GRAS Notice 000099: Pullulan

Total Page:16

File Type:pdf, Size:1020Kb

GRAS Notice 000099: Pullulan United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☒ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☐ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. January 31, 2018 National List Manager USDA/AMS/NOP, Standards Division 1400 Independence Ave. SW Room 2648-So., Ag Stop 0268 Washington, DC 20250-0268 RE: Petition to add Pullulan to the National List at §205.605(a) as an allowed nonsynthetic ingredient in tablets and capsules for dietary supplements labeled “made with organic (specified ingredients or food group(s)).” Dear National List Manager: The Organic Trade Association1 is filing the attached petition on behalf of its National List Innovation Working Group to add Pullulan to the National List at §205.605(a) as an allowed non-agricultural, non-synthetic ingredient used in tablets and capsules for dietary supplements labeled “made with organic (specified ingredients or food group(s)).” The purpose of submitting this petition is to protect the continued production and availability of USDA-NOP certified encapsulated dietary supplements and to support the commercial development of certified organic Pullulan. Pullulan is a natural extracellular polysaccharide excreted by the yeast-like fungus Aureobasidium pullulans. It is not genetically modified and it is commercially produced by a non-pathogenic and non- toxigenic strain of the organism using a liquid starch syrup as the fermentation substrate. Pullulan can be made into very thin films with high tensile strength and stability over a range of temperatures, making it an ideal material to be used in the manufacture of empty capsules for the purpose of encapsulating dietary supplements or as a coating for dietary supplement tablets. Encapsulated vegetarian dietary supplements certified under USDA’s National Organic Program (NOP) rely on the use of Pullulan as the primary ingredient in the capsule. For dietary supplements, the capsule is considered an “ingredient” and must either be “certified organic,” or comprised of ingredients compliant with the National List of Allowed and Prohibited Substances. Since the early 2000s, accredited certifying agents have classified Pullulan as “agricultural” and allowed its use only in encapsulated dietary supplements certified to the “made with” product category. This allowance has significantly contributed to the growth of NOP certified dietary supplements. Currently, certified organic Pullulan is commercially unavailable in North America and there are no other NOP compliant vegetarian options available. Gelatin capsules, while allowed under NOP, present consumer acceptance and GMO challenges. 1 The Organic Trade Association (OTA) is the membership-based business association for organic agriculture and products in North America. OTA is the leading voice for the organic trade in the United States, representing over 9,500 organic businesses across 50 states. Our members include growers, shippers, processors, certifiers, farmers' associations, distributors, importers, exporters, consultants, retailers and others. OTA's mission is to promote and protect organic with a unifying voice that serves and engages its diverse members from farm to marketplace. 1 Headquarters - The Hall of the States, 444 N. Capitol St. NW, Suite 445-A, Washington, D.C., 20001 • (202) 403-8513 Member Services - 28 Vernon St., Suite 413, Brattleboro VT 05301 • (202) 403-8630 www.OTA.com In late 2016, NOP released a guidance document (NOP 5033) on the Classification of Materials. This document assists the National Organic Standards Board (NOSB), accredited certifying agents, and the organic industry in making ‘Agricultural’ vs. ‘Non-agricultural’ and ‘Synthetic’ vs. ‘Non-synthetic’ determinations. Given the information contained in the NOP guidance document, accredited certifying agents are now in general agreement that Pullulan should be classified as a “non-agricultural, non- synthetic” substance and accordingly must appear on the National List at §205.605 to be allowed in NOP certified products. In response to this new interpretation, we are requesting that Pullulan be added to the National List so that it may continue to be allowed as an ingredient in capsules for dietary supplements labeled “made with organic (specified ingredients or food group(s)).” Without its continued allowance, and without an alternative option, we estimate the economic impact to the organic dietary supplement sector would be over $825 million. Please note that we are intentionally limiting the allowance of non-organic Pullulan to dietary supplements certified to the “made with” category. Any encapsulated dietary supplement sold or labeled as “certified organic (95%+) will need to use certified organic Pullulan. Although organic Pullulan based capsules are not commercially available in North America, development is underway and they should be available in the future. In summary, adding Pullulan to the National List will: • Quickly address a new interpretation made by several accredited certifying agents in response to NOP’s Classification of Materials Guidance (NOP 5033); • Prevent widespread disruption and economically significant damage to the organic supplements sector; • Bring the allowance of non-organic Pullulan under strict review of NOSB and the National List Sunset process; • Support the commercial development of certified organic Pullulan. Thank you for your assistance in putting this petition before NOSB. If you need