Overproduction of Soluble Trichodiene Synthase from Fusarium Sporotrichioides in Escherichia Colr

Total Page:16

File Type:pdf, Size:1020Kb

Overproduction of Soluble Trichodiene Synthase from Fusarium Sporotrichioides in Escherichia Colr 6943 ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS Vol. 300, No.1, January, pp. 416-422, 1993 Overproduction of Soluble Trichodiene Synthase from Fusarium sporotrichioides in Escherichia colr David E. Cane,*,2 Zhen Wu,* John S. Oliver,* and Thomas M. Hohnt *Department 01 Chemistry, Box H, Brown University, Providence, Rhode Island 02912; and tMycotoxin Research Unit, USDA/ARS, National Center lor Agricultural Utilization Research, Peoria, Illinois 61604 Received August 10, 1992, and in revised form September 18, 1992 1) to any of 200 known cyclic sesquiterpenes. Although Trichodiene synthase is a sesquiterpene cyclase iso­ only a relative handful of these enzymes have been iso­ latedfrom variousfungal specieswhichcatalyzes thecy­ lated and subjected to mechanistic study, they are all op­ clization of farnesyl diphosphate (FPP) to trichodiene. erationally soluble proteins, either monomers or homo­ The trichodiene synthase gene (To.x5) ofFusarium spo­ dimers of subunit M r 40,000-60,000, and require no rotrichioides has previously heen cloned and expressed cofactor other than a divalent metal cation, Mg2+ usually as 0.05-0.1% oftotal cell protein in Escherichia coli. We being preferred (1-3). By far the best studied of these have used polymerase chain reaction to amplify the tri­ cyclases has been trichodiene synthase, a fungal protein chodiene codingsequencecarriedon the plasmidpTS56­ responsible for the conversion ofFPP to trichodiene (3), 1. The resulting DNA, carrying a Bamm restriction site the parent hydrocarbon of the trichothecane family of and the T7 gene 10 ribosome binding site and transla­ mycotoxins (4, 5). Extensive mechanistic studies have tional spacer element immediately upstream ofthe ATG supported a cyclization mechanism in which FPP is ini­ start codon as well as a HindIll siteadjacent to thetrans­ lational stop codon, was inserted into the corresponding tially rearranged to its tertiary allylic isomer, nerolidyl sites of the expression vector pLM1. The latter vector diphosphate (NPP, 2), which in turn undergoes further carried the promoter and translational leader sequence ionization, cyclization, and rearrangement to give tricho­ diene (6-9) (Scheme I). All the various electrophilic re­ from T7 gene 10 and the E. coli rmBT1 T 2 tandem tran­ scription terminator. This construct was cloned into E. actions and rearrangements are believed to take place at coli BL21(DE3). The resulting transformants, when in­ a single active site. According to this picture, the folding duced with isopropyl ,B-D-thiogalactoside, produced tri­ of the acyclic substrate at the active site is a major de­ chodiene synthase as 20-30% of total soluble protein. terminant of the structure and stereochemistry of the The recombinant synthase, which could be purified five­ eventually formed sesquiterpene product (10). fold to homogeneity by ammonium sulfate precipitation, Trichodiene synthase, which was first isolated from ion-exchange chromatography on Q Sepharose, and gel apple mold fungus Trichothecium roseum (11), has been filtration on Superose 12, was identical to nativeprotein purified to homogeneity from the T-2 toxin producer, Fu­ in steady-state kinetic parameters and mobility on so­ sarium sporotrichioides and has been shown to be a homo­ dium dodecyl sulfate-polyacrylamide gel electrophoresis dimer of 45-kDa subunits (12). The closely related tri­ and had the expected MENFP N-terminal sequence. chodiene synthase of Gibberella pulicaris (anamorph F. © 1993 Academic Press, Inc. sambucinum) has been partially purified as well (13). Screening of a Agtll genomic library ofF. sporotrichioides DNA with antibodies to the cyclase resulted in isolation of the structural gene for trichodiene synthase (Tox5), Sesquiterpene synthases catalyze the cyclization ofthe 3 encoded in a 1182-bp open reading frame containing a universal acyclic precursor farnesyl diphosphate (FPP , 60-nt in-frame intron (14). In vitro excision ofthe intron andsubcloning ofthe coding sequence intothe Escherichia I This investigation was supported by a grant from the National In· stitutes of Health, GM30301, to D.E.C. 2 To whom correspondence should be addressed. 