Identification of Cotton Fleahopper (Hemiptera: Miridae) Host Plants In

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Cotton Fleahopper (Hemiptera: Miridae) Host Plants In PLANTÐINSECT INTERACTIONS Identification of Cotton Fleahopper (Hemiptera: Miridae) Host Plants in Central Texas and Compendium of Reported Hosts in the United States 1 J. F. ESQUIVEL AND S. V. ESQUIVEL USDAÐARS, SPARC, Areawide Pest Management Research Unit, 2771 F&B Rd., College Station, TX 77845 Environ. Entomol. 38(3): 766Ð780 (2009) ABSTRACT The cotton ßeahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton ßeahopper popu- lations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton ßeahopper in Central Texas, blooming weed species were sampled during early-season (17 MarchÐ31 May), mid-season (1 JuneÐ14 August), late-season (15 AugustÐ30 November), and overwintering (1 DecemberÐ16 March) periods. The leading hosts for cotton ßeahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for ßeahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton ßeahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes Ͼ160 plant species representing 35 families, for the cotton ßeahopper is provided for future research addressing insectÐhost plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton ßeahopper in the Cotton Belt. KEY WORDS cotton ßeahopper, host plant, cotton pest The cotton ßeahopper [Pseudatomoscelis seriatus (Re- and pest-speciÞc insecticides for lepidopteran control uter); Hemiptera: Miridae] was Þrst reported in Texas (Armstrong and Camelo 2003, Layton et al. 2003). The cotton (Gossypium hirsutum C. Linnaeus) by Howard aforementioned components have all been incorpo- (1898). The ßeahopper is an early-season pest that rated in the cotton-producing areas of the Southern uses piercing-sucking mouthparts to feed on develop- Blacklands region of Central Texas. Furthermore, the ing cotton fruit (i.e., squares). The affected squares Southern Blacklands region is in the advanced stages are shed by the cotton plant, resulting in yield losses. of boll weevil eradication efforts, and cotton ßeahop- Fleahopper adults typically move from senescing pers could potentially become a post-eradication pest weed hosts to infest cotton (Reinhard 1926a, Almand in Central Texas as well. Host plant data will be in- 1974). Adults have been shown to leave weed hosts strumental in determining sources of cotton ßeahop- and migrate to adjacent cotton (Suh et al. 2004), or in per populations that subsequently infest cotton. some cases, have infested cotton 20 miles from the Historically, plant species in the Croton, Oenothera, original weed host (Gaines and Ewing 1938). Monarda, and Solanum genera have been identiÞed as Sucking insects, including the cotton ßeahopper, leading hosts for the cotton ßeahopper during the have gained importance as pests of cotton in recent overwintering, early-season, summer, and fall seasons, years. Reports attribute this elevated status to the respectively. Previous reports deÞned the leading adoption of transgenic cotton varieties, absence of hosts for the ßeahopper as members of the mentioned traditional early-season insecticide sprays to control genera but the composition of plant species within boll weevils (Anthonomus grandis grandis Boheman), these genera has varied among studies, likely because of differences in plant composition among geograph- ical locations. Furthermore, some of these reports This article reports the results of research only. Mention of a (Gaines and Ewing 1938, Fletcher 1940, Almand 1974, proprietary product does not constitute an endorsement or a recom- mendation by the USDA for its use. Idol and Slosser 2005) focused speciÞcally on selected 1 Corresponding author, e-mail: [email protected]. primary hosts with little regard for other hosts that June 2009 ESQUIVEL AND ESQUIVEL:HOSTS OF THE COTTON FLEAHOPPER 767 may have contributed to the developing ßeahopper ovipositor or male genitalia. Voucher specimens of populations. Reported hosts are further confounded wild host plant species were collected and sent to the by laboratory feeding (Gaylor and Sterling 1976a, b; S.M. Tracy Herbarium at Texas A&M University, Col- Beerwinkle and Marshall 1999) and oviposition stud- lege Station, TX, for identiÞcation and cataloging. ies (Holtzer and Sterling 1980) or all-encompassing To determine the presence of cotton ßeahoppers in statements listing hosts without providing sampling associated temporal host plant species, sampling con- data. For example, Brett (1946) and Hixson (1941) tinued throughout the year beginning on 17 March alluded to the breadth of cotton ßeahopper host plants 2003. Temporal occurrence of plant species was cat- but failed to provide sampling data. Similarly, Eddy egorized into early season (17 MarchÐ31 May), mid- (1927) stated that “other succulent plants” were also season (1 JuneÐ14 August), late season (15 AugustÐ30 hosts. Finally, Fletcher (1930) discussed cyclic November), and overwintering (1 DecemberÐ16 changes in vegetation and their effects on