Grassroots E-Floras in the Poaceae: Growing Grassbase and Grassworld
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A World Flora Online by 2020: a Discussion Document on Plans for the Achievement of Target 1 of the Global Strategy for Plant Conservation by 2020
CBD Distr. GENERAL UNEP/CBD/SBSTTA/16/INF/38 23 April 2012 ENGLISH ONLY SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Sixteenth meeting Montreal, 30 April-5 May 2012 Item 8 of the provisional agenda* GLOBAL STRATEGY FOR PLANT CONSERVATION: WORLD FLORA ONLINE BY 2020 Note by the Executive Secretary 1. In decision X/17 the Conference of the Parties adopted the consolidated update of the Global Strategy for Plant Conservation (GSPC) 2011-2020, with sixteen updated global targets for plant conservation, including Target 1 of developing, by 2020, an online Flora of all known plants. 2. This document provides a report for information to the participants of sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice on steps taken to develop a ―World Flora online‖, its relevance for the implementation of the Convention and for the achievement of the other targets of the GSPC. 3. The document, prepared jointly by the Missouri Botanical Garden, the New York Botanical Garden, the Royal Botanic Garden Edinburgh, and the Royal Botanic Gardens, Kew, is presented in the form and language in which it was received by the Secretariat. * UNEP/CBD/SBSTTA/16/1. I order to minimize the environmental impacts of the Secretariat’s processes, and to contribute to the Secretary-General’s initiative for a C-Neutral UN, this document is printed in limited numbers. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/CBD/SBSTTA/16/INF/38 Page 2 A World Flora Online by 2020: a discussion document on plans for the achievement of Target 1 of the Global Strategy for Plant Conservation by 2020 Presented to the Sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice of the Convention on Biological Diversity, Montreal, 30 April – 5 May 2012. -
Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop -
A Global Perspective on the Origins of Agriculture: the Importance of Unconscious Selection
A global perspective on the origins of agriculture: the importance of unconscious selection Thomas Kluyver Department of Animal and Plant Sciences A thesis submitted for the degree of Doctor of Philosophy July 2013 1 Acknowledgements My primary supervisor, Colin Osborne, has provided advice, encouragement and inspiration throughout my PhD. My supervisors in the Department of Archaeology, Glynis Jones and Mike Charles, have patiently helped me to get to grips with a field which I had never studied before this project. Mark Rees’ advice about statistics has also been invaluable. I am grateful to Irene Johnson, for her eminently practical help with growing all kinds of plants, and to Emily Mockford and Chris Bennett, for painstakingly dissecting beet seed capsules to weigh individual seeds. Katherine Haynes and Rebecca Crabtree weighed seed of modern garden vegetables for chapter 3, and that chapter also could not have been written without people and organisations around the world who shared their data with me, including Benoît Pujol (Laboratoire Évolution et Diversité Biologique, France), the Botanical Information Section at RBG Kew, the USDA National Genetic Resources Program, the International Potato Centre (CIP) in Peru, and EMBRAPA in Brazil. Over the last few years, I have enjoyed a warm, friendly and intellectually stimulating environment in Sheffield. It has been a pleasure to work with the people in Colin Osborne’s lab group, as well as the many others who I have got to know. My PhD research was funded by a university studentship from the University of Sheffield, for which I am very thankful. Last but not least, my thanks to my girlfriend and my family, for their support both during my PhD and in the years of education which prepared me to undertake it. -
WRA Species Report
Family: Poaceae Taxon: Helictotrichon sempervirens Synonym: Avena notarisii Parl. Common Name: Blue Oat Grass Avena sempervirens Vill. (basionym) Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Intermediate substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 y 405 Toxic to animals -
Dr.M.S Kiranraj , Asst.Professor,Dept
CONTENTS Page No. INTRODUCTION 3 METHODOLOGY 4 RESULTS & DISCUSSION 4 – 44 ANALYSIS & SUMMARY 44 –49 REFERENCES 50 Plates (Nos. 1- 4) 51 – 54 Appendix (Published Papers) 2 INTRODUCTION The Crop Genetic Resources (CGRs) otherwise known as Crop Wild Relatives (CWRs) which include the progenitors of crops, as well as species more or less closely related to them, constitute an increasingly important resource for improving agricultural production and for maintaining sustainable agroecosystems. They have contributed many useful genes to crop plants, and modern varieties of most crops now contain genes from their wild relatives. CWRs are the repositories of genetic variation that can be used in breeding new and better adapted crop varieties that are resistant to stress, disease and more importantly the climate change. In the process of domestication, a crop goes through a genetic bottleneck, ending up with much less genetic variation than is available in the wild species. The genetic resource diversity is on decline due to the lack of proper classification and genetic studies worldwide. According to the evaluation of IUCN 2008 Red List Assessment, about 54% of the 1,555 Monocotyledons were classified as endangered or facing a high risk of extinction in the wild ,where as 12% were listed been critically endangered. This is all the more important when we consider that the Monocotyledon family includes economically important crops such as rice , wheat, maize, barley, sorghum, and sugarcane, which along provide more than the half of the dietary energy if the world’s population. The wise conservation and use of crop wild relatives are essential elements for increasing food security, eliminating poverty, and maintaining the environment. -
Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration
Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration Olympic National Park, Washington Cynthia Lee Riskin A project submitted in partial fulfillment of the requirements for the degree of Master of Environmental Horticulture University of Washington 2013 Committee: Linda Chalker-Scott Kern Ewing Sarah Reichard Joshua Chenoweth Program Authorized to Offer Degree: School of Environmental and Forest Sciences Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration Olympic National Park, Washington Cynthia Lee Riskin Master of Environmental Horticulture candidate School of Environmental and Forest Sciences University of Washington, Seattle September 3, 2013 Contents Figures ................................................................................................................................................................. ii Tables ................................................................................................................................................................. vi Acknowledgements ....................................................................................................................................... vii Introduction ....................................................................................................................................................... 1 Bromus tectorum L. (BROTEC) ..................................................................................................................... 19 Cirsium arvense (L.) Scop. (CIRARV) -
Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species). -
The World Checklist of Vascular Plants, a Continuously Updated
www.nature.com/scientificdata OPEN The World Checklist of Vascular DATA DescripTOR Plants, a continuously updated resource for exploring global plant diversity Rafaël Govaerts , Eimear Nic Lughadha ✉, Nicholas Black, Robert Turner & Alan Paton The World Checklist of Vascular Plants (WCVP) is a comprehensive list of scientifcally described plant species, compiled over four decades, from peer-reviewed literature, authoritative scientifc databases, herbaria and observations, then reviewed by experts. It is a vital tool to facilitate plant diversity research, conservation and efective management, including sustainable use and equitable sharing of benefts. To maximise utility, such lists should be accessible, explicitly evidence-based, transparent, expert-reviewed, and regularly updated, incorporating new evidence and emerging scientifc consensus. WCVP largely meets these criteria, being continuously updated and freely available online. Users can browse, search, or download a user-defned subset of accepted species with corresponding synonyms and bibliographic details, or a date-stamped full dataset. To facilitate appropriate data reuse by individual researchers and global initiatives including Global Biodiversity Information Facility, Catalogue of Life and World Flora Online, we document data collation and review processes, the underlying data structure, and the international data standards and technical validation that ensure data quality and integrity. We also address the questions most frequently received from users. Background & Summary Te World Checklist of Vascular Plants (WCVP, http://wcvp.science.kew.org/) is a sustainable, curated, global consensus view of all known vascular plant species (fowering plants, conifers, cycads, ferns, clubmosses and fr- mosses). It is derived from names and taxonomic concept resources managed at the Royal Botanic Gardens, Kew (hereafer Kew) by reconciling names to taxon concepts, to produce a comprehensive taxonomic compilation for vascular plants. -
"Poaceae (Gramineae)"
Poaceae (Gramineae) Introductory article Paul M Peterson, Smithsonian Institution, Washington DC, USA Article Contents . Economically Important Species . Morphology . History and Phylogeny . Ecology Online posting date: 20th September 2013 The grass family (Poaceae or Gramineae) is the fourth beer. Rice originated in southeastern Asia and can be called largest flowering plant family and contains approxi- the world’s most important crop, because it is estimated mately 11 000 species in nearly 800 genera worldwide. We that over 200 million tonnes of rice are consumed each year currently recognise 12 subfamilies: Anomochlooideae, by 1.6 billion people. In wheat, two proteins, gliadin and glutein, along with starch combine to form gluten. When Pharoideae, Puelioideae, Bambusoideae, Ehrhartoideae, these proteins in bread flour are mixed with water and Pooideae, Aristidoideae, Panicoideae, Arundinoideae, kneaded, the resultant product is an elastic dough mixture Micrairoideae, Danthonioideae and Chloridoideae, and in perfectly suited, with the addition of yeast, for baking. The these subfamilies we recognise 50 tribes and 81 subtribes. domestication of modern wheat, a hexaploid (6n=42), is Grasses are well adapted to open, marginal and fre- an interesting story in the coevolution of man and food, quently disturbed habitats, and can be found on every because early domesticates of wheat, the einkorns (Triti- continent, including Antarctica. A grass is characterised cum monococcum L., 2n=14) and emmers (Triticum tur- by having a caryopsis or grain, and the primary inflores- gidum L., 4n=28), were harder to harvest, that is, separate cence is referred to as a spikelet with a lemma and palea. the grains from florets called threshing, and when baked The incorporation of two photosynthetic or carbon produced inferior breads. -
