Composition, Formation, and Leaching Behaviour of Supergene, Polymetallic Ores from the Sanyati Deposit (Zimbabwe): a Case Study
Total Page:16
File Type:pdf, Size:1020Kb
Composition, formation, and leaching behaviour of supergene, polymetallic ores from the Sanyati deposit (Zimbabwe): A case study vorgelegt von Diplom-Geologin Martina Frei aus München von der Fakultät VI der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. W. Dominik Berichter: Prof. Dr. K. Germann Berichter: Prof. Dr. G. Franz Berichter: Prof. Dr.-Ing. Dr. rer.nat. h.c.mult. F.-W. Wellmer Tag der wissenschaftlichen Aussprache: 17.8.2005 Berlin 2005 D83 1 "Mineralogy is the key to applying SX/EW techniques, and the original ore mineralogy of a deposit determines the ultimate recovery from the leach process." (WALLIS & CHLUMSKY 1999) 2 Table of contents page Abstract 6 Zusammenfassung 7 1. Introduction 8 1.1 Object and aims of this study 8 1.2 Hydrometallurgical base metal production from leachable deposits 11 1.2.1 Supergene deposits, recovery techniques, economic importance: an overview 11 1.2.2 HL-SX-EW, a hydrometallurgical route for copper recovery 19 1.2.2.1 Pyro- vs hydrometallurgical route – advantages and restrictions 19 1.2.2.2 HL-SX-EW process for copper recovery 20 2. The Sanyati copper ore deposit 24 2.1 Geographical situation 24 2.2 Geological and morphological setting 24 2.2.1 Regional structural situation 24 2.2.2 Lithostratigraphy 27 2.2.3 Morphological situation 30 2.3 Distribution and composition of the primary mineralisation 31 2.4 Distribution and composition of the supergene mineralisation 33 2.4.1 Terminology of supergene mineralisations 33 2.4.2 The Sanyati supergene mineralisation 34 2.5 Mining and benefication activities at the Sanyati mine 35 2.5.1 Historical development 35 2.5.2 Mining process 36 2.6 HL-SX-EW at the Sanyati mine 37 3 Field- and laboratory work 40 3.1 Fieldwork 40 3.1.1 Sampling of orebodies and run-of-mine ore dump 40 3.1.2 Sampling of host rock 41 3.1.3 Sampling of the heap leach pad 42 3.2 Analytical and experimental methods 43 3.2.1 Sample preparation 43 3.2.2 Leaching experiments 44 3.2.2.1 Leaching experiments of the water-soluble fraction (V0) 45 3 page 3.2.2.2 Leaching experiments of the H2SO4-soluble fraction (VR, V15, V7, V1, V6) 46 3.2.2.3 Partial extraction experiments (V12 - V14) 48 3.2.2.4 Experimental adsorption of base metals to goethite (experiment V8 - V11) 48 3.2.3 Phase analysis (Pol. Mic., XRD, SEM) 49 3.2.4 Chemical analysis (XRF, EMPA, LA-ICPMS, ICP OES, F-AAS, and G-AAS) 50 4 Weathering products and processes at Sanyati 56 4.1 Weathering products of host rocks with (proximal) and without (distal) the 56 influence of sulfide decay 4.1.1 Mineralogical and geochemical composition of fresh host rock 56 4.1.2 Mineralogical characteristics of weathered host rock distal and proximal to the 57 zone of sulfide decay 4.1.3 Geochemical characteristics of weathered host rocks distal and proximal to 58 the zone of sulfide decay 4.1.3.1 Geochemical changes during weathering processes 58 4.1.3.2 Metal signature 64 4.2 Formation of supergene ore in the oxidation zone 66 4.2.1 Breakdown reactions of primary sulfide ore 66 4.2.2 Composition of the secondary sulfide ore 72 4.2.3 Composition of the supergene ore 73 4.2.3.1 Mineralogical characteristics 73 4.2.3.2 Geochemical characteristics 79 4.2.4 Composition of groundwater in the open pits 87 4.2.5 Neoformation of sulfates in the open pits 87 4.3 Summary Chapter 4 88 5 Leaching products and processes on the heap leach pads 91 5.1 Characteristics of the run-of-mine ore (ROM) 91 5.2 Composition of the leach pad ore (LPO) 94 5.3 Composition of the acid solution used for leaching 99 5.4 Neoformation of phases during leaching 100 5.5 Summary Chapter 5 105 6 Composition of goethite and hematite in run-of-mine and leach pad ore 107 6.1 Chrystal chemistry of goethite and hematite 107 6.2 Boxwork texture and chemistry (Microprobe analysis) 110 6.2.1 Development, preservation, classification and geochemistry of relictic decay 110 textures of sulfides 4 page 6.2.2 Element distribution in goethite-rich and hematite-rich zones of boxwork 126 textures 6.2.3 Concentrations in run-of-mine ore (ROM) and leach pad ore (LPO) 133 6.3 Trace element chemistry of goethite- and hematite-rich zones (Laser ablation 134 analysis) 6.4 Comparison of element distributions of goethite and hematite in three base 136 metal and lead deposits 6.5 Summary Chapter 6 138 7 Laboratory leaching behaviour of the supergene ore 140 7.1 Leaching experiments with ROM and LPO (H2SO4-soluble fraction) 140 7.1.1 Percolation experiments 140 7.1.2 Leaching experiments under idealized conditions 145 7.1.3 Metal production rates and rate equations 148 7.2 Extraction experiments on goethite- and hematite-rich supergene ores 151 7.3 Adsorption experiments of Cu onto goethite 153 7.4 