bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.988600; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Uncovering new drug properties in target-based drug-drug similarity networks Lucret¸ia Udrescu1, Paul Bogdan2, Aim´eeChi¸s3, Ioan Ovidiu S^ırbu3,6, Alexandru Top^ırceanu4, Renata-Maria V˘arut¸5, Mihai Udrescu4,6* 1 Department of Drug Analysis, "Victor Babe¸s",University of Medicine and Pharmacy Timi¸soara,Timi¸soara,Romania 2 Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA 3 Department of Biochemistry, "Victor Babe¸s"University of Medicine and Pharmacy Timi¸soara,Timi¸soara,Romania 4 Department of Computer and Information Technology, Politehnica University of Timi¸soara,Timi¸soara,Romania 5 Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania 6 Timi¸soaraInstitute of Complex Systems, Timi¸soara,Romania *
[email protected] Abstract Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach { based on knowledge about the chemical structures { cannot fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug-target interactions to infer drug properties.