Enzyme Substrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0. -
Increasing the Amylose Content of Durum Wheat Through Silencing of the Sbeiia Genes
Sestili et al. BMC Plant Biology 2010, 10:144 http://www.biomedcentral.com/1471-2229/10/144 RESEARCH ARTICLE Open Access IncreasingResearch article the amylose content of durum wheat through silencing of the SBEIIa genes Francesco Sestili1, Michela Janni1, Angela Doherty2, Ermelinda Botticella1, Renato D'Ovidio1, Stefania Masci1, Huw D Jones2 and Domenico Lafiandra*1 Abstract Background: High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results: Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS- PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. -
Product Guide
www.megazyme.com es at dr hy o rb a C • s e t a r t s b u S e m y z n E • s e m y z n E • s t i K y a s s A Plant Cell Wall & Biofuels Product Guide 1 Megazyme Test Kits and Reagents Purity. Quality. Innovation. Barry V. McCleary, PhD, DScAgr Innovative test methods with exceptional technical support and customer service. The Megazyme Promise. Megazyme was founded in 1988 with the We demonstrate this through the services specific aim of developing and supplying we offer, above and beyond the products we innovative test kits and reagents for supply. We offer worldwide express delivery the cereals, food, feed and fermentation on all our shipments. In general, technical industries. There is a clear need for good, queries are answered within 48 hours. To validated methods for the measurement of make information immediately available to the polysaccharides and enzymes that affect our customers, we established a website in the quality of plant products from the farm 1994, and this is continually updated. Today, it gate to the final food. acts as the source of a wealth of information on Megazyme products, but also is the hub The commitment of Megazyme to “Setting of our commercial activities. It offers the New Standards in Test Technology” has been possibility to purchase and pay on-line, to continually recognised over the years, with view order history, to track shipments, and Megazyme and myself receiving a number many other features to support customer of business and scientific awards. -
An Antifungal Chitosanase from Bacillus Subtilis SH21
molecules Article An Antifungal Chitosanase from Bacillus subtilis SH21 Yuanxiang Pang 1, Jianjun Yang 1, Xinyue Chen 1, Yu Jia 1, Tong Li 1, Junhua Jin 1, Hui Liu 1, Linshu Jiang 1, Yanling Hao 2, Hongxing Zhang 1,* and Yuanhong Xie 1,* 1 Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; [email protected] (Y.P.); [email protected] (J.Y.); [email protected] (X.C.); [email protected] (Y.J.); [email protected] (T.L.); [email protected] (J.J.); [email protected] (H.L.); [email protected] (L.J.) 2 Key Laboratory of Functional Dairy Science of Beijing and Chinese Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] * Correspondence: [email protected] (H.Z.); [email protected] (Y.X.) Abstract: Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatogra- phy, and ion-exchange chromatography were used. The purity of the purified product was 91.33% ac- cording to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analy- sis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. -
Updating the Sequence-Based Classification of Glycosyl Hydrolases
Article Updating the sequence-based classification of glycosyl hydrolases HENRISSAT, Bernard, BAIROCH, Amos Marc Reference HENRISSAT, Bernard, BAIROCH, Amos Marc. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996, vol. 316 ( Pt 2), p. 695-6 PMID : 8687420 DOI : 10.1042/bj3160695 Available at: http://archive-ouverte.unige.ch/unige:36909 Disclaimer: layout of this document may differ from the published version. 1 / 1 Biochem. J. (1996) 316, 695–696 (Printed in Great Britain) 695 BIOCHEMICAL JOURNAL Updating the sequence-based classification of available. When the number of glycosyl hydrolase sequences reached C 480, ten additional families (designated 36–45) could glycosyl hydrolases be defined and were added to the classification [2]. There are at present over 950 sequences of glycosyl hydrolases in the data- A classification of glycosyl hydrolases based on amino-acid- banks (EMBL}GenBank and SWISS-PROT). Their analysis sequence similarities was proposed in this Journal a few years shows that the vast majority of the C 470 additional sequences ago [1]. This classification originated from the analysis of C 300 that have become available since the last update could be classified sequences and their grouping into 35 families designated 1–35. in the existing families. However, several sequences not fitting Because such a classification is necessarily sensitive to the sample, the existing families allow the definition of new families (desig- it was anticipated that it was incomplete and that new families nated 46–57) (Table 1). When the several present genome would be determined when additional sequences would become sequencing projects have reached completion, the number of Table 1 New families in the classification of glycosyl hydrolases Family Enzyme Organism SWISS-PROT EMBL/GenBank 46 Chitosanase Bacillus circulans MH-K1 P33673 D10624 46 Chitosanase Streptomyces sp. -
Supplementary Information
doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig. -
Pdf 258.73 K
Iran J Biotech. 2015 December;13(4): e1175 DOI:10.15171/ijb.1175 Research Article An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter Kambiz Morabbi Heravi 1, Garshasb Rigi 2, Maryam Rezaei Arjomand 3, Amin Rostami 3, Gholamreza Ahmadian 3,* 1Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany 2Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran 3Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran *Corresponding author: Gholamreza Ahmadian, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-2144787301-10, Fax: +98-2144787399, E-mail: [email protected] Received: April 27, 2015; Revised: September 20, 2015; Accepted: October 03, 2015 Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bac- terial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacte- rial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (PchiS) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). Objectives: Use of PchiS in constructing an inducible expression system in B. subtilis was investigated. Materials and Methods: In the first step, complete and shortened versions of PchiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Characterization of a Chitinase and an Endo-Β-1,3-Glucanase from Trichoderma Harzianum Rifai T24 Involved in Control of the Phytopathogen Sclerotium Rolfsii
Appl Microbiol Biotechnol (2001) 56:137–143 DOI 10.1007/s002530100646 ORIGINAL PAPER M.H. El-Katatny · M. Gudelj · K.-H. Robra M.A. Elnaghy · G.M. Gübitz Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii Received: 23 November 2000 / Received revision: 26 January 2001 / Accepted: 26 January 2001 / Published online: 19 May 2001 © Springer-Verlag 2001 Abstract Of 24 Trichoderma isolates, T. harzianum causes disease in over 500 plant species. Recently, the Rifai (T24) showed a potential for control of the phyto- fungus has also been found in Europe on different hosts, pathogenic basidiomycete Sclerotium rolfsii. When T24 including juglans and sunflowers (Belisario and Corazza was grown on different carbon sources, growth inhibi- 1996; Infantino et al. 1997). Mycoparasitic fungi have tion of S. rolfsii by the T24 culture filtrate correlated been shown to have a potential for the control of plant with the activity of extracellular chitinase and β-1,3- diseases caused by S. rolfsii (Maoa et al. 2000). Lectins glucanase. The 43-kilodalton (kDa) chitinase and the of S. rolfsii were found to be the recognition signal initi- 74-kDa β-1,3-glucanase were purified from the T24 cul- ating the coiling process in Trichoderma harzianum ture filtrate in two and three steps, respectively, using (Inbar and Chet 1995) (Fig. 1), while it has been sug- ammonium sulphate precipitation followed by hydropho- gested that constitutive carbohydrolases of T. harzianum bic interaction chromatography (phenyl-Sepharose) and release oligosaccharides from Rhizoctonia solani cell β gel filtration ( -1,3-glucanase). -
Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ......................................................