the insect March). These categories coincided with local farm- fauna in Central Texas. Because of this latter point, the ing and production practices. Host plants were pre- prevalence of anecdotal records of host plants, and the sumed to be and deÞned as those species where cotton absence of a current taxonomically accurate database ßeahopper adults and/or nymphs were present. Be- of cotton ßeahopper host plants, the objectives of this cause nymphs do not have wings to move from host to study were to identify temporally available weed spe- host, weed species yielding nymphs were considered cies harboring cotton ßeahoppers in the southern likely reproductive hosts. In total, 76 sites of weed Blackland Prairies of Central Texas and provide a species and six sites of cultivated species (Glycine max deÞnitive and current listing of host plants associated and Medicago sativa) were sampled during the 3-yr with the cotton ßeahopper. study. Although some weed species were only sam- pled 1 yr because of the variable yearly occurrence or abundance, these data were included to show the Materials and Methods range of plant utilization by cotton ßeahoppers in the Between 17 March 2003 and 17 March 2006, bloom- region. ing herbaceous weeds, alfalfa (Medicago sativa C. Lin- Because of taxonomic revisions of previously re- naeus), and soybeans [Glycine max (C. Linnaeus) E. ported plants and their respective authorities, the Merrill] were sampled for cotton ßeahoppers in Bur- compendium of cotton ßeahopper host plants pre- leson and Robertson counties (Central Texas). As sented here was formulated from a literature review blooming weed species were identiÞed along right- beginning with Howard (1898) through 2008. Refer- of-ways, turn-rows, and ditches, these species were eed journal articles, proceedings, Federal and State subject to sampling. Gaylor (1975) previously con- Agency bulletins, and theses and dissertations with cluded that plant species were more suitable hosts for speciÞc reference to cotton ßeahopper and host plant cotton ßeahoppers when ßowering. Pneumatic air associations were reviewed. Sterling and Dean (1977) samplers and beat sheets were evaluated in prelimi- were consulted for earlier reports of host plant asso- nary studies on row crops, but these tools were not ciations. The botanical nomenclature presented fol- conducive to efÞcient sampling in weed hosts. Be- lows that of Jones et al. (1997). Some previous reports cause of inconsistent plant densities and variable plant only provided common names of host plants. Where architectures in weed species, sweep nets (38.1 cm this occurred, the host plants were assigned to genera diameter) were used for sampling weed hosts. For only (e.g., ragweed ϭ Ambrosia spp.; horsemint ϭ similar reasons, the sweep net was used in previous Monarda spp.) for inclusion in this report. Where host host plant studies (Cleveland 1982, Anderson and species occurred outside of Texas, online searches Schuster 1983, Womack and Schuster 1987, Armstrong were conducted using http://plants.usda.gov/index. and Camelo 2003). Unlike some previous host plant html to locate current taxonomic designations. studies that used variable sample sizes within each The PROC MEANS statement (SAS Institute 2004) study (Cleveland 1982, Snodgrass et al. 1984, Fleischer and the SUM and BY options were used to generate and Gaylor 1987), a uniform protocol of three samples descriptive statistics of the number of cotton ßeahop- (50 sweeps/sample) for each sample site was imple- per adults and nymphs in temporal host plants sam- mented in this study. Because of this sampling proto- pled during this study. Similarly, the mean proportions col, plant species that were in bloom but not in suf- of adults
Recommended publications
  • Vegetation Survey of the Yegua Knobbs Preserve
    VEGETATION SURVEY OF THE YEGUA KNOBBS PRESERVE, BASTROP AND LEE COUNTIES, TEXAS by Diana K. Digges, B.A. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Biology August 2019 Committee Members: David E. Lemke, Chair Paula S. Williamson Sunethra Dharmasiri COPYRIGHT by Diana K. Digges 2019 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Diana K. Digges, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS I would like to thank my family and friends who have been understanding and patient as I pursued my degree. Your support has meant so much to me. A big thank you to my boyfriend, Swayam Shree, for his unwavering belief in me and for keeping me laughing. I am grateful to the Biology faculty at Texas State University, especially Drs. David Lemke, Paula Williamson, Sunethra Dharmasiri, and Garland Upchurch who helped me further my study of botany. A special thank you to Dr. Lemke for allowing me to pursue this project and his continued support during my time as a graduate student.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Flora of Oakmont Park, City of Fort Worth Tarrant Co
