Regulation of Metabolic Products and Gene Expression in Fusarium Asiaticum by Agmatine Addition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure-Based Virtual Screening of Hypothetical Inhibitors of the Enzyme Longiborneol Synthase—A Potential Target to Reduce Fusarium Head Blight Disease
J Mol Model (2016) 22: 163 DOI 10.1007/s00894-016-3021-1 ORIGINAL PAPER Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease E. Bresso1 & V. L ero ux 2 & M. Urban3 & K. E. Hammond-Kosack3 & B. Maigret2 & N. F. Martins1 Received: 17 December 2015 /Accepted: 27 May 2016 /Published online: 21 June 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Fusarium head blight (FHB) is one of the most compounds from a library of 15,000 drug-like compounds. destructive diseases of wheat and other cereals worldwide. These putative inhibitors of longiborneol synthase provide a During infection, the Fusarium fungi produce mycotoxins that sound starting point for further studies involving molecular represent a high risk to human and animal health. Developing modeling coupled to biochemical experiments. This process small-molecule inhibitors to specifically reduce mycotoxin could eventually lead to the development of novel approaches levels would be highly beneficial since current treatments to reduce mycotoxin contamination in harvested grain. unspecifically target the Fusarium pathogen. Culmorin pos- sesses a well-known important synergistically virulence role Keywords Fusarium mycotoxins . Culmorin . Inhibitors . among mycotoxins, and longiborneol synthase appears to be a Homology modeling . Molecular dynamics . Ensemble key enzyme for its synthesis, thus making longiborneol syn- docking thase a particularly interesting target. This study aims to dis- cover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting Introduction longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure- Fusarium head blight (FHB), caused by Fusarium based virtual screening investigation. -
Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening
Advances in Microbiology, 2016, 6, 811-830 http://www.scirp.org/journal/aim ISSN Online: 2165-3410 ISSN Print: 2165-3402 Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening Natália F. Martins1, Emmanuel Bresso1, Roberto C. Togawa1, Martin Urban2, John Antoniw2, Bernard Maigret3, Kim Hammond-Kosack2 1EMBRAPA Recursos Genéticos e Biotecnologia Parque Estação Biológica, Brasília, Brazil 2Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, UK 3CNRS, LORIA, UMR 7503, Lorraine University, Nancy, France How to cite this paper: Martins, N.F., Abstract Bresso, E., Togawa, R.C., Urban, M., Anto- niw, J., Maigret, B. and Hammond-Kosack, Fusarium head blight (FHB) is a destructive disease of wheat and other cereals. FHB K. (2016) Searching for Novel Targets to occurs in Europe, North America and around the world causing significant losses in Control Wheat Head Blight Disease— production and endangers human and animal health. In this article, we provide the I-Protein Identification, 3D Modeling and strategic steps for the specific target selection for the phytopathogen system wheat- Virtual Screening. Advances in Microbiol- ogy, 6, 811-830. Fusarium graminearum. The economic impact of FHB leads to the need for innova- http://dx.doi.org/10.4236/aim.2016.611079 tion. Currently used fungicides have been shown to be effective over the years, but recently cereal infecting Fusaria have developed resistance. Our work presents a new Received: June 21, 2016 perspective on target selection to allow the development of new fungicides. We de- Accepted: September 11, 2016 veloped an innovative approach combining both genomic analysis and molecular Published: September 14, 2016 modeling to increase the discovery for new chemical compounds with both safety Copyright © 2016 by authors and and low environmental impact. -
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. -
Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders Peter A
University of Kentucky UKnowledge Pharmaceutical Sciences Faculty Patents Pharmaceutical Sciences 10-19-2010 Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders Peter A. Crooks University of Kentucky, [email protected] Aimee K. Bence David R. Worthen Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/ps_patents Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Crooks, Peter A.; Bence, Aimee K.; and Worthen, David R., "Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders" (2010). Pharmaceutical Sciences Faculty Patents. 47. https://uknowledge.uky.edu/ps_patents/47 This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact [email protected]. US007816407B2 (12) United States Patent (10) Patent N0.: US 7,816,407 B2 Crooks et al. (45) Date of Patent: Oct. 19, 2010 (54) AGMATINE AND AGMATINE ANALOGS IN The Merck Index, Merck Research Laboratories Division of Merck & THE TREATMENT OF EPILEPSY, SEIZURE, Co., Inc. 1996, p. 35. AND ELECTROCONVULSIVE DISORDERS James O. McNamara, “Drugs Effective in Therapy of the Epilepsies”, Goodman & Gilman’s The Pharmacological Basis of Therapeutics, (75) Inventors: Peter A. Crooks, Lexington, KY (US); Ninth Edition, Chapter 20, pp. 461-486, 1996. Aimee K. Bence, Lexington, KY (US); I. Tayfun Uzbay et al., “Effects of agmatine on ethanol Withdrawal David R. -
Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E -
Supporting Information High-Throughput Virtual Screening
Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE -
Vitamin D Receptor Promotes Healthy Microbial Metabolites
www.nature.com/scientificreports OPEN Vitamin D receptor promotes healthy microbial metabolites and microbiome Ishita Chatterjee1, Rong Lu1, Yongguo Zhang1, Jilei Zhang1, Yang Dai 2, Yinglin Xia1 ✉ & Jun Sun 1 ✉ Microbiota derived metabolites act as chemical messengers that elicit a profound impact on host physiology. Vitamin D receptor (VDR) is a key genetic factor for shaping the host microbiome. However, it remains unclear how microbial metabolites are altered in the absence of VDR. We investigated metabolites from mice with tissue-specifc deletion of VDR in intestinal epithelial cells or myeloid cells. Conditional VDR deletion severely changed metabolites specifcally produced from carbohydrate, protein, lipid, and bile acid metabolism. Eighty-four out of 765 biochemicals were signifcantly altered due to the Vdr status, and 530 signifcant changes were due to the high-fat diet intervention. The impact of diet was more prominent due to loss of VDR as indicated by the diferences in metabolites generated from energy expenditure, tri-carboxylic acid cycle, tocopherol, polyamine metabolism, and bile acids. The efect of HFD was more pronounced in female mice after VDR deletion. Interestingly, the expression levels of farnesoid X receptor in liver and intestine were signifcantly increased after intestinal epithelial VDR deletion and were further increased by the high-fat diet. Our study highlights the gender diferences, tissue specifcity, and potential gut-liver-microbiome axis mediated by VDR that might trigger downstream metabolic disorders. Metabolites are the language between microbiome and host1. To understand how host factors modulate the microbiome and consequently alter molecular and physiological processes, we need to understand the metabo- lome — the collection of interacting metabolites from the microbiome and host. -
Uncovering New Drug Properties in Target-Based Drug-Drug Similarity Networks
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.988600; this version posted June 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Uncovering new drug properties in target-based drug-drug similarity networks Lucret¸iaUdrescu1, Paul Bogdan2, Aimee´ Chis¸ 3, Ioan Ovidiu Sˆırbu3,6, Alexandru Topˆırceanu4, Renata-Maria Varut¸˘ 5, and Mihai Udrescu4,6,* 1”Victor Babes¸” University of Medicine and Pharmacy Timis¸oara, Department of Drug Analysis, Timis¸oara 300041, Romania 2University of Southern California, Ming Hsieh Department of Electrical Engineering, Los Angeles, CA 90089-2563, USA 3”Victor Babes¸” University of Medicine and Pharmacy Timis¸oara, Department of Biochemistry, Timis¸oara 300041, Romania 4University Politehnica of Timis¸oara, Department of Computer and Information Technology, Timis¸oara 300223, Romania 5University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Craiova 200349, Romania 6Timis¸oara Institute of Complex Systems, Timis¸oara 300044, Romania *[email protected] ABSTRACT Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach – based on knowledge about the chemical structures – cannot fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug-target interactions to infer drug properties. -
Role of Amino Acid Metabolism in Angiogenesis T ⁎ Roxana E
Vascular Pharmacology 112 (2019) 17–23 Contents lists available at ScienceDirect Vascular Pharmacology journal homepage: www.elsevier.com/locate/vph Review Role of amino acid metabolism in angiogenesis T ⁎ Roxana E. Oberkersch, Massimo M. Santoro Department of Biology, University of Padua, Italy ABSTRACT The role of endothelial metabolism represents a crucial element governing the formation and the differentiation of blood vessels, termed angiogenesis. Besides glycolysis and fatty acid oxidation, endothelial cells rely on specific amino acids to proliferate, migrate, and survive. In this review we focus on the metabolism of those amino acids and the intermediates that hold an established function within angiogenesis and endothelial pa- thophysiology. We also discuss recent work which provides a rationale for specific amino acid-restricted diets and its beneficial effects on vascular tissues, including extending the life span and preventing the development of a variety of diseases. 