Gardenwise Vol 56 19 FEB.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2 the Life and Legacy of David Lim Hock Lye, Venerated Orchid Breeder and Polymath
Gardenwise• • • The Magazine of the Singapore Botanic Gardens Volume 53 August 2019 ISSN 0129-1688 2 The life and legacy of David Lim Hock Lye, venerated orchid breeder and polymath 10 Refurbishment of the Potting Yard 19 Toxic ‘peas’ – the dark 32 Fungus-termite for horticulture and botanical research side of the legumes partnerships Volume 53 • August 2019 1 Group Direction 2 38 Nigel P. Taylor Articles Regular Features 2 The life and legacy of David 28 From the Taxonomy Corner 38 What’s Blooming Lim Hock Lye, venerated orchid Herbarium collections Heat wave and flowers… breeder and polymath David Middleton Nura Abdul Karim Gillian Khew 31 Collaborators in Research 40 Book Review 10 Refurbishment of the Potting International researchers on the Pictorial Guide to the Flora Yard for horticulture and Flora of Singapore project of Tasik Chini botanical research Serena Lee S.K. Ganesan Jana Leong-Škorničková, Michele Rodda, Tan Siew Tin 32 From the Earth 41 Key Visitors to the Gardens Fungus-termite partnerships January–June 2019 16 Native Dracaena in Singapore – Serena Lee, Chan Wai Yeng Part 2, Maingay’s Dracaena Back From the Archives Matti Niissalo, 34 Edibles Cover From Third Lake to Eco-Lake Jana Leong-Škorničková Appreciating the colours of the Christina Soh Butterfly Pea’s flowers 19 Toxic ‘peas’ – the dark side Wilson Wong of the legumes Ho Boon Chuan, Lily Chen 36 From Education Outreach Sharing with the community 22 New to cultivation in Singapore Janice Yau, Winnie Wong, Nigel P. Taylor Tan Hui Min, Steffi Loe 24 A meeting of two giants of botany – Beccari and Ridley Michele Rodda, Laura Guglielmone 26 Conservation of a Critically Endangered native orchid, Callostylis pulchella Yam Tim Wing, Peter Ang, Felicia Tay, Sunia Teo Editors Singapore Botanic Gardens Ada Davis, Nigel P. -
Assessment of Plant Diversity for Threat Elements: a Case Study of Nargu Wildlife Sanctuary, North Western Himalaya
Ceylon Journal of Science 46(1) 2017: 75-95 DOI: http://doi.org/10.4038/cjs.v46i1.7420 RESEARCH ARTICLE Assessment of plant diversity for threat elements: A case study of Nargu wildlife sanctuary, north western Himalaya Pankaj Sharma*, S.S. Samant and Manohar Lal G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Himachal Unit, Mohal- Kullu-175126, H.P., India Received: 12/07/2016; Accepted: 16/02/2017 Abstract: Biodiversity crisis is being experienced losses, over exploitation, invasions of non-native throughout the world, due to various anthropogenic species, global climate change (IUCN, 2003) and and natural factors. Therefore, it is essential to disruption of community structure (Novasek and identify suitable conservation priorities in biodiversity Cleland, 2001). As a result of the anthropogenic rich areas. For this myriads of conservational pressure, the plant extinction rate has reached approaches are being implemented in various ecosystems across the globe. The present study has to137 species per day (Mora et al., 2011; Tali et been conducted because of the dearth of the location- al., 2015). At present, the rapid loss of species is specific studies in the Indian Himalayas for assessing estimated to be between 1,000–10,000 times the ‘threatened species’. The threat assessment of faster than the expected natural extinction rate plant species in the Nargu Wildlife Sanctuary (NWS) (Hilton-Taylor, 2000). Under the current of the northwest Himalaya was investigated using scenario, about 20% of all species are likely to Conservation Priority Index (CPI) during the present go extinct within next 30 years and more than study. -
Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop -
4. the Plant Diversity of Singapore
FLORA OF SINGAPORE (Vol. 1: 37–46, 2019) 4. THE PLANT DIVERSITY OF SINGAPORE K.M. Wong & S.K. Ganesan The position of Singapore on the Sunda continental shelf is a special one, with the principal island originally about 540 km2 in extent, together with some 60 smaller islands at the southern exit to the Malacca Strait and near the confluence of the South China Sea and Karimata Strait just west of Borneo. Geographically at the equatorial extremity of the Malay Peninsula, Singapore is separated from the Riau islands to its south (principally the Karimun Islands, Batam and Bintan) by the Singapore Strait which includes the deeply scoured 204-m ‘Singapore Deeps’, a likely subsidence basin resulting from tectonic movements (Bird et al., 2006). While this Strait may seem able to restrict the dispersal of some organisms with interglacial and post- Pleistocene high sea levels, it probably was not an effective dispersal barrier during episodes of lowest sea levels, such as during the Last Glacial Maximum (LGM) at 18 ka. Then, it must have been in the path of a key land bridge between mainland Southeast Asia farther north and likewise exposed links to Java and other areas to the south (Ho, 1960; Morley & Flenley, 1987; Heaney, 1991; Voris, 2000; Bird et al., 2005). By contrast, the Johor Strait that separates Singapore from south Peninsular Malaysia is just about 10 m deep and 600 m wide at its narrowest. The Sundaland region on the Sunda continental shelf has seen climate shifts since even before the Pleistocene, sometimes associated with tectonic events. -
