Figures Paper 6-6-2021.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Figures Paper 6-6-2021.Cdr Table S1. Common target genes to human and mouse down-miRNAs Common target genes to human and mouse (1278) ABCA2 ATP8A1 CFLAR DOT1L FLNB INTS3 MAFG NFIB POLR2D RND3 SLC39A14 TFRC USP9X ABCB7 ATRX CHAMP1 DPH6 FMNL2 IPO8 MALT1 NFIC POLR3G RNF103 SLC39A6 TGFB2 VAMP1 ABHD12 ATXN1 CHCHD3 DPY19L1 FNBP1 IQSEC1 MAML1 NIN PPARD RNF11 SLC7A1 TGFBR1 VAMP3 ABHD13 ATXN1L CHD1 DPYSL2 FNDC3A IREB2 MAN1A2 NIPA2 PPARGC1B RNF111 SLC7A11 TGIF1 VANGL1 ABHD16A ATXN3 CHD2 DR1 FNDC3B IRF2BP2 MAP2K6 NIPBL PPFIA1 RNF122 SLC7A2 TGIF2 VAV2 ABHD17B ATXN7L3B CHD4 DSTYK FOSL2 IRF4 MAP3K14 NKIRAS2 PPFIBP1 RNF138 SLK TGM2 VCAM1 ABI2 AURKB CHD6 DUS1L FOXN2 IRF6 MAP3K7 NKTR PPIB RNF145 SLMAP THADA VCAN ACAP2 AVL9 CHD7 DUSP1 FOXN3 IRGQ MAP4K3 NMD3 PPID RNF150 SLMO2 THAP2 VCPIP1 ACBD5 B4GALT5 CHD8 DUSP10 FOXO1 IRS1 MAP4K4 NOL4L PPIL2 RNF157 SMAD1 THOC7 VEZF1 ACLY BACE1 CHD9 DUSP14 FOXP1 IRX3 MAPK6 NOTCH2 PPM1A RNF168 SMAD2 TIA1 VKORC1L1 ACOT7 BACH1 CHDH DUSP2 FRAT2 ISOC1 MAPK8 NOTCH3 PPM1D RNF19A SMAD5 TIAM1 VMA21 ACOX1 BAG5 CHIC2 DUSP5 FRS2 IST1 MAPK8IP3 NPAT PPM1F RNF213 SMARCAD1 TM9SF3 VPS13A ACTR8 BAG6 CHMP3 DYNC2H1 FUBP1 ISY1 MARCH5 NPTN PPM1L RNF217 SMARCC1 TMCC1 VPS26B ACVR2A BAK1 CHRAC1 DYNLL2 FUBP3 ITGA3 MARCH6 NR1D2 PPP1CB RNF44 SMARCD2 TMED5 VPS37A ADAM10 BASP1 CHST15 DYRK1A FURIN ITGA5 MARCH7 NR2C2 PPP2CB RNF6 SMARCE1 TMEM110 VPS4B ADAMTS2 BAZ1B CHSY1 E2F2 FUS ITGAV MARK2 NR3C1 PPP2R2A RNF8 SMC4 TMEM127 VWA9 ADAMTS5 BAZ2B CHTOP E2F3 FZD5 ITGB1 MARK3 NRAS PPP5C RNGTT SMEK1 TMEM129 WAC ADAR BBX CITED2 EAPP G2E3 ITGB5 MATR3 NRIP1 PPP6R1 ROCK1 SMG1 TMEM18 WASF2 ADARB1 BCL11A CKAP5 ECT2 G3BP2 ITPRIPL2 MAZ NRP1 PPP6R3 RORA SMG7 TMEM2 WASL ADIPOR1 BCL2 CLCN3 EDEM1 GABARAPL1 IVNS1ABP MBD6 NT5DC1 PPTC7 RPF2 SNAP29 TMEM245 WBP1L ADNP BCL2L11 CLDN12 EDEM3 GABPB1 JADE1 MBNL3 NUCKS1 PRAF2 RPLP0 SNAP47 TMEM248 WDFY3 AFF4 BCL2L2 CLIC4 EDIL3 GANAB JARID2 MBOAT2 NUFIP2 PRDM1 RPS6KA3 SNN TMEM30A WDR11 AGFG1 BCL7A CLINT1 EEA1 GAPVD1 JKAMP MBTD1 NUP153 PRDM2 RPS6KA5 SNRK TMEM33 WDR13 AGO1 BCL9L CLIP1 EEF2 GAS2L3 JMJD1C MCL1 NUP160 PRKAR1A RRAGA SNTB2 TMEM69 WDR26 AGO2 BDNF CLSPN EFNB2 GATAD2A JMY MCM3AP NXF1 PRKCI RREB1 SNX5 TMOD3 WDR45B AGPAT5 BIRC3 CLTC EFR3A GCLC JOSD1 MDM4 OSBPL11 PRKX RRM1 SOCS1 TMPO WDR47 AHCYL1 BIRC6 CMTR2 