any additional information, please contact me via e-mail or telephone: [email protected] or (503) 798-3294. Respectfully submitted, Gwendolyn Wyard Vice President, Regulatory and Technical Affairs Organic Trade Association cc: Laura Batcha Executive Director/CEO Organic Trade Association 2 Headquarters - The Hall of the States, 444 N. Capitol St. NW, Suite 445-A, Washington, D.C., 20001 • (202) 403-8513 Member Services - 28 Vernon St., Suite 413, Brattleboro VT 05301 • (202) 403-8630 www.OTA.com Pullulan Petition 1/31/2018 Item A This petition seeks inclusion of Pullulan as an ingredient in tablets and capsules for dietary supplements labeled in the “made with organic (specified ingredients or food group(s))” category on the National List at §205.605(a). Item B 1. Substance Name. Common Name: Pullulan Chemical Name: Poly[6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→] CAS Number: 9057-02-7 EC / EINECS Number: 232-945-1 Empirical Formula: (C6H10O5) n where n=300 to 3000 Pullulan is a natural extracellular polysaccharide excreted by the yeast-like fungus Aureobasidium pullulans (formerly known as Pullularia pullulans). It is not genetically modified and it is commercially produced by a non-pathogenic and non-toxigenic strain of the organism using a liquid starch syrup as the fermentation substrate. Pullulan is a linear glucan consisting of repeating units of maltotriose joined by α-D-(1→6) linkages. 2. Petitioner and Manufacturer Information. Petitioner: Organic Trade Association 444 N. Capitol St. NW, Suite 445A Washington, DC 20001 Contact Person: Gwendolyn Wyard Title: Vice President of Regulatory & Technical Affairs Phone: (503) 798-3294 Email: [email protected] Manufacturer: Hayashibara Co., Ltd. Nihon-Seimei Okayama Bldg. II Shinkan 1-1-3 Shimoishii, Kita-ku, Okayama, 700-0907 Japan Phone: +81-86-224-4312 Page 1 of 15 3. Intended or Current Use. Pullulan can be made into very thin films with high tensile strength and stability over a range of temperatures. Pullulan films have a low oxygen permeability, are oil and grease resistant and dissolve rapidly in water. These films may be shaped using rapid evaporation of water, compression molding or extrusion at high temperatures, making it an ideal material to be used in the manufacture of empty capsules for the purpose of encapsulating dietary supplements or as a coating for dietary supplement tablets. Non-animal capsules and tablets are suitable for a variety of cultural and dietary requirements, including those of vegetarians, diabetics, and people with restricted diets for health or religious reasons. The danger from animal plagues such as mad cow disease and foot-and-mouth disease raised concerns about raw materials of animal origin being used in foods. Questions surrounding the GMO status of animal feed have also been pervasive in the natural products industry. The requests for raw materials of plant origin for use in foods, cosmetics and the medical fields have been increasing. Pullulan is produced from starch and, therefore, demand for pullulan capsules has grown significantly, as evidenced by the more than 42% growth in sales
Recommended publications
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
    Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3].
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Pullulan Handling/Processing 1 2 Identification of Petitioned Substance
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Pullulan Handling/Processing 1 2 Identification of Petitioned Substance 3 Chemical Names: CAS Number: 4 5-[[3,4-dihydroxy-6-(hydroxymethyl)-5-[[3,4,5- 9057-02-7 5 trihydroxy-6-(methoxymethyl)oxan-2-yl] 6 methoxymethyl]oxan-2-yl]methoxymethyl]-6- EC/EINECS Number: 7 (hydroxymethyl)oxane-2,3,4-triol (IUPAC) 232-945-1 8 9 Other Name: Other Codes: 10 Pullulan [National Formulary] PubChem CID: 92024139 11 Polymaltotriose EPA Chem. Sub. Inventory Nos.: 1224323-71-0, 12 152743-43-6; 58252-16-7; 58391-35-8 13 Trade Name: INS No.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Fast Dissolving Electrospun Nanofibers Fabricated from Jelly
    polymers Article Fast Dissolving Electrospun Nanofibers Fabricated from Jelly Fig Polysaccharide/Pullulan for Drug Delivery Applications Thangavel Ponrasu 1, Bei-Hsin Chen 1, Tzung-Han Chou 1, Jia-Jiuan Wu 2 and Yu-Shen Cheng 1,* 1 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; [email protected] (T.P.); [email protected] (B.-H.C.); [email protected] (T.-H.C.) 2 Department of Nutrition, China Medical University, Hsueh-Shih Road No. 91, Taichung 404, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-5534-2601 (ext. 4627) Abstract: The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding.
    [Show full text]
  • Potential and Utilization of Thermophiles and Thermostable Enzymes in Biorefining Pernilla Turner, Gashaw Mamo and Eva Nordberg Karlsson*
    Microbial Cell Factories BioMed Central Review Open Access Potential and utilization of thermophiles and thermostable enzymes in biorefining Pernilla Turner, Gashaw Mamo and Eva Nordberg Karlsson* Address: Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden Email: Pernilla Turner - [email protected]; Gashaw Mamo - [email protected]; Eva Nordberg Karlsson* - [email protected] * Corresponding author Published: 15 March 2007 Received: 4 January 2007 Accepted: 15 March 2007 Microbial Cell Factories 2007, 6:9 doi:10.1186/1475-2859-6-9 This article is available from: http://www.microbialcellfactories.com/content/6/1/9 © 2007 Turner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials.