1. Introduction and produce up to 85% of their ATP through aerobic glycolysis [5]. It has been hypothesized that the use of glycolysis as the main source of The vascular system is a multi-branched network lined by en- ATP holds several advantages. High glycolytic flux can produce faster dothelial cells (ECs) which delivers oxygen and nutrients to the tissues ATP with respect to oxidative metabolism, which represents an ad- in the body [1]. The ability to expand this network is a process called vantage for ECs in a hypoxic microenvironment [6]. The anaerobic angiogenesis. This process is vital in many physiological settings and is metabolism of ECs might save oxygen towards becoming perivascular also implicated in the pathogenesis of several disorders including: mural cells [7]. -
X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
(19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R. -
Agmatine Improves Spatial Memory
macolog Khales et al., J Pharma Reports 2016, 1:2 ar ic h a P l f R o e l p a o n r r t s u o J Journal of Pharmacological Reports Research Article Article OpenOpen Access Access Agmatine Improves Spatial Memory Consolidation: The Role of Nitric Oxide Golnaz Yadollahi Khales1, Atefeh Khajeh2 and Maryam Moosavi1,3* 1Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran 2Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 3Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Abstract Objective: The existence of agmatine in the hippocampus suggests a role in memory formation. Endogenous agmatine increases after training in the hippocampus, howbeit the effect of exogenous agmatine on memory is not consistent yet. This work was aimed to assess the differential effect of systemic agmatine on spatial memory consolidation and retrieval. Additionally L-NAME was used to assess if nitric oxide is involved in the effect of agmatine. Methods: Male Sprague-Dawley rats (250-350 g) were trained in water maze single training session. After 24 h the memory of animals were examined in a probe trial which was consisted of a trial without platform. To assess the effect of agmatine (40 mg/kg) on memory consolidation it was administered immediately after training and to assess its effect on memory retrieval it was injected 30 min before probe trial. In order to evaluate the involvement of nitric oxide, L-NAME (3 mg/kg) was co-administered with agmatine. Results: Post-training injection (to assess consolidation phase) of agmatine improved the performance of animals in probe test, while its pre-probe administration (to assess retrieval phase) had no effect. -
The Role of Opioid and Nitrergic Systems in Dual Modulation of Date Published Online: 31/08/2020; Seizure Susceptibility
www.als-journal.com/ ISSN 2310-5380/ August 2020 Review Article Advancements in Life Sciences – International Quarterly Journal of Biological Sciences ARTICLE INFO Open Access Date Received: 16/05/2020; Date Revised: 23/08/2020; The role of opioid and nitrergic systems in dual modulation of Date Published Online: 31/08/2020; seizure susceptibility Authors’ Affiliation: 1,3 2,3 1 4 5 1. Department Muhammad Imran Khan , Farid Ullah Shah , Abdul Wahab , Vahid Nikoui *, Ahmad Reza Dehpour * of Pharmacy, Kohat University of Science and Technology, Abstract 26000 Kohat – Pakistan pilepsy is a chronic disorder presented by recurrent episodes of seizures and affect worldwide 2. Department of Biochemistry, Bannu individuals. The underlying mechanism of seizure is still elusive. Hence, there is still a need to determine Medical College, the contribution of various systems in neurobiology and treatment of seizure. Evidence shows that opioid 28100 Bannu, KPK - and nitrergic systems within the brain interact to modulate various physiological and pathological Pakistan E 3. Drug Detoxification conditions including memory, pain, reward, addiction, depression, and seizure. Various studies revealed that Health Welfare Research Center, diverse dose of opioids such as morphine has dual modulation in seizure susceptibility. For instance, it is Bannu, KPK - reported that morphine at lower doses (0.5, 1, and 3 mg/kg) exerts an anticonvulsant effect in experimental Pakistan 4. Razi Drug seizure models, whereas at higher doses (15, 30, and 60 mg/kg) it could exacerbate the seizure. Similarly, Research Center, Iran nitrergic system has also been observed to possess dual effects in modulating the seizure threshold. Therefore, University of Medical Sciences, Tehran - understanding of opioidergic and nitrergic systems interaction in seizure seems important to achieve the Iran successful goal of seizure management.