Evolution and Development of the Paired
EVOLUTION AND DEVELOPMENT OF THE PAIRED SPIKELET TRAIT IN MAIZE AND OTHER GRASSES (POACEAE) ______________________________________________ A Thesis Presented to The Faculty of the Graduate School At the University of Missouri - Columbia ______________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Arts ______________________________________________ by EDEN A. JOHNSON Dr. Paula McSteen, Thesis Supervisor May 2017 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled EVOLUTION AND DEVELOPMENT OF THE PAIRED SPIKELET TRAIT IN MAIZE AND OTHER GRASSES (POACEAE) presented by Eden A. Johnson, a candidate for the degree of master of arts, and hereby certify that, in their opinion, it is worthy of acceptance. _____________________________________________ Professor Paula McSteen ______________________________________________ Professor J. Chris Pires ______________________________________________ Professor Melissa Mitchum Thank you for the support and love, Mom. I would like to dedicate this Thesis to my parachute and my partner, William. Before you, I was always looking down at grasses; with you, I am reaching for the sky. ACKNOWLEDGMENTS I am grateful to my thesis committee, specifically Dr. Melissa Mitchum, Dr. Chris Pires, and Dr. David Braun, for their support, time, and expertise throughout my time at the University of Missouri - Columbia. I would also like to thank the members of the Graduate Education Counsel, Nila Emerich and Lori Eggert, for their pursuit and enthusiasm for whatever makes students in the Division of Biological Sciences thrive. Thank you to my thesis advisor, Dr. Paula McSteen, for enthusiastically recruiting me to MU, for countless rounds of paper revisions, and for providing me with the opportunity to pursue my Master’s degree under your guidance. -
The Pennell House Celebration Lunch
OLD EastbouRNIAN The Pennell House celebration lunch Our annual summer Sunday lunch this year was held on 5 June and celebrated Pennell House. Guests included OEs, former staff and other friends and associates of the house. their families who had been able to attend: Culain Morris (housemaster 1980–88); Lisa Young, Richard Young and Ros Ford (wife and children of Mike Young, housemas- ter 1965–80); and Fiona Storrs and Alison Charman (daughters of Robert Storrs, housemaster 1933–53). We The lunch guests assemble on the lawn by the Dining Hall were also pleased to see Liz Harrison, widow of Robin Harrison, who had been a boy in Pennell between 1942 and 1947. Ben Jourdain spoke of the legacy of the house and how Current housemaster Ben he felt that he and Lydia were Jourdain with Culain Morris merely custodians of Pennell, t is 30 years since the move continuing the traditions and into ‘new’ Pennell House in values that had been established I 1986, after 65 years’ residency by earlier generations. in the original Pennell in Grass- Jo Shubber, who was in ington Road. We were pleased to Pennell from 1965 to 1970, paid see a good representation across affectionate tribute to his house- the generations, including Robin master Mike Young, who died in Brown, Robin Grey and Robert June 2015, a man who was firm Stapylton-Smith, all of whom but fair, and greatly appreciated Fiona Storrs, Liz Harrison and Alison Charman were at Pennell from 1945 to by the boys in the house. 1950, up to the current house- The College archives team had master Ben Jourdain, his wife mounted a display of photos and Lydia and their daughters Isla and text showing the history of the Alyssa. -
Genetic and Genomic Resources, and Breeding for Accelerating Improvement of Small Millets: Current Status and Future Interventions
Nucleus https://doi.org/10.1007/s13237-020-00322-3 REVIEW ARTICLE Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions M. Vetriventhan1 · Vania C. R. Azevedo1 · H. D. Upadhyaya1,9 · A. Nirmalakumari2 · Joanna Kane‑Potaka1 · S. Anitha1 · S. Antony Ceasar3 · M. Muthamilarasan4 · B. Venkatesh Bhat5 · K. Hariprasanna5 · Amasiddha Bellundagi5 · Deepika Cheruku5 · C. Backiyalakshmi6 · Dipak Santra7 · C. Vanniarajan8 · Vilas A. Tonapi5 Received: 1 March 2020 / Accepted: 29 May 2020 © The Author(s) 2020 Abstract Current agricultural and food systems encourage research and development on major crops, neglecting regionally impor- tant minor crops. Small millets include a group of small- seeded cereal crops of the grass family Poaceae. This includes fnger millet, foxtail millet, proso millet, barnyard millet, kodo millet, little millet, tef, fonio, job’s tears, guinea millet, and browntop millet. Small millets are an excellent choice to supplement major staple foods for crop and dietary diversity because of their diverse adaptation on marginal lands, less water requirement, lesser susceptibility to stresses, and nutri- tional superiority compared to major cereal staples. Growing interest among consumers about healthy diets together with climate-resilient features of small millets underline the necessity of directing more research and development towards these crops. Except for fnger millet and foxtail millet, and to some extent proso millet and tef, other small millets have received minimal research attention in terms of development of genetic and genomic resources and breeding for yield enhancement. Considerable breeding eforts were made in fnger millet and foxtail millet in India and China, respectively, proso millet in the United States of America, and tef in Ethiopia.