3 Abbreviations used: FPP, farnesyl diphosphate; NPP, nerolidyl di· thiogalactopyranoside; SDS-PAGE, sodium dodecylsulfate-polyacryl· phosphate; PCR, polymerase chain reaction; EDTA, ethylenediamine· amide gel electrophoresis; PVDF, polyvinylidene difluoride; roo, ribosome tetracetic acid disodium salt; LB, Luria-Bertani; IPTG, isopropyl poD· binding site. 416 0003-9861/93 $5.00 Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved. OVERPRODUCTION OF TRICHODIENE SYNTHASE IN Escherichia coli 41"1 _~_~Opp ~ .' '. "':::: I "':::: I :..... "':::: I Ii . ~ : or ·opp II OPP . 1 FPP 2 NPP H 1 0.... -~\~..t_ •._•. - ~~~:~r ~ Y -OPP 2NPP 3 Trichodiene SCHEME 1. Cyclization of farnesyl diphosphate (FPP) to trichodiene through intermediacy of nerolidyl diphosphate (NPP). coli expression vector pDR540 resulted in bacterial synthase. We therefore sought to obtain sufficient quan­ expression oftrichodiene synthase, albeit at relatively low tities ofenzyme for further mechanistic andenzymological levels corresponding to 0.05-0.1% oftotal cellular protein studies. We now report the high-level overexpression of (15). Interestingly, transformed cells produced trichodiene trichodiene synthase and the purification and preliminary itself at levels of up to 60 ,ug/liter, presumably due to characterization of the recombinant cyclase. utilization ofendogenous FPP by the recombinant cyclase. The F. sporotrichioides Tox5 gene has also been cloned EXPERIMENTAL PROCEDURES into tobacco (Nicotiana tabacum), resulting in heterolo­ Materials. Plasmid pLMl and E. coli strain BL21(DE3) were gifts gous expression of trichodiene synthase and the produc­ from Professor Gregory L. Verdine of Harvard University. E. coli strain tion of detectable quantities of trichodiene in the plant XLI-Blue was from Stratagene (San Diego, CAl and strain JMI09(DE3) host (16). was from Promega (Madison, WI). Restriction enzymes Seal andBamHI were from Stratagene and HindIII was from Promega. T4 DNA ligase The corresponding trichodiene synthase gene of G. pul­ was purchased from Promega. Pfu DNA polymerase was obtained from icaris has also been isolated by using the F. sporotrichioides Stratagene. Oligonucleotides were synthesized by the phosphoramidite gene as a hybridization probe to screen a library of G. method on a BioSearch 8700 by Charles Sutterland. Bulk matrix Q pulicaris DNA (17). The two sequences showed an 89% Sepharose and Superose 12 were obtained from Sigma (St. Louis, MO) homology at the nucleotide level, including the 60-nt in­ and Bio-Gel P-6DG was purchased from Bio-Rad (Richmond, CAl. [1­ 3HJFPP (16.7 I'Ci/l'mol) was synthesized as previously described (7). tron, and a 96% identity at the amino acid level, the pri­ All other materials used for recombinant DNA manipulations, enzyme mary difference lying in the presence of an additional assay, and protein purification were analytical grade or higher. All buffers nine amino acids at the C-terminus of the G. pulicaris and nutrient broths were prepared with doubly deionized nanopure grade synthase. Although trichodiene synthase had no overall water. homology to any other known gene, significantly, both Methods. Restriction endonuclease digestions, DNA ligations, synthases were found to contain an aspartate rich motif preparation and transformation of competent cells, plasmid