    [Show full text]
  • Long-Term Warming in a Mediterranean-Type Grassland Affects Soil Bacterial Functional Potential but Not Bacterial Taxonomic Composition
    www.nature.com/npjbiofilms ARTICLE OPEN Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition Ying Gao1,2, Junjun Ding2,3, Mengting Yuan4, Nona Chiariello5, Kathryn Docherty6, Chris Field 5, Qun Gao2, Baohua Gu 7, Jessica Gutknecht8,9, Bruce A. Hungate 10,11, Xavier Le Roux12, Audrey Niboyet13,14,QiQi2, Zhou Shi4, Jizhong Zhou2,4,15 and ✉ Yunfeng Yang2 Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas nifH gene encoding nitrogenase increased in the 1234567890():,; warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community.
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Pullulan: Production and Usage in Food Industry
    African Journal of Food Science and Technology (ISSN: 2141-5455) Vol. 4(3) pp. 57-63, March, 2013 Available Online http://www.interesjournals.org/AJFST Copyright©2013 International Research Journals Full Length Research Paper Pullulan: Production and usage in food ındustry Pınar Oğuzhan and Filiz Yangılar Ardahan University, The Faculty of Engineering, Food Engineering Department, Ardahan, Turkey Accepted March 12,213 Pullulan is one of such polymers synthesized by the yeast-like fungus Aureobasidium pullulans . Pullulan is a linear ααα-D-glucan built of maltotriose subunits, connected by (1-6)-ααα-D-glucosidic linkages. Pullulan is an important exopolysaccharide having applications in several industrial sectors like pharmaceutical, food and cosmetic industries. In addition to recently pullulan is also being investigated for its biomedical applications in various aspects like targeted drug and gene delivery, tissue engineering, wound healing and in diagnostic imaging using quantum dots. Pullulan is being used extensively in the food industry as a food ingredient for over 20 years in Japan, and has Generally Regarded As Safe (GRAS) status in the USA. Pullulan, which is generally materialized with microbial origin in food the production has widely usage as a coating agent in food formulations and packaging industry owing to its numerous properties. Despite the large number of uses, some of the problems associated with fermentative production of pullulan are (i) the formation of a melanin pigment; (ii) the inhibitory effects caused by high sugar concentrations in the medium; and (iii) the high cost associated with pullulan precipitation and recovery. In this review, general properties of pullulan, pullulan production, usage of pullulan in food industry were examined.
    [Show full text]
  • A Guide to Obesity and the Metabolic Syndrome
    A GUIDE TO OBESITY AND THE METABOLIC SYNDROME ORIGINS AND TREAT MENT GEORG E A. BRA Y Louisiana State University, Baton Rouge, USA Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2011 by Taylor and Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-1457-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • The Special Operations Forces Nutrition Guide
    The Special Operations Forces Nutrition Guide Patricia A. Deuster, PhD, MPH, CNS Teresa Kemmer, PhD, RD Lori Tubbs, MS, RD Stacey Zeno, MS Christiane Minnick, M.Ac i Acknowledgements Many people have contributed to this revised guide, and it is dif- ficult to list all those who have made small contributions. However, we must acknowledge those who have made major contributions. First, we thank LtCol Charity Thomasos, RD, USAF for her comments and sugges- tions on multiple chapters and her efforts on chapters 11 and 12. We thank our primary points for contact at the SOF Commands who arranged and coordinated our site visits, to include LCDR David C. Krulak, MC from MARSOC, MAJ(P) Anthony Littrell, MC, USA from USASOC, LTC Robert Lutz, MC, USA from JSOC, MAJ Keith E. Schlechte, MC, USAF from AFSOC, and CDR Lanny Boswell, MSC, USN from NAVSOC. We offer a very special thanks to LCDR Jim Mucciarone, MC, UMO/DMO, Senior Medical Officer for Naval Special Warfare, who provided invaluable feedback on the chapters. We recognize MAJ Dirk Geers, Special Operations and Personnel Recovery Office in Belgium, who used the previous Navy SEAL Guide and posed many questions before the new guide was begun and provided excel- lent comments based on his use of the information for deployments. We also thank CAPT Roger Herbert, Commander of NSW Training who spent time discussing the importance of nutrition to BUD/S training. Ms. Jennifer Davis is recognized and thanked for her dedication to the Excel spreadsheets that were developed specifically for this effort—she did a wonderful job.
    [Show full text]