Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs

Total Page:16

File Type:pdf, Size:1020Kb

Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop wild relatives 21 1.5 Threats to crop wild relative species and genetic diversity 22 1.6 In situ and ex situ conservation of CWR diversity 25 1.7 CWR conservation outside of formal structures 26 1.8 Systematic approaches to CWR conservation 28 PART 2: NATIONAL CWR CONSERVATION STRATEGIES 30 2.1 Introduction to CWR strategy planning 30 2.2 Creating the national CWR inventory 32 2.3 Prioritizing CWR taxa/diversity 34 2.4 Ecogeographic and genetic diversity analysis of priority CWR 34 2.5 Identification of threats to priority CWR taxa and important CWR areas 35 2.6 CWR gap analysis 35 2.7 Development of in situ/ex situ CWR conservation strategies 36 2.8 CWR utilization 37 2.9 Research and education 38 2.10 Linkage to ex situ conservation and duplication 38 PART 3: IMPORTANT AREAS AND CONSERVATION GAPS FOR CWR 39 3.1 Methodology 39 3.1.1 Selection of priority crop gene pools 39 3.1.2 Selection of target species 40 3.1.3 Selection of target sites 42 3.1.4 Data collation and analysis 43 3.2 Crop case studies 43 3.2.1 Finger millet 44 3.2.2 Barley 49 3.2.3 Sweet potato 53 3.2.4 Cassava 57 3.2.5 Banana/plantain 61 3.2.6 Rice 67 3.2.7 Pearl millet 74 3.2.8 Garden pea 77 3.2.9 Potato 83 3.2.10 Sorghum 90 3.2.11 Wheat 93 3.2.12 Faba bean 100 3.2.13 Cowpea 105 3.2.14 Maize 113 3.3 Important areas and conservation gaps: synthesis 120 3.3.1 Establishing the global network: first steps 120 3.3.2 Overview of crop gene pool priorities by region 127 3.3.3 Coordinating the establishment of the CWR genetic reserve network 129 PART 4: CURRENT ACTIONS AND FUTURE NEEDS FOR CWR CONSERVATION AND USE 131 4.1 An urgent need for systematic, complementary CWR conservation 131 4.2 The global response to CWR conservation 132 4.2.1 Policy and legislation: 1983−2002 133 4.2.2 Projects and networks addressing CWR conservation 135 4.2.3 The First International Conference on CWR Conservation and Use 135 4.2.4 Global Strategy for CWR Conservation and Use 136 4.3 Improving the use of CWR diversity 137 4.4 Conclusions and recommendations 139 REFERENCES 145 ANNEXES 191 ANNEX 1. Case study: national CWR conservation strategy for the UK 191 ANNEX 2. Consolidated list of priority taxa for the 14 crop groups included in this study 201 ANNEX 3. Protected areas with links to crop genetic diversity 202 ANNEX 4. Framework of the draft Global Strategy for Crop Wild Relative Conservation and Use 208 SUMMARY Crop wild relatives (CWR) are species closely related to crops (including crop progenitors). They are potential sources of traits beneficial to crops, such as pest or disease resistance, yield improvement, or stability. CWR are a critical component of plant genetic resources for food and agriculture (PGRFA) yet have received relatively little systematic conservation attention. Historically, the conservation of PGRFA has focused almost entirely on the ex situ collection and storage of cultivated plants. However, since the inception of the Convention on Biological Diversity (CBD) and International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), it is now widely recognized that in situ conservation of PGRFA is necessary to conserve the full range of genetic diversity inherent in and between plant populations, with ex situ techniques acting as a backup. At the time of inception of the CBD in 1992, in situ PGR conservation techniques were still in their infancy. However, subsequently, there has been rapid progress in developing protocols and case studies that illustrate how wild species populations can be secured in their natural habitats. Many CWR species—and the breadth of genetic diversity they contain—are under increasing threat from anthropogenic factors such as urbanization, habitat fragmentation and intensification of farming practices, but perhaps most importantly, climate change. In order to secure this vital resource for future crop improvement, there is now a need for step change in the in situ conservation of CWR, nationally, regionally and globally, as well as ensuring there is adequate ex situ backup of key population samples. In response to this concern, the Commission on Genetic Resources for Food and Agriculture (CGRFA) has called for the development of a network of in situ conservation areas for CWR. The rolling Global Plan of Action for the conservation and sustainable utilization of plant genetic resources for food and agriculture includes conservation of CWR as a priority area, and Article 5 of the ITPGRFA promotes the in situ conservation of CWR. Moreover, the Commission has approved, with priority, a thematic background study on ‘the conservation of crop wild relatives’ to support the preparation of the Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture and as a basis for updating the Global Plan of Action. The Commission is now establishing a Multi-Year Programme of Work, which represents a unique opportunity to establish and monitor a network of in situ conservation areas for