Evidence of Limited Contributions for Intratumoral Steroidogenesis in Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Evidence of Limited Contributions for Intratumoral Steroidogenesis in Prostate Cancer Published OnlineFirst January 19, 2010; DOI: 10.1158/0008-5472.CAN-09-2092 Tumor and Stem Cell Biology Cancer Research Evidence of Limited Contributions for Intratumoral Steroidogenesis in Prostate Cancer Johannes Hofland1, Wytske M. van Weerden2, Natasja F.J. Dits2, Jacobie Steenbergen1, Geert J.L.H. van Leenders3, Guido Jenster2, Fritz H. Schröder2, and Frank H. de Jong1 Abstract Androgen-deprivation therapy for prostate cancer (PC) eventually leads to castration-resistant PC (CRPC). Intratumoral androgen production might contribute to tumor progression despite suppressed serum andro- gen concentrations. In the present study, we investigated whether PC or CRPC tissue may be capable of in- tratumoral androgen synthesis. Steroidogenic enzyme mRNAs were quantified in hormonally manipulated human PC cell lines and xenografts as well as in human samples of normal prostate, locally confined and advanced PC, local nonmetastatic CRPC, and lymph node metastases. Overall, the majority of samples showed low or absent mRNA expression of steroidogenic enzymes required for de novo steroid synthesis. Simultaneous but low expression of the enzymes CYP17A1 and HSD3B1, essential for the synthesis of androgens from preg- nenolone, could be detected in 19 of 88 patient samples. Of 19 CRPC tissues examined, only 5 samples ex- pressed both enzymes. Enzymes that convert androstenedione to testosterone (AKR1C3) and testosterone to dihydrotestosterone (DHT; SRD5A1) were abundantly expressed. AKR1C3 expression was negatively regulated by androgens in the experimental models and was increased in CRPC samples. Expression of SRD5A1 was upregulated in locally advanced cancer, CRPC, and lymph node metastases. We concluded that intratumoral steroid biosynthesis contributes less than circulating adrenal androgens, implying that blocking androgen pro- duction and its intraprostatic conversion into DHT, such as via CYP17A1 inhibition, may represent favorable therapeutic options in patients with CRPC. Cancer Res; 70(3); 1256–64. ©2010 AACR. Introduction docetaxel chemotherapy combined with prednisone is only temporarily effective with a small survival benefit (3). Due to Despite current early detection methods and surgical and this untreatable stage of disease, PC is still estimated to be the radiotherapeutic treatment options, many prostate cancer cause of 28,660 deaths in the United States in 2008 alone (4). (PC) patients still present with unresectable stages of disease Several hypotheses underlie the occurrence of CRPC, such (1). Since 1941, the mainstay of treatment of advanced PC as the selective outgrowth of androgen-independent clonal is focused on suppression of intraprostatic testosterone and cell populations caused by activation, suppression, or fusion dihydrotestosterone (DHT) actions. Nowadays, androgen of genes and AR signaling pathway–related causes, encom- deprivation therapy is based on lowering the luteinizing hor- passing ligand-independent AR activation, AR hypersensitiv- mone (LH)–induced testicular testosterone production ity due to AR overexpression, and ligand promiscuity due to through LH-releasing hormone agonists (chemical castration) AR mutations (5, 6). More recently, intratumoral conversion with or without antiandrogens that block the androgen re- of adrenal androgens and de novo steroid synthesis have been ceptor (AR). Growth inhibition is initially achieved in the ma- brought forward as potential causes of tumor progression jority of patients. However, eventually all patients develop (7–9). The presence of active AR in CRPC samples and the hormone-refractory or castration-resistant PC (CRPC), reported high intratumoral testosterone and DHT concentra- marked by an increase in prostate-specific antigen (PSA) tions in CRPC patients with castrate serum androgen levels and progression of the tumor (2). Second-line treatment with support the concept of intratumoral