minipreps, and other standard recombinant DNA manipulations were carried out previously noted in several isoprenoid chain elongation according to published procedures (20), except that after restriction en­ enzymes, including FPP synthase (18). Thus the tricho­ zyme digestion, a Millipore Ultrafree-Probind filter unit was used to diene synthase of F. sporotrichioides had the sequence remove protein in place ofphenol-chloroform extraction. Maxipreps of VLDDSKD starting at amino acid 98, while the G. puli­ plasmid DNA by the alkaline lysis method (20) followed by precipitation caris cyclase had the sequence VLDDSSD at the same with 13% polyethyleneglycol were used to prepare double-stranded DNA for sequencing. DNA sequencing on plasmid products was carried out position. Furthermore, both enzymes contained a short by the Sanger dideoxy chain termination method using the Sequenase sequence rich in basic amino acids (DRRYR-F. sporo­ 2.0 kit (U.S. Biochemical) according to the standard protocols and with trichioides, DHRYR-G. pulicaris) closely analogous to a primers developed earlier for the sequencing ofthe trichodiene synthase presumptive active site peptide previously implicated in gene (14). PCR was carried out in a Coy thermal cycler (Ann Arbor, MIl. SDS-PAGE was performed in 14 cm X 14 cm X 1 mm 12% gels pyrophosphate binding by avian FPP synthase (19). by the method of Laemmli (21) and proteins were visualized by staining Nothing more is known currently about the active site of with Coomassie brilliant blue R-250. Densitometric analysis of dried trichodiene synthase, or indeed any other sesquiterpene SDS-PAGE gels was performed on a LKB Ultroscan XL laser densi- 418 CANE ET AL. tometer. lmmunoblot detection oftrichodiene synthase was carried out Expression of trichodiene synthase by E. coli BL21(DE3J/ as previously described using lmmobilon-P PVDF transfer membranes pZW03. Growth and production conditions were optimized to give the (Millipore) and rabbit antiserum against F. sporotrichioides
Recommended publications
  • Structure-Based Virtual Screening of Hypothetical Inhibitors of the Enzyme Longiborneol Synthase—A Potential Target to Reduce Fusarium Head Blight Disease
    J Mol Model (2016) 22: 163 DOI 10.1007/s00894-016-3021-1 ORIGINAL PAPER Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease E. Bresso1 & V. L ero ux 2 & M. Urban3 & K. E. Hammond-Kosack3 & B. Maigret2 & N. F. Martins1 Received: 17 December 2015 /Accepted: 27 May 2016 /Published online: 21 June 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Fusarium head blight (FHB) is one of the most compounds from a library of 15,000 drug-like compounds. destructive diseases of wheat and other cereals worldwide. These putative inhibitors of longiborneol synthase provide a During infection, the Fusarium fungi produce mycotoxins that sound starting point for further studies involving molecular represent a high risk to human and animal health. Developing modeling coupled to biochemical experiments. This process small-molecule inhibitors to specifically reduce mycotoxin could eventually lead to the development of novel approaches levels would be highly beneficial since current treatments to reduce mycotoxin contamination in harvested grain. unspecifically target the Fusarium pathogen. Culmorin pos- sesses a well-known important synergistically virulence role Keywords Fusarium mycotoxins . Culmorin . Inhibitors . among mycotoxins, and longiborneol synthase appears to be a Homology modeling . Molecular dynamics . Ensemble key enzyme for its synthesis, thus making longiborneol syn- docking thase a particularly interesting target. This study aims to dis- cover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting Introduction longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure- Fusarium head blight (FHB), caused by Fusarium based virtual screening investigation.