CWR. The objective of this study is to provide sufficient baseline information for planning the future work of the Commission in this area. Specifically, the study aims to: • Identify which important areas for CWR are already part of existing protected areas; in particular in the centres of origin or diversification; • Pinpoint existing conservation gaps, in order to assess which important areas for CWR are yet to be protected within and outside existing protected areas; • Provide the foundations for a long-term and cost-effective strategy for CWR conservation. This background study addresses these issues in four parts. Part 1 is an introduction to CWR: how they are defined, global numbers of CWR, their importance to humankind as gene donors for crop improvement, threats to natural populations, how complementary conservation can be achieved and how CWR might be conserved in situ outside of conventional protected areas. Part 2 reviews the elements of a long-term and cost-effective national strategy for the in situ conservation of CWR, including presentation of a methodology for the planning and implementation of a national CWR complementary conservation strategy. Part 3 takes a global approach by a) identifying important geographical areas for the in situ conservation of a selection of 14 critical crop gene pools, b) pinpointing conservation gaps and c) making recommendations for the steps needed towards establishing an effective complementary conservation strategy for priority species. Part 4 reviews current initiatives and future needs for CWR conservation, stressing the need for a coordinated and collaborative approach, in particularly at regional level. In this context, the recently proposed Global Strategy for Crop Wild Conservation and Use is introduced, which will underpin regional and national efforts to promote both the conservation and sustainable utilization of CWR diversity. Part 4 concludes with a series of recommendations for how to improve the conservation and use of CWR diversity. 6 ACKNOWLEDGEMENTS The authors wish to acknowledge the contribution made in developing the concepts presented in this report by Alvaro Toledo, Brian Ford-Lloyd, José Iriondo, Joana Magos Brehm and Maria Scholten. We also wish to acknowledge the generous provision of CWR ecogeographic data sets by Robert Hijmans, Andy Jarvis, John Doebley and Jan Valkoun, and of crop data sets from the National Plant Germplasm System (NPGS) of the USDA’s Agricultural Research Service by John Wiersema, Quinn Sinnott and Mark Bohning. We are grateful to Nagib Nassar for provision of information for the cassava case study and to Lourdes Rico for assistance in accessing information for the barley case study. 7 Part 1: INTRODUCTION TO CROP WILD RELATIVES 1.1 Background and scope Natural ecosystems hold important plant genetic resources for food and agriculture (PGRFA), including populations of crop wild relatives (CWR)—species that have particular value because of their potential to contribute beneficial traits to crops, such as pest or disease resistance, yield improvement or stability (Maxted et al., 2006).
Recommended publications
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • A World Flora Online by 2020: a Discussion Document on Plans for the Achievement of Target 1 of the Global Strategy for Plant Conservation by 2020
    CBD Distr. GENERAL UNEP/CBD/SBSTTA/16/INF/38 23 April 2012 ENGLISH ONLY SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Sixteenth meeting Montreal, 30 April-5 May 2012 Item 8 of the provisional agenda* GLOBAL STRATEGY FOR PLANT CONSERVATION: WORLD FLORA ONLINE BY 2020 Note by the Executive Secretary 1. In decision X/17 the Conference of the Parties adopted the consolidated update of the Global Strategy for Plant Conservation (GSPC) 2011-2020, with sixteen updated global targets for plant conservation, including Target 1 of developing, by 2020, an online Flora of all known plants. 2. This document provides a report for information to the participants of sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice on steps taken to develop a ―World Flora online‖, its relevance for the implementation of the Convention and for the achievement of the other targets of the GSPC. 3. The document, prepared jointly by the Missouri Botanical Garden, the New York Botanical Garden, the Royal Botanic Garden Edinburgh, and the Royal Botanic Gardens, Kew, is presented in the form and language in which it was received by the Secretariat. * UNEP/CBD/SBSTTA/16/1. I order to minimize the environmental impacts of the Secretariat’s processes, and to contribute to the Secretary-General’s initiative for a C-Neutral UN, this document is printed in limited numbers. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/CBD/SBSTTA/16/INF/38 Page 2 A World Flora Online by 2020: a discussion document on plans for the achievement of Target 1 of the Global Strategy for Plant Conservation by 2020 Presented to the Sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice of the Convention on Biological Diversity, Montreal, 30 April – 5 May 2012.