    Flora of Oakmont Park, City of Fort Worth Tarrant Co. Updated 09 April 2015 150 species Oakmont Park FLOWER STATE/FED FAMILY OLD FAMILY LATIN NAME COMMON NAME BLOOM PERIOD Expr1006 COLOR RANK Amaryllidaceae Alliaceae=Liliaceae Allium drummondii Drummond's Onion ++345++++++++++ White/Pink Amaryllidaceae Alliaceae=Liliaceae Nothoscordum bivalve Crow-Poison +F345+++910++++ White Apiaceae Chaerophyllum tainturieri var. Smooth Chervil ++34+++++++++++ White tainturieri Apiaceae Cymopterus macrohizus Bigroot Cymopterus JF34+++++++++++ White/Pink Apiaceae Eryngium leavenworthii Leavenworth Eryngo ++++++789++++++ Purple Apiaceae Polytaenia nuttallii=texana Prairie Parsley +++45++++++++++ Yellow Apiaceae Sanicula canadensis Canada Sanicle +++456+++++++++ White Apiaceae Torilis arvensis Hedge Parsley +++456+++++++++ White Apiaceae Torilis nodosa Knotted Hedge-Parsley +++456+++++++++ White Apocynaceae Asclepidaceae Asclepias asperula ssp. capricornu Antelope Horns +++45678910++++ White Aquifoliaceae Ilex decidua Possum Haw ++345++++++++++ White Asparagaceae Agavaceae Yucca arkansana Arkansas Yucca +++45++++++++++ White Asparagaceae Agavaceae Yucca necopina Glen Rose Yucca ++++5++++++++++ White S1S2 S1S2 Asparagaceae Agavaceae Yucca pallida Pale Leaf Yucca ++++5++++++++++ White S3 S3 Asteraceae Ambrosia psilostachya Western Ragweed +++++++891011++ Inconspicuous Asteraceae Amphiachyris Common Broomweed ++++++7891011++ Yellow dracunculoides=Gutierrezia Asteraceae Artemisia ludoviciana ssp. mexicana Mexican Sagebrush +++++++++1011++ Yellowish White Asteraceae
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • Rain Garden Plant List
    Rain Garden Plant List This is by no means a complete list of the many plants suitable for your rain garden: Native or Botanical Name Common Name Category Naturalized Wet Zone Acer rubrum var. drummondii Southern Swamp Maple Tree Any Acorus calamus Sweet Flag Grass Any Adiantum capillus-veneris Southern Maidenhair Fern Fern Median Aesculus pavia Scarlet Buckeye Tree Yes Any Alstromeria pulchella Peruvian Lily Perennial Any Amorpha fruticosa False Indigo Wildflower Yes Any Andropogon gerardi Big Bluestem Grass Yes Median Andropogon scoparius Little Bluestem Grass Yes Median Aniscanthus wrightii Flame Acanthus Shrub Yes Median Aquilegia canadensis Columbine, Red Wildflower Yes Median Aquilegia ciliata Texas Blue Star Wildflower Yes Median Aquilegia hinckleyana Columbine, Hinckley's Perennial Median, Margin Aquilegia longissima Columbine, Longspur Wildflower Yes Center Asclepias tuberosa Butterfly Weed Wildflower Yes Margin Asimina triloba Pawpaw Tree Any Betula nigra River Birch Tree Yes Any Bignonia capreolata Crossvine Vine Yes Any Callicarpa americana American Beautyberry Shrub Yes Any Canna spp. Canna Lily Perennial No Any Catalpa bignonioides Catalpa Tree Yes Any Cephalanthus occidentalis Buttonbush Shrub Yes Any Chasmanthus latifolium Inland Sea Oats Grass Yes Median, Margin Cyrilla recemiflora Leatherwood or Titi Tree Tree Yes Median, Margin Clematis pitcheri Leatherflower Vine Yes Any Crataegus reverchonii Hawthorn Tree Yes Any Crinum spp. Crinum Perennial Any Delphinium virescens Prairie Larkspur Wildflower Yes Any Dryoptera normalis
    [Show full text]
  • The Nature of Naming What’S in a Name?
    The Nature of Naming What’s in a Name? • "A rose is a rose," it has been said • And most of us know a rose when we see one • As we know the African marigolds • Maples, elms, cedars, and pines that shade our backyards and line our streets What’s in a Name? • We usually call these plants by their common names • But if we wanted to know more about the cedar tree in our front yard, we would find that "cedar" may refer to: – Eastern red cedar What’s in a Name? • Incense cedar What’s in a Name? • Western red cedar What’s in a Name? • Atlantic white cedar What’s in a Name? • Spanish cedar What’s in a Name? • Biblical Lebanon cedar What’s in a Name? • In fact, we would find that cedars are found in three separate plant families What’s in a Name? • Later, after discovering that our "African" marigolds are in fact from Mexico and our "Spanish" cedar originated in the West Indies, we would realize how misleading the common names of plants can be. What’s in a Name? • The same plant can have many different common names – European white lily has at least 245 – Marsh marigold has at least 280 What’s in a Name? • Clearly, if we use only the common name of a plant, we cannot be sure of understanding very much about that plant Classification • It is for this reason that the scientific community prefers to use a more precise way of naming, or classification • Scientific classification, however, is more than just naming: it is a key to understanding • Botanists name a plant to give it a unique place in the biological world, as well as to clarify its relationships within that world How Are Plants Classified? • Science classifies living things in an orderly system through which they can be easily identified – Categories of increasing size, based upon relationships within those categories How Are Plants Classified? • For example, all plants can be put in order from the more primitive to the more advanced.