    [Show full text]
  • Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening
    Advances in Microbiology, 2016, 6, 811-830 http://www.scirp.org/journal/aim ISSN Online: 2165-3410 ISSN Print: 2165-3402 Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening Natália F. Martins1, Emmanuel Bresso1, Roberto C. Togawa1, Martin Urban2, John Antoniw2, Bernard Maigret3, Kim Hammond-Kosack2 1EMBRAPA Recursos Genéticos e Biotecnologia Parque Estação Biológica, Brasília, Brazil 2Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, UK 3CNRS, LORIA, UMR 7503, Lorraine University, Nancy, France How to cite this paper: Martins, N.F., Abstract Bresso, E., Togawa, R.C., Urban, M., Anto- niw, J., Maigret, B. and Hammond-Kosack, Fusarium head blight (FHB) is a destructive disease of wheat and other cereals. FHB K. (2016) Searching for Novel Targets to occurs in Europe, North America and around the world causing significant losses in Control Wheat Head Blight Disease— production and endangers human and animal health. In this article, we provide the I-Protein Identification, 3D Modeling and strategic steps for the specific target selection for the phytopathogen system wheat- Virtual Screening. Advances in Microbiol- ogy, 6, 811-830. Fusarium graminearum. The economic impact of FHB leads to the need for innova- http://dx.doi.org/10.4236/aim.2016.611079 tion. Currently used fungicides have been shown to be effective over the years, but recently cereal infecting Fusaria have developed resistance. Our work presents a new Received: June 21, 2016 perspective on target selection to allow the development of new fungicides. We de- Accepted: September 11, 2016 veloped an innovative approach combining both genomic analysis and molecular Published: September 14, 2016 modeling to increase the discovery for new chemical compounds with both safety Copyright © 2016 by authors and and low environmental impact.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials OH 8 H H8 H C N OH 3 7 3 2 4 H1 1 5 O H4 O 6 H6’ H3 OH H6 H1’ H2 H5 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 ppm 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 ppm Figure S1. 1D 1H spectrum of 1-dglcnac and signal assignments ppm 2.0 H8 2.5 OH 8 H H C N OH 3 7 3 2 4 3.0 1 5 H1 O H5 O 6 H4 H3 OH 3.5 H6 H2 H6’ H1’ 4.0 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S2. 1H-1H TOCSY 2D NMR spectra for 1-dglcnac and signal assignments ppm 3.0 H1 3.2 H5 H4 3.4 H3 3.6 H6 H6’ H2 3.8 H1’ 4.0 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 ppm Figure S3. 1H-1H COSY 2D NMR spectra for 1-dglcnac and signal assignment ppm -0.02 -0.01 0.00 0.01 0.02 H1’ H6’ H2 H6 H3 H4 H5 H1 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ppm Figure S4. 1H-1H JRES 2D NMR spectra for 1-dglcnac and signal assignments ppm 20 C8(22.9) 40 OH 8 H H C N OH C2(53.2) 3 7 3 2 4 60 1 5 C6(63.2) C6(63.2) O 6 C1(69.2) C1(69.2) O C4(72.6) C3(77.0) OH 80 C5(82.7) 100 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm Figure S5.