    [Show full text]
  • Assessment of Plant Diversity for Threat Elements: a Case Study of Nargu Wildlife Sanctuary, North Western Himalaya
    Ceylon Journal of Science 46(1) 2017: 75-95 DOI: http://doi.org/10.4038/cjs.v46i1.7420 RESEARCH ARTICLE Assessment of plant diversity for threat elements: A case study of Nargu wildlife sanctuary, north western Himalaya Pankaj Sharma*, S.S. Samant and Manohar Lal G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Himachal Unit, Mohal- Kullu-175126, H.P., India Received: 12/07/2016; Accepted: 16/02/2017 Abstract: Biodiversity crisis is being experienced losses, over exploitation, invasions of non-native throughout the world, due to various anthropogenic species, global climate change (IUCN, 2003) and and natural factors. Therefore, it is essential to disruption of community structure (Novasek and identify suitable conservation priorities in biodiversity Cleland, 2001). As a result of the anthropogenic rich areas. For this myriads of conservational pressure, the plant extinction rate has reached approaches are being implemented in various ecosystems across the globe. The present study has to137 species per day (Mora et al., 2011; Tali et been conducted because of the dearth of the location- al., 2015). At present, the rapid loss of species is specific studies in the Indian Himalayas for assessing estimated to be between 1,000–10,000 times the ‘threatened species’. The threat assessment of faster than the expected natural extinction rate plant species in the Nargu Wildlife Sanctuary (NWS) (Hilton-Taylor, 2000). Under the current of the northwest Himalaya was investigated using scenario, about 20% of all species are likely to Conservation Priority Index (CPI) during the present go extinct within next 30 years and more than study.
    [Show full text]
  • Interspecific Hybridization Between Durum Wheat and Aegilops Umbellulata (Zhuk.)
    713 Bulgarian Journal of Agricultural Science, 18 (No 5) 2012, 713-721 Agricultural Academy INTERSPECIFIC HYBRIDIZATION BETWEEN DURUM WHEAT AND AEGILOPS UMBELLULATA (ZHUK.) B. HADZHIIVANOVA, V. BOZHANOVA and D. DECHEV Field Crops Institute, BG - 6200 Chirpan, Bulgaria Abstract HADZHIIVANOVA, B., V. BOZHANOVA and D. DECHEV, 2012. Interspecific hybridization between durum wheat and Aegilops umbellulata (Zhuk.). Bulg. J. Agric. Sci., 18: 713-721 The possibility for obtaining of interspecific hybrids between three durum wheat genotypes (Triticum durum, 2n = 4x = 28, AABB genomes) and one accession of Aegilops umbellulata (2n = 2x = 18, UU genome) during two different seasons has been studied. A low crossability rate of 3% average for all genotypes over two years was achieved. The observed variation of crossability is due to a greatest extent to the genotype of durum wheat parent with 82.91% from total variation. Hybrid plants were obtained only by means of embryo rescue method. The ability for in vitro regeneration was still independent of crossability of used durum wheat genotypes. All received F1 hybrids plants were identical they exhibited good tillering ability and manifested traits from both parents. In spite of the observed partially fertility in F1 hybrids between durum wheat and Aegilops umbellulata no germination of the hybrid seeds was ascertained. BC1 seeds were obtained from F1 hybrids of hybrid combination Beloslava × Aegilops umbellulata after backcrossing to the durum wheat parent. An increase of crossability with advancing of backcross progenies – from 1.6% in BC1 hybrids to 26.2% in BC2 hybrids has been found. Meiotic abnormalities including dyads and triads at the end of microsporogenesis as well as uninucleate microspores with a different shape and size were observed suggesting production of unreduced gametes in this cross.