EFTUD2 GCN1L1 JUN MECP2 OSTC PRPF40A RSBN1L SOCS5 TMTC3 WDR6 AHNAK BLMH CNN2 EGFR GDA KANK2 MED1 OTUD4 PRPF8 RSF1 SOD1 TMX1 WDR7 AKAP10 BMF CNOT1 EHD3 GDAP2 KANSL1 MED13L OTUD7B PRR14L RSPRY1 SON TMX3 WDR82 AKAP11 BMP2K CNOT11 EIF2B5 GFOD1 KANSL3 MED14 PACSIN3 PRRC1 RTN3 SOS1 TNFAIP1 WHSC1 AKAP13 BNIP2 CNOT6 EIF2S1 GFPT1 KAT2A MEF2A PAFAH1B1 PSEN1 RTN4 SP1 TNFRSF10B WHSC1L1 AKT3 BPTF CNOT7 EIF3A GGNBP2 KAT2B MEF2C PAICS PSIP1 S100PBP SPCS3 TNFRSF1A WIPI2 ALCAM BRAF CNOT8 EIF3E GIGYF2 KAT6A MEIS1 PAK4 PSKH1 S1PR1 SPI1 TNKS WWTR1 ALDH18A1 BRAP CNP EIF4A2 GLCCI1 KBTBD2 MESDC1 PAN2 PSME4 SACS SPIRE1 TNKS2 XBP1 ALDH3A2 BRD2 COL4A1 EIF4B GLCE KCTD2 MEST PANK3 PTBP2 SARS SPPL3 TNPO1 XIAP ALDH5A1 BRD3 COL5A3 EIF4E2 GLG1 KCTD20 MET PANX1 PTBP3 SASH1 SPRED1 TNPO2 XPO1 AMBRA1 BRD4 COLGALT1 EIF4G2 GLRX5 KCTD3 METAP2 PAPD5 PTEN SATB2 SPRTN TNRC18 XPO4 AMMECR1 BRI3BP COPA EIF4G3 GLYR1 KCTD5 MEX3A PAPOLA PTPN1 SBF2 SPRY2 TNRC6A XPOT AMMECR1L BROX COPB1 EIF4H GMFB KDM3A MEX3C PARG PTPN14 SBNO1 SPTBN1 TNS1 YARS AMOT BRWD1 COPS2 EIF5 GNA13 KDM3B MFAP3 PARP1 PTPN4 SC5D SPTLC2 TOMM20 YBX3 ANK3 BRWD3 COPS3 EIF5A GNAI2 KDM5A MFSD12 PATZ1 PTPRD SCAF11 SQLE TOMM34 YIPF4 ANKHD1 BSN CORO1B EIF5A2 GNAS KHNYN MGAT4A PAXBP1 PTPRG SCOC SREBF2 TOMM70A YOD1 ANKRD11 BTBD3 CORO1C EIF5B GNG12 KIDINS220 MGP PBK PTPRJ SDC2 SRPK2 TOP2A YPEL2 ANKRD12 BUB1 CPD EIF6 GNL3L KIF22 MIER1 PBRM1 PTPRK SDCCAG8 SRRM2 TOPBP1 YWHAB ANKRD17 CAB39 CPEB3 ELAVL1 GNPDA2 KIF3A MIF PCCB PTPRM SEC16A SRSF1 TOR1AIP2 YWHAE ANKRD28 CAB39L CPNE3 ELF2 GNPNAT1 KLF12 MKI67 PCNX PTRF SEC23A SRSF10 TPK1 YWHAG ANKRD44 CACUL1 CPSF6 EML4 GNPTAB KLF4 MKLN1 PCNXL3 PUM2 SECISBP2L SRSF11 TPM3 YWHAH ANKRD50 CALM1 CPSF7 EMP2 GOLPH3 KLF6 MKNK2 PCNXL4 PURA SELPLG SRSF2 TPP2 YY1 ANP32A CALR CRIM1 ENAH GPR107 KLHL15 MKRN1 PDCD4 PURB SENP2 SSH2 TRA2B ZAK ANTXR1 CAMSAP2 CRLF3 EOGT GRPEL2 KLHL28 MLLT10 PDCL PURG SENP3 SSX2IP TRAF3 ZBTB10 ANTXR2 CAND1 CRY2 EP300 GSK3B KLHL42 MLLT6 PDE3A PXDN SENP5 STAG2 TRAK1 ZBTB20 AP1G1 CAP1 CSE1L EPG5 GTF2A2 KMT2C MLYCD PDE4DIP PXYLP1 SEP11 STAMBP TRAK2 ZBTB34 AP2B1 CAPRIN1 CSNK1A1 EPN2 GTPBP2 KMT2E MMP9 PDE5A QPCTL SEP15 STARD7 TRAM1 ZBTB37 APC CASP2 CSNK1G1 ERAP1 GXYLT1 KPNA1 MNT PDE7A QRICH1 SEP2 STAT3 TRAM2 ZBTB38 APEX1 CASP7 CTDSPL2 ERC1 HAS2 KPNA4 MOB1A PDIA3 QSER1 SEP8 STAT5B TRAPPC3 ZBTB4 APLP2 CASP8AP2 CTNNA1 ERLIN2 HBP1 KPNA6 