    [Show full text]
  • Diene Synthase for the Production of Novel Products
    Engineering Selina-4(15),7(11)-diene synthase for the Production of Novel Products Emily Turri Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Astbury Centre for Structural Molecular Biology September 2020 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Emily Turri to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2020 The University of Leeds and Emily Turri 2 Acknowledgements Throughout my PhD I have been extremely lucky to receive support and encouragement from family, friends, colleagues and the university. Without these people and their support, this thesis would not be possible. First, I would like to thank my supervisors Alan Berry and Adam Nelson for their encouragement, guidance and patience over these four years. I would also like to thank Glyn Hemsworth and Nasir Khan for their continued advice and support. I am very grateful to Glyn Hemsworth, Sheena Radford, David Brockwell and John Blacker for letting me use their equipment while offering me direction to give me the best results. In addition, I would like to thank James Ault, Rachel George, Mary Bayana, Mark Howard and Ricardo Labes for their technical assistance and biochemical analysis. My PhD experience would have been nothing without the present and past members of the Hemrry’s and Radford’s with specific thanks to Jess, Alex, Jess and Dan.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0229367 A1 Berka Et Al
    US 2004O229367A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0229367 A1 Berka et al. (43) Pub. Date: Nov. 18, 2004 (54) METHODS FOR MONITORING MULTIPLE Related U.S. Application Data GENE EXPRESSION (60) Division of application No. 09/533,559, filed on Mar. (75) Inventors: Randy M. Berka, Davis, CA (US); 22, 2000, which is a continuation-in-part of applica Michael W. Rey, Davis, CA (US); tion No. 09/273,623, filed on Mar. 22, 1999, now Jeffrey R. Shuster, Davis, CA (US); abandoned. Sakari Kauppinen, Smoerum (DK); Ib Groth Clausen, Hillerod (DK); Peter Publication Classification Bjarke Olsen, Copenhagen (DK) 51)1) Int. Cl.C.7 ............................. C12N 15/745/74; C12N 1/16 Correspondence Address: (52) U.S. Cl. ......................................... 435/.484; 435/254.3 NOVOZYMES BIOTECH, INC. (57) ABSTRACT 1445. DREWAVE The present invention relates to methods for monitoring DAVIS, CA 95616 (US) differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more Second filamentous fungal cells using (73) Assignees: Novozymes Biotech, Inc., Davis, CA; microarrays containing filamentous fungal expressed Novozymes A/S, Inc., Bagsvaerd (DK) Sequenced tags. The present invention also relates to fila mentous fungal expressed Sequenced tags and to computer (21) Appl. No.: 10/653,047 readable media and Substrates containing Such expressed Sequenced tags for monitoring expression of a plurality of (22) Filed: Aug. 29, 2003 genes in filamentous fungal cells. US 2004/0229367 A1 Nov. 18, 2004 METHODS FOR MONITORING MULTIPLE GENE organisms whose genomes have not been Sequenced.
    [Show full text]
  • Monoterpene and Sesquiterpene Synthases and the Origin of Terpene Skeletal Diversity in Plants
    Phytochemistry 70 (2009) 1621–1637 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Review Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants Jörg Degenhardt a,*, Tobias G. Köllner a, Jonathan Gershenzon b a Martin Luther University Halle-Wittenberg, Institute for Pharmacy, Hoher Weg 8, D-06120 Halle/Saale, Germany b Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany article info abstract Article history: The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. Received 10 March 2009 This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of Received in revised form 23 July 2009 enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms Available online 28 September 2009 of these enzyme classes are described, and information on how terpene synthase proteins mediate catal- ysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are Keywords: described, including an analysis of the relationships between active site sequence and cyclization type Monoterpene synthase and a discussion of whether specific protein features might facilitate multiple product formation. Sesquiterpene synthase Ó 2009 Elsevier Ltd. All rights reserved. Terpene synthase reaction mechanism Site-directed mutagenesis Terpene synthase structure Structure–function correlation
