Classification of Pinus Patula, I? Tecunum R Oocarpa, R Caribaea Var
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sabana Grande Ojojona Curarén Alubarén La Libertad
I l'Jf.. v 1 Zonas: Sabana Grande Ojojona Curarén Alubarén Reitoca San Miguelito La Libertad ZAMORANO UNIDAD EMPRESARIAL DE SERVICIOS AGRICOLAS ... Marzo 8, 1999 Servicio Holandés de Cooperación al Desarrollo Tegucigalpa. Att. Sr.Lex Hoefsloot Estimado Sr. Hoefsloot: Adjunto un original y una copia del informe final del Estudio de Posibilidades de Miniproyectos de Riego que bajo convenio suscrito entre Zamorano y SNV hemos realizado para Uds. Como era sabido, el corto tiempo dedicado a cubrir una área tan grande no nos permitió obtener en algunas ocasiones información suficiente en especial para aquellos proyectos considerados grandes dentro de la cobertura del proyecto, no obstante creemos que la información generada por el equipo conformado por Zamorano, SNV e INFOP es bastante detallada y en la gran mayoría de los casos servirá para tomar un curso de acción. Hemos identificado algunos proyectos que en el caso de resolver ciertas dificultades particulares bien podrían estudiarse posteriormente. Agradecemos la confianza depositada en nosotros y esperamos que sea el inicio de una relación de cooperación creciente entre nuestras instituciones para beneficio mutuo y de Honduras. Quedamos a sus completas ordenes para cualquier aclaración necesaria, de Ud, Con Toda Consideración y Respeto, ~an~-/ Gerente UESA ce: Dr.Mario Contreras Director Ejecutivo Zamorano UESA Marzo 1999 ESTUDIO DE POSIBILIDADES DE MINIPROYECTOS DE RIEGO ZONAS: SABANAGRANDE-OJOJONA, CURAREN-ALUBAREN-REITOCA Y SAN MIGUELITO Y LA LffiERTAD l.O ANTECEDENTES. Con ocasión del fenómeno MITCH ocurrido a fmes de octubre del año recién pasado causando fuertes laños a la infraestructura nacional, el Servicio Holandés de Cooperación al Desarrollo a través de su epresentante el Sr. -
Current and Potential Spatial Distribution of Six Endangered Pine Species of Mexico: Towards a Conservation Strategy
Article Current and Potential Spatial Distribution of Six Endangered Pine Species of Mexico: Towards a Conservation Strategy Martin Enrique Romero-Sanchez * , Ramiro Perez-Miranda, Antonio Gonzalez-Hernandez, Mario Valerio Velasco-Garcia , Efraín Velasco-Bautista and Andrés Flores National Institute on Forestry, Agriculture and Livestock Research, Progreso 5, Barrio de Santa Catarina, Coyoacan, 04010 Mexico City, Mexico; [email protected] (R.P.-M.); [email protected] (A.G.-H.); [email protected] (M.V.V.-G.); [email protected] (E.V.-B.); fl[email protected] (A.F.) * Correspondence: [email protected]; Tel.: +52-553-626-8698 Received: 24 October 2018; Accepted: 6 December 2018; Published: 12 December 2018 Abstract: Mexico is home to the highest species diversity of pines: 46 species out of 113 reported around the world. Within the great diversity of pines in Mexico, Pinus culminicola Andresen et Beaman, P. jaliscana Perez de la Rosa, P. maximartinenzii Rzed., P. nelsonii Shaw, P. pinceana Gordon, and P. rzedowskii Madrigal et M. Caball. are six catalogued as threatened or endangered due to their restricted distribution and low population density. Therefore, they are of special interest for forest conservation purposes. In this paper, we aim to provide up-to-date information on the spatial distribution of these six pine species according to different historical registers coming from different herbaria distributed around the country by using spatial modeling. Therefore, we recovered historical observations of the natural distribution of each species and modelled suitable areas of distribution according to environmental requirements. Finally, we evaluated the distributions by contrasting changes of vegetation in the period 1991–2016. -
The Tolerance of Pinus Patula 3 Pinus Tecunumanii, and Other Pine Hybrids, to Fusarium Circinatum in Greenhouse Trials
