Jurassic Timescale

Total Page:16

File Type:pdf, Size:1020Kb

Jurassic Timescale 0 TimeScale Creator 2012 chart Calca reous Marine Macrofossils Nann Standard Chronostratigraphy Geomagnetic (Mesozoic-Paleozoic) ofossil Polarity Tethyan Ammonoids s Ma Period Epoch Age/Stage Substage M17 CC2 Cretaceous Early Berriasian E M18 CC1 145 Berriasella jacobi M19 NJT1 M20 7b 146 Lt M21 Durangites NJT1 M22 7a 147 M22A Micracanthoceras microcanthum NJT1 M23 6b 148 Micracanthoceras ponti / M24 Burckhardticeras peroni NJT1 Tithonian M24A 6a 149 M24B Semiformiceras fallauxi NJT15 M25 b E 150 M25A Semiformiceras semiforme NJT1 M26 Semiformiceras darwini 5a 151 lt-Oxf N M-Sequence Hybonoticeras hybonotum 152 lt-Oxf R Hybonoticeras beckeri 153 m- Lt Oxf N Aulacostephanus eudoxus 154 m- NJT14 Late Aspidoceras acanthicum Oxf R Kimmeridgian Crussoliceras divisum 155 Card- N Ataxioceras hypselocyclum 156 E e-Oxf Sutneria platynota R Idoceras planula 157 Cal- Oxf N Epipeltoceras bimammatum 158 lt- Lt Callo v R NJT13 159 Perisphinctes bifurcatus lt- Gregoryceras transversarium b Callo Perisphinctes plicatilis 160 v R Oxfordian M Cardioceras cordatum lt- 161 Quenstedtoceras mariae Callo Quenstedtoceras lamberti v N Oxfordian composite Peltocoeras athleta 162 m- NJT13 E Erymnoceras coronatum Callo a Reineckeia anceps 163 v R e- Macrocephalites gracilis Lt Bullatimorphites bullatus 164 Callo M v N Clydoniceras discus Callovian Hecticoceras retrocostatum 165 Bat- NJT12 E Cal R Cadomites bremeri Morrisiceras morrisi 166 lt- Lt Bath Tulites subcontractus N Procerites progracilis 167 M Bathonian m- England-Burgundy-Swabia Procerites aurigerus NJT11 Bath Zigzagiceras zigzag 168 E R Parkinsonia parkinsoni NJT1 e- Garantiana garantiana 0b 169 Middle Lt Bath Strenoceras niortense Bajocian s. Spain NJT1 N Stephanoceras 0a 170 E Baj- humphriesianum NJT9 Lt Bat R Sonninia propinquans NJT8 171 lt- Witchellia laeviuscula c M Bajo Hyperlioceras discites 172 N Aalenian Graphoceras concavum m- Brasilia bradfordensis NJT8b Bajo S. Switz. 173 Jurassic E Ludwigia murchisonae R Leioceras opalinum e- NJT8 174 Pleydellia aalensis Bajo a Dumortieria pseudoradiosa N 175 Phlyseogrammoceras lt-Aal dispansum R 176 Lt Grammoceras thouarsense m-Aal NJT7b N 177 mid- Haugia variabilis Aal R 178 Toar- Toarcian Aal N 179 Toar- Hildoceras bifrons NJT7a Aal N 180 m- Toarcian composite E Toar 181 R Harpoceras serpentinum NJT6 e- Toar 182 Dactylioceras tenuicostatum NJ5b N 183 Pl- Emaciaticeras emaciatum Toar s. Spain R 184 NJT5a lt- Arieticeras algovianum 185 Plien s. Switz. Lt (Domerian) N m- 186 Plien Fuciniceras lavinianum Pliensbachian R 187 m- NJT4b Early Plien 188 R Prodactylioceras davoei e- Paris Basin and Switz. Tragophylloceras ibex 189 E (Carixian) Plien N NJT4a 190 e- Uptonia jamesoni Plien 191 R Si-Pl NJT3b 192 N Echioceras raricostatum Si-Pl N 193 Lt (Lotharingian) lt-Sin Oxynoticeras oxynotum R 194 lt-Sin N Paris Basin core (generalized) Asteroceras obtusum 195 Sinemurian NJT3a Caenisites turneri 196 m-Sin R 197 Arnioceras semicostatum E 198 e-Sin mixe NJT2b d Arietites bucklandi 199 Newark and Hartford series NJT2 Schlotheimia angulata a 200 Hett-N Alsatites liasicus Hettangian NJT1 Psiloceras planorbis 201 Psiloceras spelae Triassic Late Rhaetian NT2b E23 Newark series Choristoceras marshi.