Summary Chapter 7 155 8 Formation of “invisible” base metal concentrations in supergene goethite and 157 hematite and their consequences for the leaching process 8.1 Development of the oxidation zone in Sanyati and the composition of the 157 supergene ores 8.2 Distribution of base metals in sulfide decay textures - colloform textures as a 159 proxy for the "invisible" base metal contents in goethite and hematite 8.3 Fixation of base metals by goethite and hematite 162 8.3.1 Adsorption to goethite and hematite 163 8.3.2 Lattice incorporation of base metals in goethite and hematite 170 8.3.3 Jarosites/plumbojarosite 170 8.4 Consequences of the base metal retention on the extraction success of heap 171 leaching 9 Conclusions and general perspective 175 10 References 180 11 Lists of figures and tables 199 12 Acknowledgements 206 13 Curriculum vitæ 207 14 Appendix Index 208 5 Abstract Abstract From the supergene ore of the polymetallic Sanyati deposit in north-western Zimbabwe copper is won in a heap leaching - solvent extraction - electrowinning (HL-SX-EW) process. However, the copper recovery is below expectations. Therefore, the composition, formation, and leaching behaviour of the supergene ore was studied using mineralogical (optical microscopy, SEM, and XRD), geochemical (XRF, EMPA, AAS, ICP-OES, and LA-ICP-MS), and experimental methods in order to unravel the processes responsible for the unsatisfactory copper recovery. The supergene orebodies of Sanyati developed in a warm humid climate since the Miocene (LISTER 1987) and are now forming inselbergs since the Pliocene erosion cycle. The orebodies represent an immature and therefore very heterogeneous oxidation zone with rudimentarily developed secondary sulfide ore lenses developed at its base. Beside physical (unfavourable grain size distributions) and technical (a high compaction of the heap leach pad) aspects, the textural and mineralogical characteristics of the ores lead to metal retention during the heap leaching process. Significant amounts of copper (and other base metals) are retained by the formation of ironoxides and -oxyhydroxides (primarily goethite and hematite), which are ubiquitous in the supergene ore. These "invisible" base metal contents are significantly higher compared to those reported from other deposits (SCOTT 1986; SCOTT 1992). The observed distributions of base metals (and misc. other elements) in goethite- and hematite-rich decay textures of sulfide minerals demonstrate that they do not contain a geochemical fingerprint of their precursor sulfide phase. Goethite-rich areas of the decay texture are generally enriched in Cu, Zn, and As, as well as in selected trace elements (Ga, Ge, Se, Ag, Cd, and Sb), and are depleted in Pb compared to hematite-rich areas. The base metal contents of goethite and hematite are in the same range in run-of-mine ore and ore from the heap leach pad that has been leached for several years. Extraction experiments on run-of-mine ore showed that 19 % of Cu and 6 % of Zn are adsorbed to the surfaces of limonite phases. The remaining 81 % of Cu and 94 % of Zn are fixed in the lattices of limonite phases (predominantly goethite and hematite). Leaching and adsorption experiments showed that these phases are partly not dissolved under the conditions used on the heap leach pad (H2SO4, pH 1.5 - 2). From the dissolved part, limonite phases reprecipitate again and coprecipitate base metals that are therefore lost for the output of the leaching process. 6 Zusammenfassung Zusammenfassung Aus den supergene Erzen der polymetallischen Lagerstätte Sanyati (NW Zimbabwe) wird im heap leaching - solvent extraction - electrowinning (HL-SX-EW) Verfahren hochwertiges Kupfer gewonnen. Das Kupferausbringen entspricht jedoch nicht den Erwartungen. Um genauere Erkenntnis für die Gründe des geringen Ausbringens zu erlangen, wurde die Zusammensetzung, die Bildung und das Laugungsverhalten der supergenen Erze mit mineralogischen (Polarisationsmikroskopie, SEM und XRD), geochemischen (XRF, EMPA, AAS, ICP-OES und LA-ICP-MS) sowie experimentellen Methoden untersucht. Die Bildung der supergenen Erzkörper erfolgte seit dem Miozän (LISTER 1987). Rezent stehen diese Erzkörper als Inselberge in einer seit dem Pliozän gebildeten Erosions- morphologie. Die Verwitterungsprofile der Erzkörper sind nur rudimentär zoniert. Die Mineralisation der Oxidationszone ist sehr heterogen und eine Zementationszone ist nur reliktisch als vereinzelte Erzlinsen ausgebildet. Neben physikalischen (ungünstige Korngrößenverteilung) und technischen Gründen (zu hohe Erzkompaktion auf den Laugungsbetten), führen mineralogische und texturelle Eigenschaften zu einer Fixierung von Metallen im Erz. Wertmetalle wie Cu und Zn, aber auch Pb und As sind an Limonitphasen (hauptsächlich Goethit und Hämatit) gebunden, die Hauptmineralbestandteile der supergenen Erze sind.