MOB4 PDIK1L QSOX2 SERBP1 STAU2 TRIM32 ZBTB41 APPBP2 CAV2 CTNNB1 ERMP1 HCFC2 KRAS MORF4L2 PDK1 RAB10 SERINC5 STK38 TRIM44 ZBTB5 ARF4 CBFB CTNNBL1 ERRFI1 HDAC4 KRCC1 MPP5 PDLIM5 RAB11FIP1 SERTAD2 STK4 TRIO ZBTB7A ARF6 CBL CTNND1 ESF1 HDGF KSR1 MPRIP PDRG1 RAB11FIP2 SESN1 STRN TRIP11 ZBTB7B ARFGEF1 CBLL1 CTSZ ESRP2 HDHD2 LAMC2 MPV17 PDS5B RAB11FIP3 SESN2 STRN3 TRIP12 ZCCHC14 ARFGEF2 CBX4 CTTNBP2NL ESYT1 HEATR1 LAMP2 MPZL3 PEAK1 RAB12 SESTD1 STX11 TRMT1 ZDHHC12 ARFIP1 CBX5 CUL5 ETNK1 HECTD1 LAPTM4B MRPL28 PEG10 RAB21 SETD2 STX16 TROVE2 ZDHHC5 ARHGAP35 CCDC117 CUX1 EVL HELZ LARP4B MSH6 PELI1 RAB27B SETD5 STX6 TRPS1 ZFC3H1 ARHGEF3 CCDC127 CYP1B1 EXOC2 HERC1 LASP1 MSI2 PFAS RAB34 SETD7 SUB1 TSC22D1 ZFHX3 ARHGEF9 CCDC6 CYTH3 EYA1 HERC4 LATS1 MSMO1 PFKM RAB5C SETD8 SUCO TSC22D2 ZFP36 ARID1A CCDC90B DAG1 F5 HIAT1 LATS2 MSN PGAP2 RAB6A SETX SUFU TSC22D3 ZFP36L1 ARID2 CCNA2 DAZAP2 FADS1 HIF1A LBR MTCH2 PGRMC2 RAB8B SFPQ SUPT7L TSHZ1 ZFP41 ARL2BP CCND1 DCAF10 FAM120C HIF1AN LCOR MTF2 PHAX RABGAP1 SFT2D2 SUV420H1 TSN ZFP91 ARL5A CCNJ DCAF5 FAM126A HIPK1 LCORL MTFMT PHC3 RALA SFXN1 SUV420H2 TSPAN14 ZFYVE26 ARL5B CCNT2 DCBLD2 FAM126B HIPK2 LDLRAP1 MTMR4 PHF20 RAN SGK3 SUZ12 TTBK2 ZFYVE27 ARL6IP1 CCSAP DCP1A FAM135A HIRA LEPRE1 MTMR6 PHF6 RANBP2 SH3GL1 SWAP70 TTC19 ZKSCAN1 ARL8B CCT3 DCP2 FAM168A HIST1H2BM LGALS8 MTPN PHKA1 RANBP9 SH3PXD2A SYNE2 TTC3 ZKSCAN3 ARNT CCT8 DCTN1 FAM168B HIVEP3 LHFPL2 MYB PHLPP2 RAP1B SH3PXD2B SYNJ1 TUBA1C ZKSCAN5 ARPC2 CD274 DDB1 FAM193B HK2 LIF MYBL2 PI4KB RAP2B SHC1 SYNRG TUBD1 ZKSCAN8 ARPP19 CD28 DDHD1 FAM199X HMGCR LIMA1 MYC PIAS2 RAPGEF2 SHOC2 SYVN1 TUBG1 ZMIZ1 ARRB2 CD47 DDI2 FAM208A HMGCS1 LIN7C MYCBP2 PICALM RASA2 SHQ1 SZRD1 TUBGCP4 ZMYND8 ARRDC3 CD81 DDIT4 FAM208B HMGXB3 LIPA MYLK PIGA RASGRP1 SIK1 TAB2 TWF1 ZNF512B ARSJ CDC23 DDR2 FAM20A HMOX2 LMNB1 MYO10 PIGM RASSF8 SIKE1 TAB3 TXNDC15 ZSWIM6 ASH1L CDC42 DDX21 FAM212B HNRNPU LNX2 MYO1D PIGS RB1 SIN3A TACC1 TXNIP ASPH CDC42EP3 DDX39B FAM76A HSD17B12 LPAR1 MYO1E PIGW RB1CC1 SKI TADA2B U2AF2 ASXL1 CDC42SE1 DDX3X FAM76B HSD17B7 LPCAT1 N4BP2L2 PIK3CA RBBP6 SKP2 TAF5 UAP1 ASXL2 CDC7 DDX41 FAM83H HSP90AA1 LPGAT1 NAA50 PIK3R1 RBBP9 SLA TAF7 UBA2 ATAD2 CDC73 DEK FASN HSP90B1 LPL NASP PIK3R3 RBM12 SLC16A1 TANC1 UBA3 ATAD2B CDCA4 DENND1B FBXL19 HSPA4L LPP NAV1 PIKFYVE RBM15B SLC16A3 TANC2 UBE2D3 ATF7 CDCA7 DENND4A FBXL2 HSPE1 LRCH1 