Recommended publications
  • The Jurassic Pleurotomarioidean Gastropod Laevitomaria and Its Palaeobiogeographical History
    The Jurassic pleurotomarioidean gastropod Laevitomaria and its palaeobiogeographical history ROBERTO GATTO, STEFANO MONARI, JÁNOS SZABÓ, and MARIA ALESSANDRA CONTI Gatto, R., Monari, S., Szabó, J., and Conti, M.A. 2015. The Jurassic pleurotomarioidean gastropod Laevitomaria and its palaeobiogeographical history. Acta Palaeontologica Polonica 60 (1): 217–233. The genus Laevitomaria is reviewed and its palaeobiogeographical history is reconstructed based on the re-examination of its type species L. problematica, the study of material stored at the National Natural History Museum of Luxembourg, and an extensive review of the literature. The systematic study allows ascribing to Laevitomaria a number of Jurassic species from the western European region formerly included in other pleurotomariid genera. The following new combi- nations are proposed: Laevitomaria allionta, L. amyntas, L. angulba, L. asurai, L. daityai, L. fasciata, L. gyroplata, L. isarensis, L. joannis, L. repeliniana, L. stoddarti, L. subplatyspira, and L. zonata. The genus, which was once considered as endemic of the central part of the western Tethys, shows an evolutionary and palaeogeographical history consider- ably more complex than previously assumed. It first appeared in the Late Sinemurian in the northern belt of the central western Tethys involved in the Neotethyan rifting, where it experienced a first radiation followed by an abrupt decline of diversity in the Toarcian. Species diversity increased again during Toarcian–Aalenian times in the southernmost part of western European shelf and a major radiation occurred during the Middle Aalenian to Early Bajocian in the northern Paris Basin and southern England. After a latest Bajocian collapse of diversity, Laevitomaria disappeared from both the central part of western Tethys and the European shelf.
    [Show full text]
  • Expanded Jurassic Timescale
    TimeScale Creator 2012 chart Russian and Ural regional units Russia Platform regional units Calca Jur-Cret boundary regional Russia Platform East Asian regional units reous stages - British and Boreal Stages (Jur- Australia and New Zealand regional units Marine Macrofossils Nann Standard Chronostratigraphy British regional Boreal regional Cret, Perm- Japan New Zealand Chronostratigraphy Geomagnetic (Mesozoic-Paleozoic) ofossil stages stages Carb & South China (Neogene & Polarity Tethyan Ammonoids s Ma Period Epoch Age/Stage Substage Cambrian) stages Cret) NZ Series NZ Stages Global Reconstructions (R. Blakey) Ryazanian Ryazanian Ryazanian [ no stages M17 CC2 Cretaceous Early Berriasian E Kochian Taitai Um designated ] M18 CC1 145 Berriasella jacobi M19 NJT1 Late M20 7b 146 Lt Portlandian M21 Durangites NJT1 M22 7a 147 Oteke Puaroan Op M22A Micracanthoceras microcanthum NJT1 Penglaizhenian M23 6b 148 Micracanthoceras ponti / Volgian Volgian Middle M24 Burckhardticeras peroni NJT1 Tithonian M24A 6a 149 M24B Semiformiceras fallauxi NJT15 M25 b E 150 M25A Semiformiceras semiforme NJT1 5a Early M26 Semiformiceras darwini 151 lt-Oxf N M-Sequence Hybonoticeras hybonotum 152 Ohauan Ko lt-Oxf R Kimmeridgian Hybonoticeras beckeri 153 m- Lt Late Oxf N Aulacostephanus eudoxus 154 m- NJT14 Late Aspidoceras acanthicum Oxf R Kimmeridgian Kimmeridgian Kimmeridgian Crussoliceras divisum 155 155.431 Card- N Ataxioceras hypselocyclum 156 E Early e-Oxf Sutneria platynota R Idoceras planula Suiningian 157 Cal- Oxf N Epipeltoceras bimammatum 158 lt- Lt Callo
    [Show full text]
  • A Key Interval in the Early Mesozoic Phytoplankton Radiation