New Forests (2013) 44:443–456 DOI 10.1007/s11056-012-9355-3 The tolerance of Pinus patula 3 Pinus tecunumanii, and other pine hybrids, to Fusarium circinatum in greenhouse trials R. G. Mitchell • M. J. Wingfield • G. R. Hodge • E. T. Steenkamp • T. A. Coutinho Received: 7 August 2011 / Accepted: 29 June 2012 / Published online: 10 July 2012 Ó Springer Science+Business Media B.V. 2012 Abstract The field survival of Pinus patula seedlings in South Africa is frequently below acceptable standards. From numerous studies it has been determined that this is largely due to the pitch canker fungus, Fusarium circinatum. Other commercial pines, such as P. elliottii and P. taeda, show good tolerance to this pathogen and better survival, but have inferior wood properties and do not grow as well as P. patula on many sites in the summer rainfall regions of South Africa. There is, thus, an urgent need to improve the tolerance of P. patula to F. circinatum. Operational experience indicates that when P. patula is hybridized with tolerant species, such as P. tecunumanii and P. oocarpa, survival is greatly improved on the warmer sites of South Africa. Field studies on young trees suggest that this is due to the improved tolerance of these hybrids to F. circinatum. In order to test the tolerance of a number of pine hybrids, the pure species representing the hybrid parents, as well as individual families of P. patula 9 P. tecunumanii, a series of greenhouse screening trials were conducted during 2008 and 2009. The results indicated that species range in tolerance and hybrids, between P. -
Altitudinal Genetic Variation Among Pinus Oocarpa Populations In
Forest Ecology and Management 229 (2006) 340–350 www.elsevier.com/locate/foreco Altitudinal genetic variation among Pinus oocarpa populations in Michoaca´n, Mexico Implications for seed zoning, conservation, tree breeding and global warming Cuauhte´moc Sa´enz-Romero a,*, R. Ricardo Guzma´n-Reyna b, Gerald E. Rehfeldt c a Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicola´s de Hidalgo (INIRENA-UMSNH), Av. San Juanito Itzı´cuaro s/n, Col. San Juanito Itzı´cuaro, Morelia Michoaca´n 58330, Mexico b Facultad de Biologı´a, Universidad Michoacana de San Nicola´s de Hidalgo, Av. Francisco J. Mu´jica s/n, Col. Felı´citas del Rı´o, Morelia Michoaca´n 58040, Mexico c Forestry Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, 1221 S. Main, Moscow, Idaho 83843, USA Received 29 November 2005; received in revised form 5 April 2006; accepted 6 April 2006 Abstract Pinus oocarpa has a large natural distribution in the sub-tropical forests of Mexico. Populations, however, are rapidly disappearing particularly in the Michoaca´n State as native forests are converted to avocado (Persea sp.) orchards. We investigated the patterning of genetic variation among P. oocarpa populations for quantitative traits along an altitudinal gradient by establishing a provenance/progeny test from wind-pollinated seeds collected along an altitudinal transect (1100–1500 m) near Uruapan, Michoaca´n, Mexico. Genetic variation was analyzed in relation to normalized climate records (temperature, precipitation, degree days >5 8C and annual moisture index) for the provenances and the test site for the contemporary climate and for climates projected for the decades beginning in 2030, 2060, and 2090. -
Pinus Tecunumanii Eguiluz & J. P. Perry