NBEA PITPNB RBM33 SLC1A5 TAOK1 UBE2K ATG13 CDK12 DENND5B FBXL3 HTT LRCH3 NBEAL1 PKM RBM47 SLC20A1 TAOK3 UBE2V2 ATG14 CDK13 DHCR24 FBXL5 HUWE1 LRIG3 NCKAP1 PKN2 RBPJ SLC25A16 TBC1D14 UBE2Z ATG3 CDK19 DHX15 FBXO11 IDS LRP6 NCL PLAU RC3H1 SLC25A17 TBC1D15 UBE3B ATL2 CDK2 DHX16 FBXO28 IER2 LRRC58 NCOA2 PLCD3 RC3H2 SLC25A36 TBC1D20 UBLCP1 ATL3 CDK5R1 DHX36 FBXO3 IFI30 LRRC59 NCOA3 PLEKHA5 RCC2 SLC2A3 TBC1D23 UBN2 ATP11A CDK6 DHX9 FBXO33 IGF2 LRRC8B NCS1 PLEKHB2 RCN2 SLC30A1 TBL1X UBQLN1 ATP11B CDKN1B DICER1 FBXO42 IGF2R LSM14A NDE1 PLEKHO2 RCOR1 SLC30A7 TBL1XR1 UCK2 ATP13A1 CDV3 DIP2B FBXW7 IGSF3 LSS NDEL1 PLOD2 REEP3 SLC31A1 TBP UGDH ATP1A1 CEBPB DLD FCHSD2 IL13RA1 LTN1 NDST1 PLXND1 REST SLC35B4 TBX18 UGGT1 ATP2B1 CELF1 DMPK FEM1B IL6ST LUC7L3 NDUFA8 PMAIP1 REV1 SLC35F2 TCF4 UPF2 ATP2B4 CENPF DMXL1 FEM1C IMPAD1 LUZP1 NDUFV1 PNPLA6 REV3L SLC35F5 TCP1 USP14 ATP5B CEP170 DNAJB1 FERMT2 INO80 LY75 NEO1 PNPLA8 RHOBTB2 SLC38A1 TEAD1 USP22 ATP6V0D1 CEP350 DNAJB14 FGFR1 INO80D LYPLAL1 NFAT5 PNRC2 RHOBTB3 SLC38A2 TET2 USP31 ATP6V1A CEP97 DNAJC5 FGFRL1 INSIG1 MACF1 NFATC2IP POGK RIF1 SLC39A1 TET3 USP47 ATP6V1H CFL2 DNMT3A FIP1L1 INSR MAF NFIA POLDIP2 RMND5A SLC39A10 TEX2 USP48 Table S2. 20 top KEGG signaling pathways with a FDR<0.05 for common target genes of down-miRNAs KEGG FDR #Genes Genes MicroRNAs in cancer 5.48E-12 44 CCND1|CDKN1B|BCL2L2|KRAS|NOTCH2|APC|E2F3|EP300|NOTCH3|PIK3CA| HDAC4|STAT3|DNMT3A|CDK6|EGFR|PDCD4|ITGA5|IRS1|DDIT4|MET| SOCS1|BMF|E2F2|TGFB2|MDM4|MCL1|NRAS|PTEN|MMP9|PLAU| BAK1|SPRY2|SLC7A1|BCL2L11|BCL2|ROCK1|SOS1|SHC1|DICER1|PAK4| CYP1B1|MYC|RPS6KA5|FOXP1 Pathways in cancer 6.37E-10 82 RALA|ITGA3|SPI1|CCND1|CDKN1B|MSH6|KRAS|NOTCH2|APC|ITGAV| LRP6|SMAD2|PIK3R3|E2F3|CCDC6|EP300|NOTCH3|BIRC3|AKT3|PIK3CA| CBL|LAMC2|STAT3|CDK6|CDK2|RB1|SKP2|EGFR|BRAF|STAT5B| HSP90B1|CTNNA1|RASGRP1|PPARD|GNAI2|MET|EML4|GSK3B|PMAIP1|SP1| HSP90AA1|CTNNB1|CALM1|ARNT|FZD5|E2F2|TGFB2|TPM3|CASP7|NRAS| SUFU|GNG12|FRAT2|GNAS|XIAP|JUN|IL13RA1|PTEN|NCOA3|MMP9| STK4|LPAR1|BAK1|TGFBR1|COL4A1|FOXO1|IL6ST|BCL2L11|MAPK8|ITGB1| BCL2|ROCK1|CDC42|SOS1|IGF2|FGFR1|GNA13|PIK3R1|HIF1A|TRAF3| MYC|RPS6KA5 Proteoglycans in cancer 3.51E-07 40 CAV2|CCND1|KRAS|ITGAV|SMAD2|PIK3R3|AKT3|PIK3CA|CBL|STAT3| EGFR|PDCD4|ANK3|TIAM1|BRAF|ITGA5|ITGB5|SDC2|MET|CTNNB1| MSN|FZD5|TGFB2|NRAS|VAV2|MMP9|PLAU|PPP1CB|ITGB1|ROCK1| CDC42|SOS1|EIF4B|IGF2|FGFR1|FLNB|PIK3R1|HIF1A|FRS2|MYC