    1 The Bajocian (Middle Jurassic): a key interval in the early Mesozoic phytoplankton radiation 2 3 Nickolas J. Wiggan a.b*, James B. Riding b, Robert A. Fensome c, Emanuela Mattioli d 4 5 Insert addresses here 6 7 ABSTRACT 8 Dinoflagellates and coccolithophores are two of the most important groups of phytoplankton 9 in the modern oceans. These groups originated in the Triassic and radiated through the early 10 Mesozoic, rising to ecological prominence. Within this long-term radiation, important short- 11 term intervals of evolutionary and ecological change can be recognised. The Bajocian 12 (Middle Jurassic, ~170–168 Ma) was characterised by an important ecological transition 13 within the coccolithophores, and the radiation of one of the principal families of cyst-forming 14 dinoflagellates, the Gonyaulacaceae. During the Early Bajocian, the coccolith genus 15 Watznaueria diversified and expanded ecologically to dominate coccolith floras, a situation 16 which continued for the remainder of the Mesozoic. This pattern was paralleled within 17 dinoflagellate cyst floras by the ecological dominance of the genus Dissiliodinium in the mid- 18 palaeolatitudes. These phenomena appear to be linked to a positive carbon isotope shift, and 19 an interval of enhanced productivity driven by a shift to a more humid climate, enhanced 20 continental weathering and nutrient flux. The latest Early Bajocian to earliest Bathonian was 21 then characterised by the rapid increase in diversity of dinoflagellate cysts within the family 22 Gonyaulacaceae. Through this interval, the Gonyaulacaceae transitioned from being a 23 relatively minor component of dinoflagellate cyst floras, to becoming one of the prominent 24 groups of cyst-forming dinoflagellates, which has persisted to the Holocene.
    [Show full text]
  • Integrated Biostratigraphy Across the Aalenian/Bajocian Boundary of the Central High Atlas, Morocco
    Volumina Jurassica, 2015, Xiii (1): 27–42 Doi: 10.5604/17313708 .1148554 Integrated biostratigraphy across the Aalenian/Bajocian boundary of the Central High Atlas, Morocco Driss SADKI 1 Key words: Aalenian/Bajocian boundary, Central High Atlas, Morocco, integrated biostratigraphy. Abstract. This work presents an integrated biostratigraphic study across the Aalenian/Bajocian boundary of the Central High Atlas of Morocco. The data that are the basis for this study were obtained from the region of Rich that is located in the center of the basin of the Moroccan High Atlas. This region presents a thick Aalenian–Bajocian succession with continuous marine sedimentation, which offers a rich and varied fauna whose analysis enables the compilation of an integrated biostratigraphy based on the different paleontological groups: ammonites, belemnites, brachiopods, bivalves, gastropods, calcareous nanno- fossils, foraminifera and ostracods. INTRODUCTION AMMONITES The Rich area, situated in the center of the basin of High The succession of ammonite faunas in the interval across Moroccan Atlas (Fig. 1), presents a thick Aalenian–Bajocian the Aalenian/Bajocian boundary, shows (Fig. 2) six succes- succession with continuous marine sedimentation, which of- sive assemblages (Sadki, Elmi, 1991), sometimes dominated fers rich and varied fossils. This section was proposed as the by the NW European graphoceratids, sometimes by Mediter- auxiliary stratotype of the Aalenian/Bajocian boundary in the ranean Province taxa. Furthermore the abundance of the Mediterranean Province (Sadki, 1994). An integrated bio- phylloceratids is similar to that of the hammatoceratids, and stratigraphic analysis of this section is presented here, detail- therefore shows the same trend as that of Mediterranean ing the distribution of the main paleontological groups: am- Province taxa.