Pinus tecunumanii Eguiluz & J. P. Perry W.S. DVORAK Central America and Mexico Coniferous Resources Cooperative (CAMCORE) Department of Forestry, North Carolina State University PINACEAE (PINE FAMILY) Pinus patula ssp. tecunumanii (Eguiluz & Perry) Styles, Pinus oocarpa var. ochoterenae (Mart.) Pino colorado, pino de las Sierras, pino ocote, pino rojo (Gutiérrez 1996) Pinus tecunumanii is a closed-cone pine that occurs from Chi- durensis (Sénécl) Barr. and Golf., and P. maximinoi. The apas, Mexico (17°02’N) to central Nicaragua (12°42’N) in a growth rate of trees from the low-elevation sources in Central series of disjunct populations (Dvorak and Donahue 1992). America is approximately 3 to 8 m3 per ha per year. The species’ geographic range can be divided into two large Molecular marker studies show a clear separation subpopulations based on subtle morphologic and adaptability between high- and low-elevation populations of P. tecunumanii differences: high-elevation populations that occur from and suggest that the species may share a close evolutionary his- approximately 1500 to 2900 m elevation, and low-elevation tory with both P. oocarpa and P. caribaea var. hondurensis populations that are found at 450 m to 1500 m (Dvorak and (Furman and others 1996). The Central America and Mexico others 1989). Coniferous Resources Cooperative (CAMCORE), North Car- Mature trees from high-elevation populations can reach olina State University, is keeping the two groups of P. 55 m in height and more than 100 cm d.b.h. on the deep, fer- tecunumanii separate for breeding purposes (Central America tile soils of the montane cloud forests of Guatemala and Hon- and Mexico Coniferous Resources Cooperative 1996). -
A New Invasive Species in South America: Pinus Oocarpa Schiede Ex Schltdl
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Ecology and Evolutionary Biology Ecology and Evolutionary Biology 7-8-2014 A new invasive species in South America: Pinus oocarpa Schiede ex Schltdl. Emilia P. Braga The University of Brasilia, Brazil Rafael D. Zenni University of Tennessee - Knoxville, [email protected] John D. Hay The University of Brasilia, Brazil Follow this and additional works at: https://trace.tennessee.edu/utk_ecolpubs Recommended Citation Braga, Emilia P., Rafael D. Zenni*, and John D. Hay. "A New Invasive Species in South America: Pinus oocarpa Schiede ex Schltdl." BioInvasions Records 3, no. 3 (2014): 207-211. http://dx.doi.org/10.3391/ bir.2014.3.3.12. This Article is brought to you for free and open access by the Ecology and Evolutionary Biology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Ecology and Evolutionary Biology by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. BioInvasions Records (2014) Volume 3, Issue 3: 207–211 Open Access doi: http://dx.doi.org/10.3391/bir.2014.3.3.12 © 2014 The Author(s). Journal compilation © 2014 REABIC Rapid Communication A new invasive species in South America: Pinus oocarpa Schiede ex Schltdl. Emilia P. Braga1,3, Rafael D. Zenni2* and John D. Hay1,4 1Department of Ecology, The University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasilia, DF, 70910-900, Brazil 2Department of Ecology & Evolutionary Biology, The University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, USA E-mail: [email protected] (RDZ), [email protected] (EPB), [email protected] (JDH) *Corresponding author Received: 20 April 2014 / Accepted: 12 June 2014 / Published online: 8 July 2014 Handling editor: John Wilson Abstract Conifers have a long history of introductions into many parts of the world and are among the most notorious plant invaders. -
Disturbances Influence Trait Evolution in Pinus
Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework. -
Geography and Vegetation Change 29
Copyright by Jerry Owen Bass, Jr. 2003 The Dissertation Committee for Jerry Owen Bass, Jr. certifies that this is the approved version of the following dissertation: MORE TREES IN THE TROPICS: REPEAT PHOTOGRAPHY AND LANDSCAPE CHANGE IN HONDURAS, 1957-2001 Committee: _________________________________ William E. Doolittle, Supervisor _________________________________ Terry G. Jordan _________________________________ Gregory W. Knapp _________________________________ Steven D. Hoelscher _________________________________ William V. Davidson MORE TREES IN THE TROPICS: REPEAT PHOTOGRAPHY AND LANDSCAPE CHANGE IN HONDURAS, 1957-2001 