conversion of steroidal precursors (8, 10). Recent publications have put renewed em- Authors' Affiliations: Departments of 1Internal Medicine, 2Urology, and phasis on this intratumoral steroidogenesis by showing the 3Pathology, Erasmus MC, Rotterdam, the Netherlands previously unknown expression of steroidogenic enzymes in Note: Supplementary data for this article are available at Cancer normal prostate and PC tissue (8, 9, 11, 12), as well as a dif- Research Online (http://cancerres.aacrjournals.org/). ferential expression pattern between the various tumor types J. Hofland and W.M. van Weerden contributed equally to the study and in and the normal prostate gland (8, 9). Furthermore, conversion the preparation of the manuscript. of the radiolabeled steroid precursor acetic acid into DHT Corresponding Author: Johannes Hofland, Room Ee-532, Department of Internal Medicine, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, has been shown to occur in vitro in LNCaP cells and ex vivo the Netherlands. Phone: 31-10-4073577; Fax: 31-10-7035430; E-mail: in CRPC cells (7). The potential upregulation of steroido- [email protected]. genic enzymes in CRPC and the resulting local testosterone doi: 10.1158/0008-5472.CAN-09-2092 and DHT production may account for the observed intratu- ©2010 American Association for Cancer Research. moral androgens in levels sufficient to activate the AR (7, 8, 1256 Cancer Res; 70(3) February 1, 2010 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst January 19, 2010; DOI: 10.1158/0008-5472.CAN-09-2092 Intraprostatic Steroidogenic Enzymes Figure 1. Simplified scheme of the classic steroid biosynthetic pathway. The depicted steroidogenic enzymes and cofactors are necessary for de novo synthesis of androgens from cholesterol and were investigated in this study. CYP, cytochrome P450; HSD, hydroxysteroid-dehydrogenase; CYB5, cytochrome b5; AKR, aldo-keto-reductase; SRD, 5α-reductase. 10, 13). Consequently, such a mechanism would require androstenedione were abundantly expressed. Their expres- new therapeutic modalities that aim to block intratumoral sion was affected by androgen levels and could be related steroidogenesis. to PC progression. De novo steroid production has been thought to be con- fined to a few organs: the gonads, the adrenal cortex, and Materials and Methods the placenta. Steroidogenesis is initiated by the transport of cholesterol through the mitochondrial membrane, for which In vitro cultures and tumor-bearing mice. The in- the steroid acute regulatory protein (STAR) is obligatory vestigated cell lines and xenografts have been characterized (Fig. 1). Once cholesterol has entered the mitochondria, it previously (17–21), as summarized in Table 1. The PC cell can be converted into pregnenolone by desmolase, also known as cytochrome P450 side-chain cleavage enzyme (CYP11A1). The Δ5-steroid pregnenolone can subsequently be converted through 17-hydroxylase and 17,20-lyase activi- Table 1. Prostate cancer cell line and xenograft ties [both encoded by CYP17A1, together with cofactors cyto- characteristics chrome P450 oxidoreductase (POR) and cytochrome b5 (CYB5A1)] and through 3β-hydroxysteroid dehydrogenase ac- Androgen AR status Origin tivity (by either of the isoenzymes HSD3B1 or HSD3B2) to dependence form androstenedione (14, 15). Further metabolism of andros- tenedione can take place in peripheral tissues, such as the Cell lines male reproductive tract. Here, several 17β-hydroxysteroid LNCaP Responsive AR+ Lymph node dehydrogenase enzymes are able to convert androstenedione VCaP Responsive AR+ Bone to testosterone, of which the type 5 enzyme (AKR1C3 or DuCaP Responsive AR+ Dura HSD17B5) is the most important isoform in the prostate gland PC346C Responsive AR+ PC346 (16). Androstenedione and testosterone can be aromatized in- Xenografts to estrogens by CYP19A1. The two 5α-reductase isoforms, PC82 Dependent AR+ Prostate SRD5A1 and SRD5A2, are able to metabolize testosterone to PC295 Dependent AR+ Lymph node DHT. The type 2 reductase is thought to be the most impor- PC310 Dependent AR+ Prostate tant isoform for intraprostatic conversion (16). PC346 Responsive AR+ TURP To study the capability of human PC to synthesize andro- PC346B Responsive AR+ TURP gens de novo as well as to convert adrenal androgens locally, PC374 Responsive AR+ Skin we measured steroidogenic enzyme expression in a large set PC133 Independent AR− Bone of hormonally manipulated experimental models of PC and PC135 Independent AR− Prostate in patient material from normal prostate, local PC, lymph PC324 Independent AR− TURP node metastases, and transurethral resection of the prostate PC339 Independent AR− TURP (TURP) tissues. In all samples, the expression of key enzymes PC346I Unresponsive AR+ PC346 required for de novo synthesis of androgens was low or ab- PC346BI Unresponsive AR+ PC346B sent and was not affected by androgen ablation therapy. The PC374F Unresponsive AR+ PC374 enzymes required for testosterone and DHT production from www.aacrjournals.org Cancer Res; 70(3) February 1, 2010 1257 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst January 19, 2010; DOI: 10.1158/0008-5472.CAN-09-2092 Hofland et al. Table 2. Patient characteristics First series Second series Normal Locally Lymph node Locally CRPC Locally CRPC prostate confined PC metastases advanced PC advanced PC No. patients, unique 17 11 16 21 10 4 9 Age at diagnosis 62 (54–72) 62 (56–70) 66 (52–71) 63 (46–68) 62 (53–68) 73 (67–81) 68 (50–86)
Recommended publications
  • ACAT) in Cholesterol Metabolism: from Its Discovery to Clinical Trials and the Genomics Era
    H OH metabolites OH Review Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era Qimin Hai and Jonathan D. Smith * Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-444-2248 Abstract: The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels. Keywords: cholesterol esterification; atherosclerosis; ACAT; SOAT; inhibitors; clinical trial Citation: Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its 1. Introduction Discovery to Clinical Trials and the The acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26) enzyme family Genomics Era. Metabolites 2021, 11, consists of membrane-spanning proteins, which are primarily located in the endoplasmic 543. https://doi.org/10.3390/ reticulum [1].
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]
  • Supplementary Table 1 List of 335 Genes Differentially Expressed Between Primary (P) and Metastatic (M) Tumours
    Supplementary Table 1 List of 335 genes differentially expressed between primary (P) and metastatic (M) tumours Spot ID I.M.A.G.E. UniGene Symbol Name Clone ID Cluster 296529 296529 In multiple clusters 731356 731356 Hs.140452 M6PRBP1 mannose-6-phosphate receptor binding protein 1 840942 840942 Hs.368409 HLA-DPB1 major histocompatibility complex, class II, DP beta 1 142122 142122 Hs.115912 AFAP actin filament associated protein 1891918 1891918 Hs.90073 CSE1L CSE1 chromosome segregation 1-like (yeast) 1323432 1323432 Hs.303154 IDS iduronate 2-sulfatase (Hunter syndrome) 788566 788566 Hs.80296 PCP4 Purkinje cell protein 4 591281 591281 Hs.80680 MVP major vault protein 815530 815530 Hs.172813 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 825312 825312 Hs.246310 ATP5J ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 784830 784830 Hs.412842 C10orf7 chromosome 10 open reading frame 7 840878 840878 Hs.75616 DHCR24 24-dehydrocholesterol reductase 669443 669443 Hs.158195 HSF2 heat shock transcription factor 2 2485436 2485436 Data not found 82903 82903 Hs.370937 TAPBP TAP binding protein (tapasin) 771258 771258 Hs.85258 CD8A CD8 antigen, alpha polypeptide (p32) 85128 85128 Hs.8986 C1QB complement component 1, q subcomponent, beta polypeptide 41929 41929 Hs.39252 PICALM phosphatidylinositol binding clathrin assembly protein 148469 148469 Hs.9963 TYROBP TYRO protein tyrosine kinase binding protein 415145 415145 Hs.1376 HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 810017 810017 Hs.179657 PLAUR plasminogen activator,
    [Show full text]
  • Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2