    [Show full text]
  • Paléontologie Au Luxembourg (2) A
    Paléontologie au Luxembourg (2) A. Di Cencio, D. Sadki, R. Weis (eds.) R. Weis D. Sadki, A. Di Cencio, Les ammonites de la Minette Andrea Di Cencio, Driss Sadki, Paléontologie au Luxembourg (2) Luxembourg au Paléontologie Robert Weis (eds.) Ferrantia Travaux scientifiques du Musée national d'histoire naturelle Luxembourg www.mnhn.lu 83 2020 Ferrantia 83 2020 2020 83 Ferrantia est une revue publiée à intervalles non réguliers par le Musée national d’histoire naturelle à Luxembourg. Elle fait suite, avec la même tomaison, aux T M ’ L parus entre 1981 et 1999. Comité de rédaction: Eric Buttini Guy Colling Alain Frantz Thierry Helminger Ben Thuy Mise en page: Romain Bei Design: Thierry Helminger Prix du volume: 20 € Rédaction: Échange: Musée national d’histoire naturelle Exchange MnhnL Rédaction Ferrantia c/o Musée national d’histoire naturelle 25, rue Münster 25, rue Münster L-2160 Luxembourg L-2160 Luxembourg Tél +352 46 22 33 - 1 Tél +352 46 22 33 - 1 Fax +352 46 38 48 Fax +352 46 38 48 Internet: http://www.mnhn.lu/ferrantia/ Internet: http://www.mnhnl.lu/biblio/exchange email: [email protected] email: [email protected] Page de couverture: Bredyia subinsignis (Oppel, 1856), DOU833. Natural History Museum of Luxembourg. Citation: Di Cencio A., Sadki D., Weis R. (eds.) 2020. - Paléontologie au Luxembourg (2) - Les ammonites de la Minette. Ferrantia 83, Musée national d’histoire naturelle, Luxembourg, 129 p. Date de publication: 15 décembre 2020 (réception du manuscrit: 19 mai 2020) Impression: Imprimerie Centrale climatiquement neutre Impression | LU-319-JR8FDJV | www.natureOffice.com Ferrantia est publiée sous la licence Creative Commons BY-NC-ND 3.0 LU.
    [Show full text]
  • 1501 Rogov.Vp
    Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography MIKHAIL A. ROGOV & TERRY P. POULTON We present the first description of aulacostephanid (Perisphinctoidea) ammonites from the Kimmeridgian of Canada, and the first illustration of these ammonites in the Americas. These ammonites include Rasenia ex gr. cymodoce, Zenostephanus (Xenostephanoides) thurrelli, and Zonovia sp. A from British Columbia (western Canada). They belong to genera that are widely distributed in the subboreal Eurasian Arctic and Northwest Europe, and they also occur even in those Boreal regions dominated by cardioceratids. They are important markers for a narrow stratigraphic interval in the Cymodoce Zone (top of Lower Kimmeridgian) and the lower part of the Mutabilis Zone (base of Upper Kimmeridgian) of the Northwest European standard succession. In Spitsbergen and Franz Josef Land, the only Upper Kimmeridgian aulacostephanid-bearing level is the Zenostephanus (Zenostephanus) sachsi biohorizon, which very likely belongs to the Mutabilis Zone. Expansion of Zenostephanus from Eurasia, where it is present over a large area, into British Columbia, is approximately correlative with a transgressive event that also led to expansion of the Submediterranean ammonite ge- nus Crussoliceras through the Submediterranean and Subboreal areas slightly before Zenostephanus. • Key words: Kimmeridgian, aulacostephanids, Zenostephanus, Rasenia, British Columbia, palaeobiogeography, sea-level changes. ROGOV, M.A. & POULTON, T.P. 2015. Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography. Bulletin of Geosciences 90(1), 7–20 (5 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received January 31, 2014; ac- cepted in revised form October 2, 2014; published online November 25, 2014; issued January 26, 2015.