Jerry Owen Bass, Jr., B.A., M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin In Partial Fulfillment Of the Requirements For the Degree of Doctor of Philosophy The University of Texas at Austin May 2003 Dedication I dedicate this work to Robert C. West and Terry G. Jordan, two great geographers, and to all the wonderful Hondurans from whom I learned. Acknowledgements I have shared several bottles of Flor de Caña with a small group of geographers who have all played a role in my academic development. The group – Scott Brady, Craig Revels, Taylor Mack, Ricky Samson, and Bill Davidson – shares a love for Honduras, fieldwork, and interesting geography, discussions of which helped in the development of this study. I look forward to a career of collaboration and to more fun and interesting conversations and trips with these people. Bill Davidson introduced me to geography. He and his wife, Sharon, have been good friends to me since. I am ever grateful. Here at UT, many have helped me as I stepped through the Ph.D. -
Grow Pines 3 2
PLAESTABLISHMENTNTATION GUIDE &L IMANAGEMENTNES OF COMMERCIALNO.18 (V.2) – PINEOCT PLANTATIONS. 2005 IN UGANDA N 18 J 2005 FOREST FIRE PLANTATIONPROTEC GUIDELINETION No. 12 (v.2) - Feb. 2007 JUST ONE forest fire can destroy the investment of ¾ Purchase and maintain suitable fire fighting many years in a few hours: hence fires must be taken equipment. very seriously as the NFA and private sector start ¾ Ensure that any fires are spotted early and that there establishing large-scale commercial plantations in are people on standby at critical times. Uganda. When it comes to fire prevention, the golden ¾ Train staff (including contractors) to ensure that rule is: ‘Be prepared’. With regard to fire control, the they can fight fires efficiently and safely. best advice is: ‘Spot fires early: hit them fast and keep ¾ Use the Fire Danger Index system to guide levels of them small’. preparedness (see table below). The key areas to focus on to make your forest safer are: ¾ Follow-up immediately after fires: ensure lessons are learned and take any disciplinary (or legal) ¾ Work with surrounding communities – not against action required. them – and educate them on the dangers of forest fires. This Guideline will expand on all these points. The ¾ Identify risks well in advance and try to minimize advice is based on practices developed to a fine art in them. Southern Africa – where the plantation fire risk can be ¾ Prepare firebreaks in advance of the driest periods. extremely high during the long, hot dry periods experienced there. FIRE DANGER INDEX SYSTEM Fire Alert BLUE GREEN YELLOW ORANGE RED Stages Fire Danger 0-20 21-45 46-60 61-75 76-100 Index Fire Behavior SAFE MODERATE DANGEROUS VERY EXTREMELY DANGEROUS DANGEROUS Flame Length 0-1 1-1.2 1.2-1.8 1.8-2.4 2.4+ (m) Fire Control Low fire Only light Direct attack Spread of fires Fires will be Guide hazard. -
NATIVE NAMES and USES of SOME PLANTS of EASTERN GUATEMALA Mid HONDURAS
NATIVE NAMES AND USES OF SOME PLANTS OF EASTERN GUATEMALA MiD HONDURAS. By S. F. BLAKE. INTRODUCTION. In the spring of 1919 an Economic Survey Mission of the United States State Department, headed by the late Maj. Percy H. Ashmead, made a brief examination of the natural products and resources of the region lying between the Chamelec6n Valley in Honduras and the Motagua VaUey in Guatemala. Work was also done by the botanists of the expedition in the vicinity of Izabal on Lak.. Izaba!. Descriptions of the new species collected by the expedition, with a short account of its itinerary, have already been published by the writer,' and a number of the new forms have been illustrated. The present list is based · wholly on the data and specimens collected by the botanists and foresters of this expedition-H. Pittier, S. F. Blake, G. B. Gilbert, L. R. Stadtmiller, and H. N. Whitford-and no attempt has been made to incorporate data from other regions of Central America. Such information will be found chiefly in various papers published by Henry Pittier,' J. N. Rose,' and P. C. Standley.' LIST OF NATIVE NAllES AND USES. Acacia sp. CACHITO. eoaNIZuELO. ISCAN.... L. FAAACEJ..E. Acacla sp. I....&GAR'l"O. SANPlWBANO. FABACE'·. A tree up to 25 meters high and 45 em. to diameter. The wood is lISed for bunding. Acalypha sp. Co8TII I A DE PANTA. EUPHOllBlAc!:a. 'Contr. U. S. Not. Herb. 24: 1-32. pl •. 1-10, ,. 1-4. 1922. • Ensayo oobre las plantas usuatee de Costa Rica. pp. 176, pk. -