    biology Article Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2 Chiranan Khantham 1 , Wipawadee Yooin 1,2 , Korawan Sringarm 2,3 , Sarana Rose Sommano 2,4 , Supat Jiranusornkul 1, Francisco David Carmona 5,6 , Wutigri Nimlamool 7 , Pensak Jantrawut 1,2, Pornchai Rachtanapun 8,9 and Warintorn Ruksiriwanich 1,2,8,* 1 Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (C.K.); [email protected] (W.Y.); [email protected] (S.J.); [email protected] (P.J.) 2 Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (K.S.); [email protected] (S.R.S.) 3 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 4 Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 5 Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; [email protected] 6 Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain 7 Citation: Khantham, C.; Yooin, W.; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Sringarm, K.; Sommano, S.R.; [email protected] 8 Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Jiranusornkul, S.; Carmona, F.D.; Chiang Mai 50100, Thailand; [email protected] Nimlamool, W.; Jantrawut, P.; 9 School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand Rachtanapun, P.; Ruksiriwanich, W.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Human 3B-Hydroxysteroid Dehydrogenase Deficiency Seems
    M-A Burckhardt and others Histology of HSD3B2 deficiency 173:5 K1–K12 Case Report Human 3b-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk: lesson from an experiment of nature Marie-Anne Burckhardt1, Sameer S Udhane1,†, Nesa Marti1,†, Isabelle Schnyder2, Coya Tapia3, John E Nielsen4, Primus E Mullis1, Ewa Rajpert-De Meyts4 and Christa E Flu¨ ck1 1Pediatric Endocrinology and Diabetology, Departments of Pediatrics and Clinical Research, 2Pediatric Surgery and Correspondence 3Institute of Pathology, University of Bern, CH-3010 Bern, Switzerland and 4Department of Growth and should be addressed Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark to C E Flu¨ ck †S S Udhane and N Marti are now at Graduate School Bern, University of Bern, Bern Switzerland Email christa.fl[email protected] Abstract Context:3b-hydroxysteroid dehydrogenase deficiency (3bHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3bHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. Objective: To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. Methods: Biochemical, genetic and immunohistochemical investigations on human biomaterials. Results: A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 European Journal of Endocrinology deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion.
    [Show full text]
  • Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models
    cancers Article Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models Subrata Deb 1 , Steven Pham 2, Dong-Sheng Ming 2, Mei Yieng Chin 2, Hans Adomat 2, Antonio Hurtado-Coll 2, Martin E. Gleave 2,3 and Emma S. Tomlinson Guns 2,3,* 1 Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] 2 The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; [email protected] (S.P.); [email protected] (D.-S.M.); [email protected] (M.Y.C.); [email protected] (H.A.); [email protected] (A.H.-C.); [email protected] (M.E.G.) 3 Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada * Correspondence: [email protected]; Tel.: +1-604-875-4818 Received: 14 August 2018; Accepted: 17 September 2018; Published: 20 September 2018 Abstract: Castration-resistant prostate tumors acquire the independent capacity to generate androgens by upregulating steroidogenic enzymes or using steroid precursors produced by the adrenal glands for continued growth and sustainability. The formation of steroids was measured by liquid chromatography-mass spectrometry in LNCaP and 22Rv1 prostate cancer cells, and in human prostate tissues, following incubation with steroid precursors (22-OH-cholesterol, pregnenolone, 17-OH-pregnenolone, progesterone, 17-OH-progesterone). Pregnenolone, progesterone, 17-OH-pregnenolone, and 17-OH-progesterone increased C21 steroid (5-pregnan-3,20-dione, 5-pregnan-3,17-diol-20-one, 5-pregnan-3-ol-20-one) formation in the backdoor pathway, and demonstrated a trend of stimulating dihydroepiandrosterone or its precursors in the backdoor pathway in LNCaP and 22Rv1 cells.