    [Show full text]
  • Earliest Known Lepisosteoid Extends the Range of Anatomically Modern Gars to the Late Jurassic Received: 25 September 2017 Paulo M
    www.nature.com/scientificreports OPEN Earliest known lepisosteoid extends the range of anatomically modern gars to the Late Jurassic Received: 25 September 2017 Paulo M. Brito1, Jésus Alvarado-Ortega2 & François J. Meunier3 Accepted: 2 December 2017 Lepisosteoids are known for their evolutionary conservatism, and their body plan can be traced at Published: xx xx xxxx least as far back as the Early Cretaceous, by which point two families had diverged: Lepisosteidae, known since the Late Cretaceous and including all living species and various fossils from all continents, except Antarctica and Australia, and Obaichthyidae, restricted to the Cretaceous of northeastern Brazil and Morocco. Until now, the oldest known lepisosteoids were the obaichthyids, which show general neopterygian features lost or transformed in lepisosteids. Here we describe the earliest known lepisosteoid (Nhanulepisosteus mexicanus gen. and sp. nov.) from the Upper Jurassic (Kimmeridgian – about 157 Myr), of the Tlaxiaco Basin, Mexico. The new taxon is based on disarticulated cranial pieces, preserved three-dimensionally, as well as on scales. Nhanulepisosteus is recovered as the sister taxon of the rest of the Lepisosteidae. This extends the chronological range of lepisosteoids by about 46 Myr and of the lepisosteids by about 57 Myr, and flls a major morphological gap in current understanding the early diversifcation of this group. Actinopterygians, or ray-finned fishes, are the largest group among extant gnathostoms vertebrates. Today actinopterygians are represented by three major clades: Cladistia (bichirs and rope fsh), with at least 16 species, Chondrostei (sturgeons and paddle fshes), with about 30 species, and Neopterygii, formed by the Teleostei, with about 30,000 species and the Holostei with eight species: one halecomorph (bowfn) and 7 ginglymodians (gars)1.
    [Show full text]
  • A New Large−Bodied Theropod Dinosaur from the Middle Jurassic of Warwickshire, United Kingdom
    A new large−bodied theropod dinosaur from the Middle Jurassic of Warwickshire, United Kingdom ROGER B.J. BENSON and JONATHAN D. RADLEY Benson, R.B.J. and Radley, J.D. 2010. A new large−bodied theropod dinosaur from the Middle Jurassic of Warwickshire, United Kingdom. Acta Palaeontologica Polonica 55 (1): 35–42. Previously undocumented postcranial material from the Chipping Norton Limestone Formation (Middle Jurassic: Lower Bathonian) of Cross Hands Quarry, near Little Compton, Warwickshire represents a new large−bodied theropod dinosaur, distinct from the contemporaneous Megalosaurus bucklandii. Cruxicheiros newmanorum gen. et sp. nov. is diagnosed by a single autapomorphy, the presence of a proximomedially inclined ridge within the groove that marks the lateral extent of the posterior flange of the femoral caput (trochanteric fossa). C. newmanorum shows three tetanuran features: widely separated cervical zygapophyses, a swollen ridge on the lateral surface of the iliac blade and an anterior spur of the caudal neural spines. However, due to fragmentary preservation its affinities within Tetanurae remain uncertain: phylogenetic analysis places it as the most basal tetanuran, the most basal megalosauroid (= spinosauroid) or the most basal neotetanuran. Key words: Dinosauria, Theropoda, Tetanurae, Megalosaurus, Cruxicheiros, Bathonian, Chipping Norton Limestone Formation, England. Roger B.J. Benson [[email protected]], Department of Earth Science, University of Cambridge, Downing Street, Cam− bridge, UK, CB2 3EQ; Jonathan D. Radley [[email protected]], Warwickshire Museum, Market Place, Warwick, UK CV34 4SA; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK B15 2TT. Received 8 July 2009, accepted 18 November 2009, available online 20 November 2009.