Cattle, Broadleaf Forests and the Agricultural Modernization Law of Honduras
ISSN 0854-9818 OCCASIONAL PAPER NO. 7 (E) Mar 1996 Cattle, Broadleaf Forests and the Agricultural Modernization Law of Honduras The Case of Olancho William D. Sunderlin and Juan A. Rodríguez CENTER FOR INTERNATIONAL FORESTRY RESEARCH office address: Jalan Gunung Batu 5 Bogor 16001 Indonesia mailing address : P.O. Box 6596, JKPWB Jakarta 10065 Indonesia tel.: +62 (251) 34-3652 fax: + 62(251) 32-6433 email: [email protected] The CGIAR System The Consultative Group on International Agricultural Research (CGIAR) is an infor- mal association of 41 public and private sector donors that supports a network of six- teen international agricultural research institutes, CIFOR being the newest of these. The Group was established in 1971. The CGIAR Centers are part of a global agri- cultural research system which endeavour to apply international scientific capacity to solution of the problems of the world’s disadvantaged people. CIFOR CIFOR was established under the CGIAR system in response to global concerns about the social, environmental and economic consequences of loss and degradation of forests. It operates through a series of highly decentralised partnerships with key institutions and/or individuals throughout the developing and industrialised worlds. The nature and duration of these partnerships are determined by the specific research problems being addressed. This research agenda is under constant review and is sub- ject to change as the partners recognise new opportunities and problems. Contents Acknowledgements Preface Summary 1 Introduction -
1 Learning-By-Doing
ZAMORANO Preparing Ieaders Jor tbe Sustainable Development oJ Latín America r - ?!!ORA NO o.ffers students, projessionals, businesses and development organizations the MESSAGE 1 FROM THE CHAIRMAN OF THE BOARD Dear Friends and Colleagues: Zamorano is a amorano is a community that continues to embrace change; a community whose funda community that Zmental nature promotes possibi li ty and continues to embrace growth Th e powerful combination of classroom study with practica! expe ri ence in the field offers stu change; a community dents and faculty the opportunity to balance theory Frcdrrirk Q Falrk with problem solvi ng in today's world. Zamorano whose fundamental graduates return to their countries of origin with the skil ls and com- nature promotes mitment to make a difference as they employ the latest technolo gy in agricu ltura! pra ctices, marketing in the global economy and possibility and ru ra 1deve lopment. growth. The photographs that foll ow capture the excitement that is felt on campus. A recent vis itar told me that students at Zamorano impressed him in a manner that is all but lost on other campuses that he regularly visits. He perceived a sense of community whose mission and promise draws us al l back to this beautiful setting. 1 sha re this pass ion - at Zamorano the students' productive atti tude is infectious and invigora ting and accompli shment is tangible. On beha lf of the Board ofTrustees 1urge you to co nsider the possi bil ities Zamorano offers. Please join us in supporting this dynamic community; empower future Zamorano graduates and programs to create progress in their communiti es and countries throughout the Americas.