Hepatocellular carcinoma 3.51E-07 36 CCND1|SMARCC1|KRAS|APC|LRP6|SMAD2|PIK3R3|E2F3|AKT3|PIK3CA| CDK6|RB1|EGFR|BRAF|MET|ARID1A|SMARCE1|GSK3B|ARID2|CTNNB1| FZD5|E2F2|TGFB2|NRAS|FRAT2|PTEN|BAK1|TGFBR1|PBRM1|SOS1| IGF2|SMARCD2|SHC1|CSNK1A1|PIK3R1|MYC Viral carcinogenesis 3.86E-07 38 KAT2A|CCND1|CDKN1B|YWHAH|KRAS|PIK3R3|EP300|KAT2B|PIK3CA|YWHAE| HDAC4|STAT3|CDK6|CDK2|RB1|CCNA2|SKP2|RASA2|ATP6V0D1|STAT5B|
Recommended publications
  • Developing Biomarkers for Livestock Science
    Developing biomarkers for livestock Science Ongoing research and future developments Marinus te Pas Outline . Introduction ● What are biomarkers ● Why do we need them . Examples ● omics levels . The future ● Big data ● Systems biology / Synthetic biology 2 Introduction: What are biomarkers? . Biological processes underlie all livestock (production) traits ● Measure the status of a biological process = know the trait! . Can be any molecule in a cell ● No need to know the causal factor for a trait . Well known example: blood glucose level for diabetes Introduction: Why do we need biomarkers? . The mission of WageningenUR: Sustainably produce enough high quality food for all people on the planet with an ecological footprint as low as possible 4 What can the industry do with biomarkers? . Diagnostic tool ● What is the biological mechanism underlying a trait? . Prediction tool ● What outcome can I expect from an intervention? . Monitoring tool ● What is the actual status of a process? . Speed up your process, improve your traits Some examples * Transcriptomics * Proteomics * Metabolomics Why Biomarkers for meat quality? . Meat quality has low heritability (h2=0.1-0.2) ● Predictive capacity of genetic markers low . High environmental influence ● Feed, animal handling (stress), management (housing), ... Meat quality can only be measured after 1-several days post slaughter . Need to differentiate between retail, processing industry, restaurants, .... Biomarkers can do all that and more faster, predictive, .. Example Transcriptomics biomarkers for meat quality . Pork production chain . Biomarkers for traits . High quality fresh pork . Meat colour N production chain ● A* 14 . German Pietrain ● L* 4 (microarray) ● Reflection 10 . Verification: Danish . Drip loss 2 Yorkshire (PCR) . Ultimate pH 6 .