    [Show full text]
  • The Graphoceratid Ammonite Succession in the Aalenian and Lowest Bajocian (Middle Jurassic) at Horn Park, Dorset, UK ROBERT B
    The Graphoceratid Ammonite Succession in the Aalenian and lowest Bajocian (Middle Jurassic) at Horn Park, Dorset, UK ROBERT B. CHANDLER Riddlesdown High School, Purley, Surrey, CR8 lEX Summary In 1990 Callomon and Chandler set out a scheme of 16 faunal horizons for the Aalenian-Lower Bajocian of Dorset and Somerset based principally on graphoceratid ammonites. One locality, Horn Park, stands apart in displaying strata from almost all the horizons identified in that work. Yet little material from it has ever been figured. Here a section is given together with exhaustive tables of existing nominal morphospecies collected at each level and with figures that allow the variability of the suc- cessive, probably in most cases, monobiospecific assemblages to be assessed. A revised generic classification of the Graphoceratidae is presented. them precludes almost any satisfactory discussion of phyletic relationships and hence of the overall evolution The highly discontinuous, condensed and rapidly of the group. varying development of the Inferior Oolite in southern England was first perceived by S.S. Buckman (e.g. 1891, The biostratigraphy of the Graphoceratidae has now 1893, 1910) during his attempts to correlate sections by been rather well documented, for example by Rocha et means of ammonites. Leading amongst these in al. (1990), Henriques (1992; et al. 1994) in Portugal; the Aalenian part of the succession are the Linares and Sandoval (1990) in Spain, Sadki (1994) in Graphoceratidae, including such well known genera as Morocco. In Britain, Morton (1990; 1994) and Morton Leioceras, Ludwigia, Brasilia, Graphoceras and and Hudson (1995) have described the succession in Hyperlioceras. Scotland and compared it with Dorset (Morton and Chandler 1994).
    [Show full text]
  • Abstracts and Program. – 9Th International Symposium Cephalopods ‒ Present and Past in Combination with the 5Th
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265856753 Abstracts and program. – 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th... Conference Paper · September 2014 CITATIONS READS 0 319 2 authors: Christian Klug Dirk Fuchs University of Zurich 79 PUBLICATIONS 833 CITATIONS 186 PUBLICATIONS 2,148 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exceptionally preserved fossil coleoids View project Paleontological and Ecological Changes during the Devonian and Carboniferous in the Anti-Atlas of Morocco View project All content following this page was uploaded by Christian Klug on 22 September 2014. The user has requested enhancement of the downloaded file. in combination with the 5th International Symposium Coleoid Cephalopods through Time Abstracts and program Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum, Universität Zürich Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 2 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th International Symposium Coleoid Cephalopods through Time Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum Universität Zürich, September 2014 3 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ Scientific Committee Prof. Dr. Hugo Bucher (Zürich, Switzerland) Dr. Larisa Doguzhaeva (Moscow, Russia) Dr. Dirk Fuchs (Hokkaido University, Japan) Dr. Christian Klug (Zürich, Switzerland) Dr. Dieter Korn (Berlin, Germany) Dr. Neil Landman (New York, USA) Prof. Pascal Neige (Dijon, France) Dr.