    [Show full text]
  • Phylogeny and Evolution of Achenial Trichomes In
    Luebert & al. • Achenial trichomes in the Lucilia-group (Asteraceae) TAXON 66 (5) • October 2017: 1184–1199 Phylogeny and evolution of achenial trichomes in the Lucilia-group (Asteraceae: Gnaphalieae) and their systematic significance Federico Luebert,1,2,3 Andrés Moreira-Muñoz,4 Katharina Wilke2 & Michael O. Dillon5 1 Freie Universität Berlin, Institut für Biologie, Botanik, Altensteinstraße 6, 14195 Berlin, Germany 2 Universität Bonn, Nees-Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, 53115 Bonn, Germany 3 Universidad de Chile, Departamento de Silvicultura y Conservación de la Naturaleza, Santiago, Chile 4 Pontificia Universidad Católica de Valparaíso, Instituto de Geografía, Avenida Brasil 2241, Valparaíso, Chile 5 The Field Museum, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, Illinois 60605, U.S.A. Author for correspondence: Federico Luebert, [email protected] ORCID FL, http://orcid.org/0000­0003­2251­4056; MOD, http://orcid.org/0000­0002­7512­0766 DOI https://doi.org/10.12705/665.11 Abstract The Gnaphalieae (Asteraceae) are a cosmopolitan tribe with around 185 genera and 2000 species. The New World is one of the centers of diversity of the tribe with 24 genera and over 100 species, most of which form a clade called the Lucilia­group with 21 genera. However, the generic classification of the Lucilia­group has been controversial with no agreement on delimitation or circumscription of genera. Especially controversial has been the taxonomic value of achenial trichomes and molecular studies have shown equivocal results so far. The major aims of this paper are to provide a nearly complete phylogeny of the Lucilia­ group at generic level and to discuss the evolutionary trends and taxonomic significance of achenial trichome morphology.
    [Show full text]
  • How Many of Cassini Anagrams Should There Be? Molecular
    TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Mississippi Natural Heritage Program Special Plants - Tracking List -2018
    MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium
    [Show full text]
  • 2063 Developing AFLP Markers to Study Genetic
    1 Title: Developing AFLP markers to study genetic differentiation of the cotton fleahopper, 2 Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae) 3 4 Discipline: Arthropod Management 5 6 Authors: Apurba Kumar Barman 7 Dept. of Entomology 8 Texas A&M University 9 College Station TX 77843 10 Phone: 806-928-1896 11 Email: [email protected] 12 13 Raul. F. Medina 14 Dept. of Entomology 15 Texas A&M University 16 College Station TX 77843 17 Phone: 979-8458304 18 Fax: 979-845-6305 19 Email: [email protected] 20 21 Megha N. Parajulee 22 Texas Agricultural Experiment Station 23 1102 East FM 1294 24 Lubbock, TX 79403-9803 25 Phone: 506-746-6101 26 Fax: 806-746-2704 27 Email: [email protected] 28 29 Charles Suh 30 USDA ARS APMRU 31 2771 F&B Road 32 College Station 33 Phone: 979-260-9588 34 Fax: 979-260-9386 35 Email: [email protected] 36 37 38 Chris Sansone 39 Texas A&M University Research and Extension Center 40 7887 U.S. Highway 87 North 41 San Angelo, TX 76901 42 Phone: 325-653-4576 43 Fax: 325-655-7791 44 Email [email protected] JCS1 45 Developing AFLP markers to study genetic differentiation of the cotton fleahopper, 46 Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae) JCS2 47 Developing AFLP markers to study genetic differentiation of the cotton fleahopper, 48 Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae) 49 Apurba K. Barman1, Raul F. Medina1, Megha N. Parajulee2, Charles Suh3, and Chris Sansone4 50 51 Abstract: 52 53 The cotton fleahopper, Pseudatomoscelis seriatus (Reuter) is one of the most 54 important pests of cotton in the US.
    [Show full text]