    [Show full text]
  • Supplementary Table 1
    SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee
    [Show full text]
  • P-MYLK (Tyr 464)-R: Sc-17182-R
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . p-MYLK (Tyr 464)-R: sc-17182-R BACKGROUND SOURCE The Ca 2+ /calmodulin-dependent protein kinases (CaM kinases) are a struc - p-MYLK (Tyr 464)-R is a rabbit polyclonal antibody raised against a short turally related subfamily of serine/threonine kinases that includes CaMKI, amino acid sequence containing phosphorylated Tyr 464 of MYLK of human CaMKII, CaMKIV and myosin light chain kinases (MYLK, also designated origin. MLCK). The MYLK kinases phosphorylate myosin regulatory light chains to catalyze myosin interaction with actin filaments resulting in contractile activi - PRODUCT ty. Non-muscle, smooth muscle and skeletal/cardiac muscle MYLK isoforms Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide exist. The MYLK gene (also designated MYLK1) encodes both smooth mus - and 0.1% gelatin. cle and non-muscle isoforms as well as telokin, a small C-terminal isoform Blocking peptide available for competition studies, sc-17182 P, (100 µg expressed only in smooth muscle with the capacity to stabilize unphosphor- pep tide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). ylated myosin filaments. Multiple transcript variants are described for the MYLK gene. Smooth-muscle and non-muscle MYLK isoforms are expressed APPLICATIONS in a wide variety of adult and fetal tissues. The skeletal/cardiac muscle iso - forms of MYLK are encoded by a separate gene, MYLK2 (also designated p-MYLK (Tyr 464)-R is recommended for detection of Tyr 464 phosphorylated skMLCK). MYLK appears to be a target for PAKs (p21-activated kinases).
    [Show full text]
  • 1 Kinobead Profiling Reveals Reprogramming of B-Cell Receptor Signaling in Response to Therapy Within Primary CLL Cells. Linley
    bioRxiv preprint doi: https://doi.org/10.1101/841312; this version posted November 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Kinobead profiling reveals reprogramming of B-cell receptor signaling in response to therapy within primary CLL cells. Linley AJ1, Griffin R2, Cicconi S2, D’Avola A3$, MacEwan DJ4, Pettit AR1, Kalakonda N1, Packham G3, Prior IA5, Slupsky JR1. 1. Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK. 2. CRUK Clinical Trials Unit, University of Liverpool, Waterhouse Building, Ashton Street, Liverpool. 3. Southampton Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK. 4. Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK. 5. Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Wing, Crown Street, Liverpool, UK. $ Current Address: The Francis Crick Institute, 1 Midland Road, London, UK. Corresponding author: Dr Adam J Linley, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK; [email protected]; +44(0)151 794 5310 Running head: Therapy brings about BCR signal changes. Key points 1. sIgM signaling patterns alter following in vivo therapy using either chemoimmunotherapy or ibrutinib. 2. Kinobeads provide a novel method for high-resolution investigation of signaling in primary CLL cells. 1 bioRxiv preprint doi: https://doi.org/10.1101/841312; this version posted November 14, 2019.
    [Show full text]
  • The Mitotic Checkpoint Is a Targetable Vulnerability of Carboplatin-Resistant
    www.nature.com/scientificreports OPEN The mitotic checkpoint is a targetable vulnerability of carboplatin‑resistant triple negative breast cancers Stijn Moens1,2, Peihua Zhao1,2, Maria Francesca Baietti1,2, Oliviero Marinelli2,3, Delphi Van Haver4,5,6, Francis Impens4,5,6, Giuseppe Floris7,8, Elisabetta Marangoni9, Patrick Neven2,10, Daniela Annibali2,11,13, Anna A. Sablina1,2,13 & Frédéric Amant2,10,12,13* Triple‑negative breast cancer (TNBC) is the most aggressive breast cancer subtype, lacking efective therapy. Many TNBCs show remarkable response to carboplatin‑based chemotherapy, but often develop resistance over time. With increasing use of carboplatin in the clinic, there is a pressing need to identify vulnerabilities of carboplatin‑resistant tumors. In this study, we generated carboplatin‑resistant TNBC MDA‑MB‑468 cell line and patient derived TNBC xenograft models. Mass spectrometry‑based proteome profling demonstrated that carboplatin resistance in TNBC is linked to drastic metabolism rewiring and upregulation of anti‑oxidative response that supports cell replication by maintaining low levels of DNA damage in the presence of carboplatin. Carboplatin‑ resistant cells also exhibited dysregulation of the mitotic checkpoint. A kinome shRNA screen revealed that carboplatin‑resistant cells are vulnerable to the depletion of the mitotic checkpoint regulators, whereas the checkpoint kinases CHEK1 and WEE1 are indispensable for the survival of carboplatin‑ resistant cells in the presence of carboplatin. We confrmed that pharmacological inhibition of CHEK1 by prexasertib in the presence of carboplatin is well tolerated by mice and suppresses the growth of carboplatin‑resistant TNBC xenografts. Thus, abrogation of the mitotic checkpoint by CHEK1 inhibition re‑sensitizes carboplatin‑resistant TNBCs to carboplatin and represents a potential strategy for the treatment of carboplatin‑resistant TNBCs.