    [Show full text]
  • Regulation of Metabolic Products and Gene Expression in Fusarium Asiaticum by Agmatine Addition
    Mycotoxin Res (2013) 29:103–111 DOI 10.1007/s12550-013-0158-y ORIGINAL PAPER Regulation of metabolic products and gene expression in Fusarium asiaticum by agmatine addition Tadahiro Suzuki & Young-Kyung Kim & Hifumi Yoshioka & Yumiko Iwahashi Received: 21 October 2012 /Revised: 26 December 2012 /Accepted: 8 January 2013 /Published online: 31 January 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The metabolic products resulting from the culti- contamination of grain with trichothecene mycotoxins vation of F. asiaticum in agmatine were identified using (Bottalico and Perrone 2002; Goswami and Kistler 2004). capillary electrophoresis–time of flight mass spectrometry. The F. graminearum species complex consists of at least 13 Glyoxylic acid was detected from fungal cultures grown in phylogenetically distinct species (Yli-Mattila et al. 2009). agmatine, while it was absent in control cells. The abun- These species tend to produce different, strain-specific trichothe- dance of other metabolic products of the glycolytic pathway cenes including nivalenol, deoxynivalenol (DON), 3- also increased because of agmatine; however, there was no acetyldeoxynivalenol (3ADON), and 15-acetyldeoxynivalnenol increase in the amounts of pyruvic acid or metabolites from (15ADON) (Bottalico and Perrone 2002). Geographically, the tricarboxylic acid cycle. Moreover, gene expression among members of the F. graminearum species complex, levels within Fusarium asiaticum exposed to agmatine were 15ADON producers are
    [Show full text]
  • Methods of Developing Terpene Synthase Variants Verfahren Zur Entwicklung Von Terpensynthasevarianten Procédés De Développement De Variants De Terpène Synthase
    (19) TZZ Z_T (11) EP 2 670 846 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/88 (2006.01) C12Q 1/527 (2006.01) 19.08.2015 Bulletin 2015/34 (86) International application number: (21) Application number: 12742056.0 PCT/US2012/023446 (22) Date of filing: 01.02.2012 (87) International publication number: WO 2012/106405 (09.08.2012 Gazette 2012/32) (54) METHODS OF DEVELOPING TERPENE SYNTHASE VARIANTS VERFAHREN ZUR ENTWICKLUNG VON TERPENSYNTHASEVARIANTEN PROCÉDÉS DE DÉVELOPPEMENT DE VARIANTS DE TERPÈNE SYNTHASE (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB US-A1- 2002 035 058 US-A1- 2009 053 797 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO US-A1- 2010 281 846 PL PT RO RS SE SI SK SM TR • YOSHIKUNI Y ET AL: "Engineering Cotton (30) Priority: 02.02.2011 US 201161438948 P (+)-delta-Cadinene Synthase to an Altered Function: Germacrene D-4-ol Synthase", (43) Date of publication of application: CHEMISTRY AND BIOLOGY, CURRENT 11.12.2013 Bulletin 2013/50 BIOLOGY, LONDON, GB, vol. 13, no. 1, 1 January 2006 (2006-01-01), pages 91-98, XP025131704, (73) Proprietor: Amyris, Inc. ISSN: 1074-5521, DOI: 10.1016/J.CHEMBIOL. Emeryville, CA 94608 (US) 2005.10.016 [retrieved on 2006-01-01] • YASUO YOSHIKUNI ET AL: "Designed divergent (72) Inventors: evolutionof enzyme function",NATURE, vol. 440, • ZHAO, Lishan no. 7087, 22 February 2006 (2006-02-22), pages Albany, CA 94706-1409 (US) 1078-1082, XP055087632, ISSN: 0028-0836, DOI: •XU,Lan 10.1038/nature04607 Orinda, CA 94563 (US) • YOSHIKUNI ET AL: "Pathway engineering by • WESTFALL, Patrick J.
    [Show full text]
  • BIOCHEMICAL and MOLECULAFL CHARACTEIUZATION of A-FARNESENE BIOSYNTHESIS in RELATION to SUPERFICIAL SCALD
    BIOCHEMICAL AND MOLECULAFL CHARACTEIUZATION OF a-FARNESENE BIOSYNTHESIS IN RELATION TO SUPERFICIAL SCALD DEVELOPMENT IN APPLE (Malus x domestka Borkh.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by H. P. VASANTHA RUPASINGHE In partial fulfilment of requirements for the degree of Doctor of Philosophy January, 200 1 " H.P.V. Rupasinghe, 200 1 National Library Bibliothèque nationale IM of canada du Canada Acquisitions and Acquisitions et 8ibliographic Services services bibliographiques 395 Wellington Street 345. nie Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sen reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT BIOCHEMICAL AND MOLECULAR CHGIRACTERIZATION OF a-FARNESENEBIOSYNTHESIS IN RELATION TO SUPERFICLAL SCALD DEVELOPMENT IN APPLE (Malus x domestica Borkh.) H.P. Vasantha Rupasinghe Advisors: University of Guelph, 200 1 Dr. Demis P. Murr Dr.
    [Show full text]