    [Show full text]
  • Databases and Bioinformatics Tools for Rice Research
    Current Plant Biology 7–8 (2016) 39–52 Contents lists available at ScienceDirect Current Plant Biology jo urnal homepage: www.elsevier.com/locate/cpb ଝ Databases and bioinformatics tools for rice research ∗ Priyanka Garg, Pankaj Jaiswal Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, USA a r t i c l e i n f o a b s t r a c t Keywords: Rice is one of the most important agricultural crop in the world and widely studied model plant. The Biological database completion of whole genome sequence of rice (Oryza sativa) and high-throughput experimental plat- Rice forms have led to the generation of the tremendous amount of data, and development of the specialized Gene expression databases and bioinformatics tools for data processing, efficient organization, analysis, and visualiza- Biocuration tion. In this article, we discuss a collection of biological databases that host genomics data on sequence, Ontology Pathways gene expression, genetic variation, gene-interactomes, and pathways, and facilitate data analysis and visualization. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction organisms including rice. In contrast community-specific databases cater to the need of a specific research community such as plant Over the last decades, an increasing amount of genome-scale databases, e.g. PlantGDB [8], ENSEMBL Plants [9], Gramene [10], experimental data sets became available and several online and PLEXdb [11], Gene Expression Atlas [12], Planteome [13], etc. The open source, biology databases have emerged.
    [Show full text]
  • Vascular Plant Diversity of the Alanya Castle Walls and Their Ecological Effects
    www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online ISSN 1308-5301 Print Research article/Araştırma makalesi 13/1 (2020) 9-18 DOI: 10.46309/biodicon.2020.731423 Vascular plant diversity of the Alanya Castle walls and their ecological effects Ahmet AKSOY 1, Jale ÇELİK *2 ORCID: 0000-0002-9696-7122; 0000-0002-3624-2146 1 University of Akdeniz, Faculty of Science, Department of Biology, Antalya, Turkey 2 University of Akdeniz, Institute of Science and Technology, Department of Biology, Antalya, Turkey Abstract Since historical buildings are living mirrors of the past, it is very important to preserve and transfer them to future generations. In this study, plants growing on the walls of Alanya Castle were identified and the damages that these plants gave to the historical construction and the precautions to be taken to prevent these damages were emphasized. A total of 94 plant taxa, including five pteridophytes, one gymnosperm and 88 angiosperms, belonging to 35 families were identified on the walls of Alanya Castle. Conyza canadensis, Inula heterolepis, Phagnalon graecum, Arabis verna, Mercurialis annua, Fumaria parviflora, Cymbalaria microcalyx, Galium canum subsp. antalyense, Parietaria judaica, Hyoscyamus aureus, Poa bulbosa were the dominant plant species of Alanya Castle walls. Possible seed dispersion of these plants on the castle walls and the methods for controlling them are discussed in detail. We conclude that the most effective method of combating plants that grow naturally on historical buildings and give damage to these buildings is mechanical excavation. Key words: Alanya, biodiversity, mechanical excavation, urban ecosystems, wall flora ---------- ---------- Alanya Kalesi duvarlarının vasküler bitki çeşitliliği ve ekolojik etkileri Özet Tarihi yapılar geçmişin yaşayan aynaları olduklarından, onları korumak ve gelecek nesillere aktarmak çok önemlidir.
    [Show full text]
  • 50 Years of the International Code of Nomenclature for Cultivated Plants: Future Prospects for the Code
    50 Years of the International Code of Nomenclature for Cultivated Plants: Future Prospects for the Code P. Trehane 2 Pye Corner Wimborne Dorset, BH21 1UL United Kingdom Keywords: culton, cultivar-group, history, International Association for Cultivated Plant Taxonomy, linguistics, plant breeders’ rights, trademarks Abstract The first edition of the International Code of Nomenclature for Cultivated Plants was published in June 1953 by the Royal Horticultural Society as a preprint from the Report of the Thirteenth International Horticultural Congress held in London, September 1952, and has undergone a total of six editions, the last being in 1995. This presentation sets the scene for discussions on nomenclature issues which form one of purposes of this Symposium by reviewing past editions of the Code and illustrating a few of the problems confronting the formulation of a new edition. The need for international co-operation between statutory and non-statutory bodies in the various acts of nomenclature and taxonomy is highlighted. INTRODUCTION As the speaker following will describe (McNeill, these proceedings), before the advent of the International Code of Nomenclature for Cultivated Plants (Stearn, 1953a) otherwise known as the Cultivated Plant Code or ICNCP, the formal rules for naming cultivated plants was largely governed through the International Rules of Botanical Nomenclature through its various editions up until the Stockholm Code of 1952. In that Code a proposed set of rules for governing names of cultivated plants was presented in its Appendix III. In introducing that Appendix, it was stated that the regulations would not become official until formally accepted by the 13th International Horticultural Congress to be held in London in late 1952.