    [Show full text]
  • Jurassic (170 - 199 Ma Time-Slice) Time
    Early Jurassic (170 - 199 Ma time-slice) Time ScaLe R Creator CHRONOS Cen Mesozoic Updated by James G. Ogg (Purdue University) and Gabi Ogg to: GEOLOGIC TIME SCALE 2004 (Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., 2004) and The CONCISE GEOLOGIC TIME SCALE (Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008) Paleozoic Sponsored, in part, by: Precambrian ICS Based, in part, on: CENOZOIC-MESOZOIC BIOCHRONOSTRATIGRAPHY: JAN HARDENBOL, JACQUES THIERRY, MARTIN B. FARLEY, THIERRY JACQUIN, PIERRE-CHARLES DE GRACIANSKY, AND PETER R. VAIL,1998. Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins in: De Graciansky, P.- C., Hardenbol, J., Jacquin, Th., Vail, P. R., and Farley, M. B., eds.; Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication 60. Standard Geo- Ammonites Sequences Ammonites Sequences Smaller Benthic Foraminifers Larger Benthic Foraminifers Calcareous Nannofossils Dinoflagellate Cysts Radiolarians Belemnites Brachiopods Ostracodes Charophytes Stage Age Chronostratigraphy magnetic North Atlantic Tethys Age Polarity Sequences Boreal Sequences T-R Major T-R Period Epoch Stage Substage Boreal Boreal T-R Cycles Tethyan Global, Tethyan Cycles Cycles Zones Tethyan markers Zones Zonal Markers Zonal Markers Zones Boreal Zonal Markers Other Boreal Nannofossils Zones Zonal Markers Other Dinocysts Tethyan Dinocysts Zones Zonal Markers NW Europe Boreal Tethyan Boreal Ostracodes Tethyan Ostracodes Markers Lt. Bajoc. Strenoceras niortense Teloceras banksi Strenoceras niortense Teloceras banksi DSJ14 Lithodinia valensii Belemnopsis Lissajouthyris Lissajouthyris [un-named] 169.8 Stephanolithion speciosum Mancodinium semitabulatum, 169.8 L. galeata mg P., speciosum Durotrigia daveyi, Phallocysta apiciconus matisconensis matisconensis Glyptocythere scitula Teloc. blagdeni Bj3 Telo. blagdeni Bj3 NJ10 Andromeda depressa, G.
    [Show full text]
  • (Middle Jurassic): a Key Interval in the Early Mesozoic Phytoplankton Radiation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive 1 The Bajocian (Middle Jurassic): a key interval in the early Mesozoic phytoplankton radiation 2 3 Nickolas J. Wiggan a.b*, James B. Riding b, Robert A. Fensome c, Emanuela Mattioli d 4 5 Insert addresses here 6 7 ABSTRACT 8 Dinoflagellates and coccolithophores are two of the most important groups of phytoplankton 9 in the modern oceans. These groups originated in the Triassic and radiated through the early 10 Mesozoic, rising to ecological prominence. Within this long-term radiation, important short- 11 term intervals of evolutionary and ecological change can be recognised. The Bajocian 12 (Middle Jurassic, ~170–168 Ma) was characterised by an important ecological transition 13 within the coccolithophores, and the radiation of one of the principal families of cyst-forming 14 dinoflagellates, the Gonyaulacaceae. During the Early Bajocian, the coccolith genus 15 Watznaueria diversified and expanded ecologically to dominate coccolith floras, a situation 16 which continued for the remainder of the Mesozoic. This pattern was paralleled within 17 dinoflagellate cyst floras by the ecological dominance of the genus Dissiliodinium in the mid- 18 palaeolatitudes. These phenomena appear to be linked to a positive carbon isotope shift, and 19 an interval of enhanced productivity driven by a shift to a more humid climate, enhanced 20 continental weathering and nutrient flux. The latest Early Bajocian to earliest Bathonian was 21 then characterised by the rapid increase in diversity of dinoflagellate cysts within the family 22 Gonyaulacaceae. Through this interval, the Gonyaulacaceae transitioned from being a 23 relatively minor component of dinoflagellate cyst floras, to becoming one of the prominent 24 groups of cyst-forming dinoflagellates, which has persisted to the Holocene.
    [Show full text]