    [Show full text]
  • Starting a Molecular Systems View of Endocytosis
    ANRV356-CB24-20 ARI 3 September 2008 19:11 ANNUAL Protein Kinases: Starting REVIEWS Further Click here for quick links to Annual Reviews content online, a Molecular Systems View including: • Other articles in this volume of Endocytosis • Top cited articles • Top downloaded articles • Our comprehensive search Prisca Liberali, Pauli Ram¨ o,¨ and Lucas Pelkmans Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland; email: [email protected] Annu. Rev. Cell Dev. Biol. 2008. 24:501–23 Key Words First published online as a Review in Advance on membrane trafficking, phosphorylation, signal transduction, July 3, 2008 complexity, nonlinear systems, genetical physics The Annual Review of Cell and Developmental Biology is online at cellbio.annualreviews.org Abstract This article’s doi: The field of endocytosis is in strong need of formal biophysical model- 10.1146/annurev.cellbio.041008.145637 ing and mathematical analysis. At the same time, endocytosis must be Copyright c 2008 by Annual Reviews. much better integrated into cellular physiology to understand the for- by Universitat Zurich- Hauptbibliothek Irchel on 04/05/13. For personal use only. All rights reserved mer’s complex behavior in such a wide range of phenotypic variations. Annu. Rev. Cell Dev. Biol. 2008.24:501-523. Downloaded from www.annualreviews.org 1081-0706/08/1110-0501$20.00 Furthermore, the concept that endocytosis provides the space-time for signal transduction can now be experimentally addressed. In this review, we discuss these principles and argue for a systematic and top-down ap- proach to study the endocytic membrane system. We provide a summary of published observations on protein kinases regulating endocytic ma- chinery components and discuss global unbiased approaches to further map out kinase regulatory networks.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • The Use of Genetic Analyses and Functional Assays for the Interpretation of Rare Variants in Pediatric Heart Disease
    The use of genetic analyses and functional assays for the interpretation of rare variants in pediatric heart disease A dissertation submitted to the Division of Graduate Studies and Research, University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular Genetics by Jeffrey A. Schubert Bachelor of Science, Mount St. Joseph University, 2012 Committee Chair: Stephanie M. Ware, M.D., Ph.D. Edmund Choi, Ph.D. Benjamin Landis, M.D. Anil Menon, Ph.D. David Wieczorek, Ph.D. Molecular Genetics, Biochemistry, and Microbiology Graduate Program College of Medicine, University of Cincinnati Cincinnati, Ohio, USA, 2018 ABSTRACT The use of next generation technologies such as whole exome sequencing (WES) has paved the way for discovering novel causes of Mendelian diseases. This has been demonstrated in pediatric heart diseases, including cardiomyopathy (CM) and familial thoracic aortic aneurysm (TAA). Each of these conditions carries a high risk of a serious cardiac event, including sudden heart failure or aortic rupture, which are often fatal. Patients with either disease can be asymptomatic before presenting with these events, which necessitates early diagnosis. Though there are many known genetic causes of disease for both conditions, there is still room for discovery of novel pathogenic genes and variants, as many patients have an undefined genetic diagnosis. WES covers the protein-coding portion of the genome, which yields a massive amount of data, though it comprises only 1% of the genome. Sorting and filtering sequencing information to identify (sometimes) a single base pair change responsible for the patient phenotype is challenging. Further, interpreting identified candidate variants must be done according to strict standards, which makes it difficult to definitively say whether a coding change is pathogenic or benign.
    [Show full text]
  • Genomic Landscape of Metastatic Breast Cancer Identifies Preferentially Dysregulated Pathways and Targets
    Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets Matt R. Paul, … , Angela DeMichele, Lewis A. Chodosh J Clin Invest. 2020;130(8):4252-4265. https://doi.org/10.1172/JCI129941. Research Article Genetics Oncology Graphical abstract Find the latest version: https://jci.me/129941/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets Matt R. Paul,1,2,3 Tien-chi Pan,1,2,3 Dhruv K. Pant,1,2,3 Natalie N.C. Shih,1,4 Yan Chen,1,2,3 Kyra L. Harvey,1,2,3 Aaron Solomon,1,2,3 David Lieberman,4 Jennifer J.D. Morrissette,4 Danielle Soucier-Ernst,1,5 Noah G. Goodman,1,5 S. William Stavropoulos,1,6 Kara N. Maxwell,1,5 Candace Clark,1,5 George K. Belka,1,2,3 Michael Feldman,1,4 Angela DeMichele,1,5,7 and Lewis A. Chodosh1,2,3,5 1Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence, 2Abramson Family Cancer Research Institute, 3Department of Cancer Biology, 4Department of Pathology and Laboratory Medicine, 5Department of Medicine, 6Department of Radiology, and 7Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. Nearly all breast cancer deaths result from metastatic disease. Despite this, the genomic events that drive metastatic recurrence are poorly understood. We performed whole-exome and shallow whole-genome sequencing to identify genes and pathways preferentially mutated or copy-number altered in metastases compared with the paired primary tumors from which they arose.