    [Show full text]
  • Genotype-By-Sequencing Facilitates Genetic Mapping of a Stem Rust Resistance Locus in Aegilops Umbellulata, a Wild Relative of Cultivated Wheat Erena A
    Edae et al. BMC Genomics (2016) 17:1039 DOI 10.1186/s12864-016-3370-2 RESEARCH ARTICLE Open Access Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat Erena A. Edae1*, Pablo D. Olivera2, Yue Jin1,2, Jesse A. Poland3 and Matthew N. Rouse1,2* Abstract Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefore, the objective of this study was to identify loci conferring resistance to stem rust pathogen races including Ug99 in an Aegilops umbelluata bi-parental mapping population using genotype-by-sequencing (GBS) SNP markers. Results: A bi-parental F2:3 population derived from a cross made between stem rust resistant accession PI 298905 and stem rust susceptible accession PI 542369 was used for this study. F2 individuals were evaluated with stem rust race TTTTF followed by testing F2:3 families with races TTTTF and TTKSK. The segregation pattern of resistance to both stem rust races suggested the presence of one resistance gene. A genetic linkage map, comprised 1,933 SNP markers, was created for all seven chromosomes of Ae. umbellulata using GBS. A major stem rust resistance QTL that explained 80% and 52% of the phenotypic variations for TTTTF and TTKSK, respectively, was detected on chromosome 2U of Ae. umbellulata. Conclusion: The novel resistance gene for stem rust identified in this study can be transferred to commercial wheat varieties assisted by the tightly linked markers identified here.
    [Show full text]
  • Vigna Unguiculata [L.] Walp)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193995; this version posted July 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genetic, textual, and archaeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp) Running title: Historic global spread of cowpea Ira A. Herniter1,2*, María Muñoz-Amatriaín1,3, Timothy J. Close1 1 Department of Botany and Plant Sciences, University of California, Riverside, CA. 2 Current address: Department of Plant Biology, Rutgers University, NJ 3 Current address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO. * Correspondence: Ira A. Herniter, [email protected] Keywords: Vigna unguiculata, domestication, archaeobotany, textual analysis bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193995; this version posted July 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Cowpea (Vigna unguiculata [L.] Walp.) was originally domesticated in sub-Saharan Africa but is now cultivated on every continent except Antarctica. Utilizing archaeological, textual, and genetic resources, the spread of cultivated cowpea has been reconstructed. Cowpea was domesticated in Africa, likely in both West and East Africa, before 2500 BCE and by 400 BCE was long established in all the modern major production regions of the Old World, including sub-Saharan Africa, the Mediterranean Basin, India, and Southeast Asia.