Chapter Two Marine Organisms
THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018. -
Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids
Hindawi International Journal of Agronomy Volume 2020, Article ID 2795108, 12 pages https://doi.org/10.1155/2020/2795108 Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids Edy Setiti Wida Utami and Sucipto Hariyanto Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia Correspondence should be addressed to Sucipto Hariyanto; [email protected] Received 26 January 2020; Revised 9 May 2020; Accepted 23 May 2020; Published 11 June 2020 Academic Editor: Isabel Marques Copyright © 2020 Edy Setiti Wida Utami and Sucipto Hariyanto. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In nature, orchid seed germination is obligatory following infection by mycorrhizal fungi, which supplies the developing embryo with water, carbohydrates, vitamins, and minerals, causing the seeds to germinate relatively slowly and at a low germination rate. ,e nonsymbiotic germination of orchid seeds found in 1922 is applicable to in vitro propagation. ,e success of seed germination in vitro is influenced by supplementation with organic compounds. Here, we review the scientific literature in terms of the contents and role of organic supplements in promoting seed germination, protocorm development, and seedling growth in orchids. We systematically collected information from scientific literature databases including Scopus, Google Scholar, and ProQuest, as well as published books and conference proceedings. Various organic compounds, i.e., coconut water (CW), peptone (P), banana homogenate (BH), potato homogenate (PH), chitosan (CHT), tomato juice (TJ), and yeast extract (YE), can promote seed germination and growth and development of various orchids. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
BRITISH BOTANICAL GARDENS in the 1980S
BRITISH BOTANICAL GARDENS IN THE 1980s: CHANGES REFLECTED BY BIBLIOGRAPHICAL AND SOCIAL SURVEY Enid Constance Gilberthorpe Thesis submitted fox' the degree of PhD University of Sheffield Division of Education January 1987 cONTEN'rs PAGE NUMBER List of Contents :1. List of Illustrations 111 Acknowledgements iv Summary vi CHAPTER I INTRODUCTION: AIMS AND SCOPE I 2 KEY DOCUMENTS 27 3 PLANTS FOR TEACHING, AND FOR RESEARCH: 42 teaching of botany; supplies of plant material; research into taxonomy; experimental botany 4 ECONOMIC BOTANY - plants with domestic 57 and medicinal uses and of commercial importance 5 HORTICULTURE: the acquisition and 74 cultivation of plants in botanical gardens 6 AMENITY: plants for pleasure and 97 interest 7 PUBLIC INFORMATION AND EDUCATION ilk SERVICES; PUBLIC RECREATION FACILITIES 1. CHAPTER PAGE NUMBER 8 CONSERVATION: wild and cultivated 139 plants in danger 9 BOTANICAL GARDENS OPEN TO THE PUBLIC; 188 GUIDES TO THE GARDENS - PRINTED PUBLICITY; ILLUSTRATIONS FROM THE GUIDE S 10 FUNCTIONS OF GARDENS - THE PROBLEM 220 OF OVERLAP 11 SHEFFIELD BOTANICAL GARDENS 242 12 BOTANICAL GARDENS IN BRITISH 'TWINNED' 2.7 TOWNS - ANY INTERACTION WITH THEIR EUROPEAN PARTNERS? 13 PUBLIC VIEWS ON BOTANICAL GARDENS - 287 A SAMPLE SURVEY 14 GARDENS NOW AND IN THE FUTURE - 294 POSSIBLE DEVELOPMENTS BIBLIOGRAPHY 328 ILLUSTRATIONS (between pages 219 and 220) National 1. Edinburgh Royal Botanic Garden: Rock Garden Pond. 2. Kew Royal Botanic Gardens: Palm House with spring bedding. 3. Westonbirt Arboretum (Forestry Commission): the memorial sarsen stone on Mitchell Drive. University L&. Cambridge University Botanic Garden: [view of Garden shown on front of folding leaflet]. 5. Ness Gardens (University of Liverpool): a late summer scene in the Heather Garden. -
Isolation and Identification of Cyclic Polyketides From
ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY -
Australian Orchidaceae: Genera and Species (12/1/2004)