    [Show full text]
  • Supplementary Data
    Supplementary Figure 1 Supplementary Figure 2 CCR-10-3244.R1 Supplementary Figure Legends Supplementary Figure 1. B-Myb is overexpressed in primary AML blasts and B-CLL cells. Baseline B-Myb mRNA levels were determined by quantitative RT-PCR, after normalization to the level of housekeeping gene, in primary B-CLL (n=10) and AML (n=5) patient samples, and in normal CD19+ (n=5) and CD34+ (n=4) cell preparations. Each sample was determined in triplicate. Horizontal bars are median, upper and lower edges of box are 75th and 25th percentiles, lines extending from box are 10th and 90th percentiles. Supplementary Figure 2. Cytotoxicity by Nutlin-3 and Chlorambucil used alone or in combination in leukemic cells. The p53wild-type EHEB and SKW6.4 cells lines, and the p53mutated BJAB cell line were exposed to Nutlin-3 or Chlorambucil used either alone or in combination. (Nutl.+Chlor.). In A, upon treatment with Nutlin-3 or Chlorambucil, used either alone (both at 10 μM) or in combination (Nutl.+Chlor.), induction of apoptosis was quantitatively evaluated by Annexin V/PI staining, while E2F1 and pRb protein levels were analyzed by Western blot. Tubulin staining is shown as loading control. The average combination index (CI) values (analyzed by the method of Chou and Talalay) for effects of Chlorambucil+Nutlin-3 on cell viability are shown. ED indicates effect dose. In B, levels of B-Myb and E2F1 mRNA were analyzed by quantitative RT- PCR. Results are expressed as fold of B-Myb and E2F1 modulation in cells treated for 24 hours as indicated, with respect to the control untreated cultures set to 1 (hatched line).
    [Show full text]
  • Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20
    G C A T T A C G G C A T genes Review Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20 Maimaiti Rexiati 1,2 ID , Mingming Sun 1,2 and Wei Guo 1,2,* 1 Animal Science, University of Wyoming, Laramie, WY 82071, USA; [email protected] (M.R.); [email protected] (M.S.) 2 Center for Cardiovascular Research and integrative medicine, University of Wyoming, Laramie, WY 82071, USA * Correspondence: [email protected]; Tel.: +1-307-766-3429 Received: 20 November 2017; Accepted: 27 December 2017; Published: 5 January 2018 Abstract: Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease. Keywords: alternative splicing; muscle-specific splicing factor; heart disease; RNA-binding motif 20; titin 1. Introduction Alternative splicing is a molecular process by which introns are removed from pre-mRNA, while exons are linked together to encode for different protein products in various tissues [1].
    [Show full text]
  • Supplementary Table S1. Summary of the Six Next-Generation Sequencing (NGS) Studies Containing 241 Paired Melanoma Tumor/Normal Samples
    Supplementary Table S1. Summary of the six next-generation sequencing (NGS) studies containing 241 paired melanoma tumor/normal samples Study NGS # paired tumor-normal Tumor subtype Reference ID technology samples 1 Whole genome 25 23 cutaneous, 2 acral Berger et al., 2012 (1) 95 cutaneous, 5 acral, 2 mucosal, 1 uveal, and 18 2 Whole exome 121 Hodis et al., 2012 (2) unknown 61 cutaneous, 14 acral, 7 mucosal, 5 uveal, and 12 Krauthammer et al., 2012 3 Whole exome 99* unknown (3) 4 Whole exome 7 7 cutaneous Nikolaev et al., 2012 (4) 5 Whole exome 8 8 cutaneous Stark et al., 2012 (5) 6 Whole exome 14 14 cutaneous Wei et al., 2011 (6) 187 cutaneous, 19 acral, 9 mucosal, 6 uveal, and 30 Total 241# unknown *48 tumor samples without normal samples were excluded from our study. #23 paired samples in Berger et al. (2012) were used in Hodis et al. (2012). In addition, there were 10 samples without any mutations in Krauthammer et al. (2012). These samples were excluded in our analysis. 1 Supplementary Table S2. Summary of known driver mutations detected in the 241 melanoma samples Mutation* Type # samples BRAF GNAQ GNA11 KIT NRAS present Acral 17 3 1 0 0 0 2 Mucosal 7 2 1 0 0 0 1 Uveal 6 3 0 0 3 0 0 Cutaneous 182 138 99 0 0 1 38 Unknown 29 26 20 0 0 0 6 Total 172 121 241 0 (0%) 3 (1.2%) 1 (0.4%) 47 (19.5%) (frequency) (71.3%) (50.2%) *Includes the somatic point mutations identified by the Vanderbilt melanoma SNaPshot assay and known to be functional and actionable (7).
    [Show full text]