3605(A) the Director of the Arizona Department of Water Resources establishes the following standard for Hydrologic Modeling Guidelines in Arizona. State Standard for Hydrologic Modeling, or “guidelines for the experienced modeler”, has been developed to address hydrologic conditions for a variety of statewide watersheds. Included are problems and situations identified by the State Standard Work Group (SSWG) and floodplain managers. The intended audience is statewide; engineers, professionals and Floodplain Administrators. The following topics are included: • Hydrologic Model comparison and recommendation • Guidelines and parameters • Model application for specific situations, and associated hydrologic parameters • Precipitation values (NOAA 14) • Storm duration • Unique conditions, such as wildfire burn, overgrazing, logging, drought, rapid snowmelt, urbanization. The State Standard includes examples addressing the above key issues. This requirement is effective August, 2007. Copies of this State Standard and the State Standard Technical Supplement can be obtained by contacting the Department’s Water Engineering Section at (602) 771-8652. SS10-07 1 August 2007 TABLE OF CONTENTS 1.0 Introduction.......................................................................................................5 1.1 Purpose and Background .......................................................................5
    [Show full text]
  • Progressive and Regressive Soil Evolution Phases in the Anthropocene
    Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal.
    [Show full text]
  • Models for Analyzing Agricultural Nonpoint-Source Pollution
    MODELS FOR ANALYZING AGRICULTURAL NONPOINT-SOURCE POLLUTION Douglas A. Hairh Cornell University, Ithaca, New York, USA RR-82-17 April 1982 INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, Austria International Standard Book Number 3-7045-0037-2 Research Reports, which record research conducted at IIASA, are independently reviewed before publication. However, the views and opinions they express are not necessarily those of the Institute or the National Member Organizations that support it. Copyright O 1982 International Institute for Applied Systems Analysis All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. FOREWORD The International Institute for Applied Systems Analysis is conducting research on the environmental problems of agriculture. One of the objectives of this research is to evaluate the existing mathematical models describing the interactions between agriculture and the environment. Part of the work toward this objective has been led at IIASA by G.N. Golubev and part has involved collaboration with several other institutions and scientists. During the past two years the work has paid particular attention to the problems of pollution from nonpoint sources. This report reviews and classifies the mathematical models currently available in this field, taking into account their different time and spatial scales, as well as the prob- lems that may call for their use. Although the last decade has witnessed the rapid development of nonpoint-source pollution models, much remains to be done. Haith addresses this matter; however, his comments about research needs go beyond the art and science of modeling.
    [Show full text]
  • Soil and Land Use Catenas. a Case Study of Amani Sub-Catchment, East Usambara Mountains, Tanzania
    INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SOIL AND LAND USE CATENAS. A CASE STUDY OF AMANI SUB-CATCHMENT, EAST USAMBARA MOUNTAINS, TANZANIA By: Pitio Ndyeshumba SUPERVISOR Dr W. Siderius CO-SUPERVISOR D. Shrestha MSc Submitted as a partial fulfilment of the requirements for the degree of Master of Science in Soil survey at the International Institute for Aerospace survey and Earth Sciences (ITC), Enschede, The Netherlands Degree Assessment Board Prof. Dr. J.A. Zinck Dr. M.A. Mulders (external examiner) Drs. L.A. Van Sleen Dr. W. Siderius INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES ITC ENSCHEDE THE NETHERLANDS ACKNOWLEDGEMENT This study could not have been successfully completed without appreciable contribution of many people who in one way or another rendered their painstaking efforts. I am extremely grateful for the support extended to me. Just to mention a few are:- Dr. W. Siderius, my supervisor and director of studies for SOL2 for his appreciable help, constructive criticism, constant incouragement and guidence and his petience in dealing with me. Mr Drhuba Shrestha, my co-supervisor for his support and constructive comments and ideas. Professor A. J. Zinck, the head of soil survey division for his advice and encouragements. Ir E.Bergsma, for his support during and after fieldwork. Ir Van Sleen also for his support during and after field work. Also I would like to thank all soil survey division staff for their academic and moral support I received from them during the whole period.
    [Show full text]
  • Sediment and Sedimentary Rocks
    Sediment and sedimentary rocks • Sediment • From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) • Types of sedimentary rocks (clastic, chemical and organic) • Sedimentary structures (bedding, cross-bedding, graded bedding, mud cracks, ripple marks) • Interpretation of sedimentary rocks Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of pre- existing rocks – Chemical precipitation from solution, including secretion by organisms in water Relationship to Earth’s Systems • Atmosphere – Most sediments produced by weathering in air – Sand and dust transported by wind • Hydrosphere – Water is a primary agent in sediment production, transportation, deposition, cementation, and formation of sedimentary rocks • Biosphere – Oil , the product of partial decay of organic materials , is found in sedimentary rocks Sediment • Classified by particle size – Boulder - >256 mm – Cobble - 64 to 256 mm – Pebble - 2 to 64 mm – Sand - 1/16 to 2 mm – Silt - 1/256 to 1/16 mm – Clay - <1/256 mm From Sediment to Sedimentary Rock • Transportation – Movement of sediment away from its source, typically by water, wind, or ice – Rounding of particles occurs due to abrasion during transport – Sorting occurs as sediment is separated according to grain size by transport agents, especially running water – Sediment size decreases with increased transport distance From Sediment to Sedimentary Rock • Deposition – Settling and coming to rest of transported material – Accumulation of chemical
    [Show full text]