    [Show full text]
  • Culture of Bovine Ovarian Follicle Wall Sections Maintained the Highly Estrogenic Profile Under Basal and Chemically Defined Conditions
    Brazilian Journal of Medical and Biological Research (2013) 46: 700-707, http://dx.doi.org/10.1590/1414-431X20133024 ISSN 1414-431X Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions R.B. Vasconcelos1, L.P. Salles2, I. Oliveira e Silva1, L.V.M. Gulart1, D.K. Souza1,3, F.A.G. Torres2, A.L. Bocca4 and A.A.M. Rosa e Silva1 1Laborato´rio de Biotecnologia da Reproduc¸a˜o, Departamento de Cieˆncias Fisiolo´gicas, Instituto de Cieˆncias Biolo´gicas, Universidade de Brası´lia, Brası´lia, DF, Brasil 2Laborato´rio de Biologia Molecular, Departamento de Biologia Celular, Instituto de Cieˆncias Biolo´gicas, Universidade de Brası´lia, Brası´lia, DF, Brasil 3Faculdade de Ceilaˆndia, Universidade de Brası´lia, Ceilaˆndia, DF, Brasil 4Departamento de Biologia Celular, Instituto de Cieˆncias Biolo´gicas, Universidade de Brası´lia, Brası´lia, DF, Brasil Abstract Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17b-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle- stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue.
    [Show full text]
  • Table 2. All Probe Sets with Fold Changes Higher Than Set Thresholds but P > 0.001 Affy No
    Supporting information for Sanoudou et al. (2003) Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0330960100 Table 2. All probe sets with fold changes higher than set thresholds but P > 0.001 Affy no. Gene name Symbol Location Fold Down-regulated probe sets 47879_at N46863 -16.9 59447_at N52773 -9.6 55503_at AI085361 -9.1 47087_at AI310524 -9.0 37209_g_at phosphoserine phosphatase-like PSPHL 7q11.2 -8.4 47137_at AI479899 19p13.3 -8.1 45876_at AA536137 -6.9 45260_at TU3A protein TU3A 3p21.1 -6.7 56246_at 6-phosphofructo-2-kinase/fructose-2,6- PFKFB3 10p14-p15 -6.7 bisphosphatase 3 50230_at hexokinase 2 HK2 2p13 -6.6 38248_at AB011124 20p13 -6.5 44426_at R93141 -6.4 48542_at W27559 -6.3 53813_at AW051518 13q13.3 -6.1 59577_at AA243670 -6.0 46907_at W37075 -5.8 49078_at AA424983 -5.7 49026_at AI357153 20p12.3 -5.4 53487_at AI670947 -5.4 50161_at N39328 -5.1 35994_at AC002398 F25965 19q13.1 -4.9 52285_f_at AW002970 18p11.1 -4.8 40964_at hexokinase 2 HK2 2p13 -4.6 49806_at AI932283 -4.5 58918_at molecule possessing ankyrin repeats induced by MAIL 3p12-q12 -4.3 lipopolysaccharide (MAIL), homolog of mouse 44633_at heat shock 27 kDa associated protein 3q21.1 -4.3 46858_at AI796221 -4.2 36711_at v-maf musculoaponeurotic fibrosarcoma oncogene MAFF 22q13.1 -4.1 homolog F (avian) 54683_at N49844 -4.1 46621_at N32595 -4.1 49629_at N47713 -3.9 47703_at W89189 -3.9 59313_at AI598222 -3.8 34721_at FK506 binding protein 5 FKBP5 6p21.3-21.2 -3.8 46843_at AI632621 -3.7 59611_at R53069 16p11.2 -3.7 58315_at AA778171 3p25.1 -3.6 46607_f_at AI885018 17q25.3 -3.6 33143_s_at solute carrier family 16 (monocarboxylic acid SLC16A3 22q12.3-q13.2 -3.5 transporters), member 3 54152_at eukaryotic translation initiation factor 4E binding EIF4EBP1 8p12 -3.4 protein 1 43935_at ARF-GAP, RHO-GAP, ankyrin repeat and plekstrin ARAP3 5q31.3 -3.2 homology domains-containing protein 3 33849_at pre-B-cell colony-enhancing factor PBEF 7q11.23 -3.2 46902_at N92294 -3.2 47023_at N25555 -3.1 Page 1 of 14 Supporting information for Sanoudou et al.