AUSTRALIAN ORCHID NAME INDEX (21/1/2008) by Mark A. Clements Centre for Plant Biodiversity Research/Australian National Herbarium GPO Box 1600 Canberra ACT 2601 Australia Corresponding author: [email protected] INTRODUCTION The Australian Orchid Name Index (AONI) provides the currently accepted scientific names, together with their synonyms, of all Australian orchids including those in external territories. The appropriate scientific name for each orchid taxon is based on data published in the scientific or historical literature, and/or from study of the relevant type specimens or illustrations and study of taxa as herbarium specimens, in the field or in the living state. Structure of the index: Genera and species are listed alphabetically. Accepted names for taxa are in bold, followed by the author(s), place and date of publication, details of the type(s), including where it is held and assessment of its status. The institution(s) where type specimen(s) are housed are recorded using the international codes for Herbaria (Appendix 1) as listed in Holmgren et al’s Index Herbariorum (1981) continuously updated, see [http://sciweb.nybg.org/science2/IndexHerbariorum.asp]. Citation of authors follows Brummit & Powell (1992) Authors of Plant Names; for book abbreviations, the standard is Taxonomic Literature, 2nd edn. (Stafleu & Cowan 1976-88; supplements, 1992-2000); and periodicals are abbreviated according to B-P- H/S (Bridson, 1992) [http://www.ipni.org/index.html]. Synonyms are provided with relevant information on place of publication and details of the type(s). They are indented and listed in chronological order under the accepted taxon name. Synonyms are also cross-referenced under genus. -
New Spathoglottis in Cuba, Terrestrial Orchid of Great Adaptability to the Tropics
Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Mini Review Dairy and Vet Sci J Volume 12 Issue 3 - June 2019 Copyright © All rights are reserved by Lorenzo Suárez Guerra DOI: 10.19080/JDVS.2019.12.555839 New Spathoglottis in Cuba, Terrestrial Orchid of Great Adaptability to the Tropics Lorenzo Suárez Guerra*, María Margarita Hernández Espinosa and Georvis Téllez Beltrán National Institute of Agricultural Sciences (INCA), Cuba Submission: June 05, 2019; Published: June 14, 2019 *Corresponding author: Lorenzo Suárez Guerra, National Institute of Agricultural Sciences (INCA), Gaveta Postal No. 1, San José de las Lajas, Mayabeque, C. P. 32700, Cuba Summary Spathoglottis is a genus of orchid that has assigned 47 species, naturalized in Cuba, originally from Southeast Asia and is a plant considered easy to grow. After several years of work, new cultivars of Spathoglottis are proposed, all results of artificial crosses carried out in the National Institute Abstract of Agricultural Sciences (INCA). It is registered in the database of the Royal Horticultural Society of England, Sander’s List. Spathoglottis plicata is non-epiphytic orchids with 47 species, naturalized in Cuba, it is original from the southwest of Asia and it is considered as a plant of an easy growth. After several years of study to propose new Spathoglottis all result of cross pollination artificial for Institute National ofKeywords Agricultural: Sciences. They are registered in the database of the Royal Horticultural Society of England, Sander´s List. Hybrids; Ornamental plant; Flower; New genotype Introduction Since 2009, the records made by the National Institute of cylindrical scape, up to 3per bulb, 50-60cm long, erect, distally Agricultural Sciences (INCA) constitute an important contribution floral escape. -
Phylogeny, Molecular Dating, and Floral Evolution of Magnoliidae (Angiospermae)
UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE : SCIENCES DU VÉGÉTAL Laboratoire Ecologie, Systématique et Evolution DISCIPLINE : BIOLOGIE THÈSE DE DOCTORAT Soutenue le 11/04/2014 par Julien MASSONI Phylogeny, molecular dating, and floral evolution of Magnoliidae (Angiospermae) Composition du jury : Directeur de thèse : Hervé SAUQUET Maître de Conférences (Université Paris-Sud) Rapporteurs : Susanna MAGALLÓN Professeur (Universidad Nacional Autónoma de México) Thomas HAEVERMANS Maître de Conférences (Muséum national d’Histoire Naturelle) Examinateurs : Catherine DAMERVAL Directeur de Recherche (CNRS, INRA) Michel LAURIN Directeur de Recherche (CNRS, Muséum national d’Histoire Naturelle) Florian JABBOUR Maître de Conférences (Muséum national d’Histoire Naturelle) Michael PIRIE Maître de Conférences (Johannes Gutenberg Universität Mainz) Membres invités : Hervé SAUQUET Maître de Conférences (Université Paris-Sud) Remerciements Je tiens tout particulièrement à remercier mon directeur de thèse et ami Hervé Sauquet pour son encadrement, sa gentillesse, sa franchise et la confiance qu’il m’a accordée. Cette relation a immanquablement contribuée à ma progression humaine et scientifique. La pratique d’une science sans frontière est la plus belle chose qu’il m’ait apportée. Ce fut enthousiasmant, très fructueux, et au-delà de mes espérances. Ce mode de travail sera le mien pour la suite de ma carrière. Je tiens également à remercier ma copine Anne-Louise dont le soutien immense a contribué à la réalisation de ce travail. Elle a vécu avec patience et attention les moments d’enthousiasmes et de doutes. Par la même occasion, je remercie ma fille qui a eu l’heureuse idée de ne pas naître avant la fin de la rédaction de ce manuscrit.