    [Show full text]
  • BRITISH BOTANICAL GARDENS in the 1980S
    BRITISH BOTANICAL GARDENS IN THE 1980s: CHANGES REFLECTED BY BIBLIOGRAPHICAL AND SOCIAL SURVEY Enid Constance Gilberthorpe Thesis submitted fox' the degree of PhD University of Sheffield Division of Education January 1987 cONTEN'rs PAGE NUMBER List of Contents :1. List of Illustrations 111 Acknowledgements iv Summary vi CHAPTER I INTRODUCTION: AIMS AND SCOPE I 2 KEY DOCUMENTS 27 3 PLANTS FOR TEACHING, AND FOR RESEARCH: 42 teaching of botany; supplies of plant material; research into taxonomy; experimental botany 4 ECONOMIC BOTANY - plants with domestic 57 and medicinal uses and of commercial importance 5 HORTICULTURE: the acquisition and 74 cultivation of plants in botanical gardens 6 AMENITY: plants for pleasure and 97 interest 7 PUBLIC INFORMATION AND EDUCATION ilk SERVICES; PUBLIC RECREATION FACILITIES 1. CHAPTER PAGE NUMBER 8 CONSERVATION: wild and cultivated 139 plants in danger 9 BOTANICAL GARDENS OPEN TO THE PUBLIC; 188 GUIDES TO THE GARDENS - PRINTED PUBLICITY; ILLUSTRATIONS FROM THE GUIDE S 10 FUNCTIONS OF GARDENS - THE PROBLEM 220 OF OVERLAP 11 SHEFFIELD BOTANICAL GARDENS 242 12 BOTANICAL GARDENS IN BRITISH 'TWINNED' 2.7 TOWNS - ANY INTERACTION WITH THEIR EUROPEAN PARTNERS? 13 PUBLIC VIEWS ON BOTANICAL GARDENS - 287 A SAMPLE SURVEY 14 GARDENS NOW AND IN THE FUTURE - 294 POSSIBLE DEVELOPMENTS BIBLIOGRAPHY 328 ILLUSTRATIONS (between pages 219 and 220) National 1. Edinburgh Royal Botanic Garden: Rock Garden Pond. 2. Kew Royal Botanic Gardens: Palm House with spring bedding. 3. Westonbirt Arboretum (Forestry Commission): the memorial sarsen stone on Mitchell Drive. University L&. Cambridge University Botanic Garden: [view of Garden shown on front of folding leaflet]. 5. Ness Gardens (University of Liverpool): a late summer scene in the Heather Garden.
    [Show full text]
  • Vigna Unguiculata (L.) Walp
    Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 1149-1152 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 1149-1152 Vigna unguiculata (L.) Walp. (Papilionaceae): A Received: 16-11-2019 Accepted: 21-12-2019 review of medicinal uses, Phytochemistry and pharmacology Mehreen Zaheer Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Mehreen Zaheer, Salman Ahmed and Muhammad Mohtasheemul Hassan University of Karachi, Karachi, Pakistan Abstract Vigna unguiculata (L.) Walp. (Papilionaceae) is a medicinally important plant and is used for the Salman Ahmed treatment of different diseases. Alkaloids, phenols, flavonoids and phytic acid have been reported from Department of Pharmacognosy, this plant. Antioxidant, antidiabetic and hypocholesterolemic activities are reported by Vigna Faculty of Pharmacy and unguiculata. The present review is an attempt to compile all the previous data on the basis of its Pharmaceutical Sciences, medicinal uses, phytochemistry and pharmacology reported in the previous articles. University of Karachi, Karachi, Pakistan Keywords: Vigna unguiculata, medicinal uses, phytochemistry, pharmacology Muhammad Mohtasheemul Hassan Introduction Department of Pharmacognosy, Vigna unguiculata (L.) Walp. is a leguminous plant belongs to the family Papilionaceae. It is Faculty of Pharmacy and originated from Africa and is grown widely all over the world including Nigeria, India, Central Pharmaceutical Sciences, America, China and Africa. It is an edible legume. The seeds and leaves are a major
    [Show full text]
  • EFFECT of WEEDY RICE (Oryza Sativa L.)
    EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT SALMAH BINTI TAJUDDIN UNIVERSITI SAINS MALAYSIA 2014 EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT by SALMAH BINTI TAJUDDIN Thesis submitted in fulfilment of the requirements for the degree of Master of Science AUGUST 2014 ACKNOWLEDGEMENTS My postgraduate (MSc) study at the Universiti Sains Malaysia (School of Biological Sciences) was a great challenge. It was made possible with the kind assistance of many individuals, either directly or indirectly, to whom I am indebted, not all of whom are mentioned in this page. First and foremost, my deepest appreciation goes to Prof. Mashhor Mansor for his strong support, unweary supervision and motivating guidance during the course of my study. In addition, I was also trained in writing scientific papers and had the opportunity to present scientific papers in seminars and conferences. Other academicians had also given support through inspirational motivations and guidance, particularly Dr. Azmi Man, Prof. Nashriyah Mat and Dr. Asyraf Mansor, my co-supervisors, to all of whom I am very grateful. I wish to thank the staff of the Malaysian Meteorological Department Pulau Pinang for providing me the necessary meteorological data needed for my thesis. The staff of MARDI (Seberang Perai) had been very helpful in my experimental work, especially En. Awang, En. Ebnil, En. Mustafa, Pn. Norhayati and Pn. Aqilah. The staff of USM for help me solve statistics analysis problems, particularly Dr.
    [Show full text]