    [Show full text]
  • Metabolic Enzyme Expression Highlights a Key Role for MTHFD2 and the Mitochondrial Folate Pathway in Cancer
    ARTICLE Received 1 Nov 2013 | Accepted 17 Dec 2013 | Published 23 Jan 2014 DOI: 10.1038/ncomms4128 Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer Roland Nilsson1,2,*, Mohit Jain3,4,5,6,*,w, Nikhil Madhusudhan3,4,5, Nina Gustafsson Sheppard1,2, Laura Strittmatter3,4,5, Caroline Kampf7, Jenny Huang8, Anna Asplund7 & Vamsi K. Mootha3,4,5 Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta- analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses. 1 Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden. 2 Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden. 3 Broad Institute, Cambridge, Massachusetts 02142, USA. 4 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Differences in Gene Expression and Variable Splicing Events of Ovaries
    Ran et al. Porcine Health Management (2021) 7:52 https://doi.org/10.1186/s40813-021-00226-x RESEARCH Open Access Differences in gene expression and variable splicing events of ovaries between large and small litter size in Chinese Xiang pigs Xueqin Ran1, Fengbin Hu1, Ning Mao1, Yiqi Ruan1, Fanli Yi1, Xi Niu1, Shihui Huang1, Sheng Li1, Longjiang You1, Fuping Zhang1, Liangting Tang1, Jiafu Wang1* and Jianfeng Liu2 Abstract Background: Although lots of quantitative trait loci (QTLs) and genes present roles in litter size of some breeds, the information might not make it clear for the huge diversity of reproductive capability in pig breeds. To elucidate the inherent mechanisms of heterogeneity of reproductive capability in litter size of Xiang pig, we performed transcriptome analysis for the expression profile in ovaries using RNA-seq method. Results: We identified 1,419 up-regulated and 1,376 down-regulated genes in Xiang pigs with large litter size. Among them, 1,010 differentially expressed genes (DEGs) were differently spliced between two groups with large or small litter sizes. Based on GO and KEGG analysis, numerous members of genes were gathered in ovarian steroidogenesis, steroid biosynthesis, oocyte maturation and reproduction processes. Conclusions: Combined with gene biological function, twelve genes were found out that might be related with the reproductive capability of Xiang pig, of which, eleven genes were recognized as hub genes. These genes may play a role in promoting litter size by elevating steroid and peptide hormones supply through the ovary and facilitating the processes of ovulation and in vivo fertilization. Keywords: Transcriptome, Alternative splicing, Ovary, Litter size, Xiang pig Summary Reproductive traits are extremely intricate and influ- Based on analyzing of the transcriptome and alternative enced by multifactors originating from heredity and en- splicing events, twelve candidate genes related with fe- vironment especially in litter size of pigs [2–5].
    [Show full text]
  • Global Profiles of Gene Expression Induced by Adrenocorticotropin in Y1 Mouse Adrenal Cells
    0013-7227/06/$15.00/0 Endocrinology 147(5):2357–2367 Printed in U.S.A. Copyright © 2006 by The Endocrine Society doi: 10.1210/en.2005-1526 Global Profiles of Gene Expression Induced by Adrenocorticotropin in Y1 Mouse Adrenal Cells Bernard P. Schimmer, Martha Cordova, Henry Cheng, Andrew Tsao, Andrew B. Goryachev, Aaron D. Schimmer, and Quaid Morris Banting and Best Department of Medical Research (B.P.S., M.C., H.C., A.T., A.B.G., Q.M.), Department of Pharmacology (B.P.S.) and Department of Computer Science (Q.M.), University of Toronto, Princess Margaret Hospital and Ontario Cancer Institute (A.D.S.), Toronto, Ontario, Canada M5G 1L6 ACTH regulates the steroidogenic capacity, size, and struc- transcripts, i.e. only 10% of the ACTH-affected transcripts, tural integrity of the adrenal cortex through a series of actions were represented in the categories above; most of these had involving changes in gene expression; however, only a limited not been described as ACTH-regulated previously. The con- number of ACTH-regulated genes have been identified, and tributions of protein kinase A and protein kinase C to these these only partly account for the global effects of ACTH on the genome-wide effects of ACTH were evaluated in microarray adrenal cortex. In this study, a National Institute on Aging 15K experiments after treatment of Y1 cells and derivative protein mouse cDNA microarray was used to identify genome-wide kinase A-defective mutants with pharmacological probes of changes in gene expression after treatment of Y1 mouse ad- each pathway. Protein kinase A-dependent signaling ac- renocortical cells with ACTH.
    [Show full text]