An Assessment of High-Speed Rail Safety Issues and Research Needs U.S

Total Page:16

File Type:pdf, Size:1020Kb

An Assessment of High-Speed Rail Safety Issues and Research Needs U.S An Assessment of High-Speed Rail Safety Issues and Research Needs U.S. Department of Transportation Federal Railroad Administration Office of Research and Development Washington DC 20590 Alan J. Bing Arthur D. Little, Inc. Acorn Park Cambridge, MA 02140 DOT/FRAIORD-90/04 December 1990 This document is available to the Final Report Public through the National Technical Information Service, Springfield, Virginia 22161 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. NOTICE The United States Government does not endorse products of manufacturers. Trade or manufacturers' names appear herein solely because they are con· sidered essential to the object of this report. • • Technical ~eport Documentation Page I. Report No . 2. Government Accession No. 3. Recipient's Catalog No. DOT/FRA/ORD-90/04 4. Ti tl e a nd Subti tl e 5. Report Date An Assessment of High-Speed Rail Safety Issues and May 1990 Research Needs 6. Performing Organization Code ~-----,-...,..----------------------------1 8. Performing Organization Report No . 7. Author/ 5) Alan J. Bing 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Arthur D. Little, Inc. Acorn Park 11. Contract or Grant No. Cambridge, MA 02140 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Final Report U.S. Department of Transportation September 1988-August 1989 Federal Railroad Administration Office of Research and Development 14. Sponsoring Agency Code 400 7th St., S.W., Washington, DC 20590 15. Supplementary Notes 16. Abstract Proposals are currently being developed for high-speed wheel-on-rail passenger train service in several intercity corridors in the United States. These proposals involve the application of foreign high-speed train technology, and operation at speeds exceeding 125 mph. This report provides an assessment of safety issues associated with high-speed rail passenger systems, and identifies where further research may be needed to ensure the safe operation of such systems in the United States railroad environment. The approach taken in this assessment was to first "identify and describe the key safety-related features of all high-speed rail systems that may be applied in the United States. Then all safety issues associated with passenger rail systems are identified, and pertinent safety-related regulations, standards and practices applicable in the U.S. and on foreign systems are discussed. Each discussion concludes with a recommendation regarding the need for research into the safety issue: The principal issues on which research appears desirable include passenger car structural strength requirements, novel brake system performance, security of the right-of-way against obstructions, and high-speed signalling and train control systems. 17. Key Words 18. Distribution Statement High-Speed Rail Document is available to the Public throug Railroad Safety the National Technical Information Signal and Train Control Systems Service, Springfield, Virginia 22161 Locomotives, passenger cars, High-speed track systems 19. Security Clossif. (of this report) 20. Security Claui f. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 189 Form DOT F 1700.7 (B-72J Reproduction of completed page authorized METRIC CONVERSION FACTORS Length Density 3 4 3 1 inch 25.4 nun 1 Ib/in 2.768 X 10 kg/m 2 !it .......).. 1 ft 304.8 mm 1 lb/fe 16.019 kg/m 1 yard 0.9144 m 1 mile 1.609 km Force 1 lb force 4.448 N .~ Area 1 in2 645.16 mm2 Pressure 1 ff 0.0929 m2 1 Ibf/in 2 6.894 kN/m2 1 yd2 0.8361 m2 Energy 1 acre 0.4046 ha 1 mile2 2.590 km2 1 ft-lbf 1.354 J 1 Btu 1.055 kJ Volume 1 in 3 16387 mm3 Power 1 fe 0.0283 m2 1 hp 0.7457 kW 1 US gall 3.637 1 Temperature 1°F 5/9° K Velocity Mass 1 ft/sec 0.3048 m/sec 1 lb 0.4536 kg 1 milelh 0.447 m/sec 1 US ton 0.9072 tonnes 1.6093 km/h (metric tons) • ii ABBREVIATIONS Many abbreviations are in common use for railroad organizatiom and high-speed rail systems and their components. This list provides a convenient reference for those used frequently in this repon. AAR Association of American Railroads • ABS Ausbaustrecken. Existing lines of German Federal Railways rebuilt for high speed operation, usually at 125 mph AREA American Railway Engineering Association ATC Automatic Train Control--systems which provide some degree of automatic initiation of braking if signal indications are not obeyed by train operator ATO Automatic Train Operation-a system of automatic control of train movements from start-to-stop. Customarily applied to rail rapid transit operations ATCS Advanced Train Control Systems-a specific project of the AAR to develop train control systems with enhanced capabilities ATP Automatic Train Protection-usually a comprehensive system of supervision of train operator actions. Will initiate braking if speed limits or signal indications are not obeyed AWS Automatic Warning System--cab signalling system used on British Rail CONEG Coalition of Nonheastern Governors CWR Continuous Welded Rail DB Deutche Bundesbahn-German Federal Railways DIN Deutehes Institut for Normung-German National Standards Institute iii EMI Electro-Magnetic Intetference-usually used in connection with the intetference with signal control circuits caused by high power electric traction systems FCC Federal Communications Commission (United States) FRA Federal Railroad Administration of the United States Department of Transponation FS Ferrovie dello Stat~Italian State Railways HSR High-Speed Rail HST High-Speed Train-British Rail high-speed diesrel­ electric trainset ICE Inter-City Express or Inter-City Experimental-a high­ speed train-set developed for German Federal Railways ISO International Standards Organization JNR Japanese National Railways~rganizationformerly responsible for rail services in Japan. Was reorganized as the Japan Railways (JR) Group on April 1, 1987, comprising several regional railways, a freight business and a Shinkansen holding company JR Japan Railways-see JNR LGV Ligne a Grand Vitesse-French newly-built high-speed lines. See also TGV LRC Light Rapid Comfonable. A high-speed diesel-electric train-set developed in Canada LN LateralNenical. Usually refers to force ratios applied to the rail by a wheel LZB Linienzugbeeinflussung-German Federal Railways system of automatic train control MU Multiple Unit. A train on which all or most passenger cars are individually powered and no separate locomotive is used IV NBS Neubaustrecken--Gennan Federal Railway newly-built high-speed lines NEC Northeast Corridor (United States). The Boston~ Washington Rail Corridor NFPA National Fire Protection Association (United States) PSE Paris Sud-Est. The high-speed line from Paris to Lyon on French National Railways RENFE Rede Nacional de los Ferrocarriles Espanoles-Spanish National Railways SBB Schweizerische Bundesbahnen-Swiss Federal Railways SJ Statens Jarnvagar-Swedish State Railways SNCF Societe Nationale des Chemin de Fer Francais-French National Railways TGV Train a Grand Vitesse-French High Speed Train. Also used to refer to complete high-speed train system UMTA Urban Mass Transportation Administration of the U.S. Department of Transportation US United States v TABLE OF CONTENTS PART I -INTRODUCTION AND OVERVIEW OF HIGH SPEED RAIL SAFETY ISSUES 1.1 BACKGROUND AND INTRODUCTION 1-1 1.1.1 Background to the Study I-I 1.1.2 Objectives and Scope of Study 1-2 1.1.3 Guide to this Report 1-4 1.2 IDENTIFICAnON OF SAFETY ISSUES 1-5 1.2.1 Introduction 1-5 1.2.2 High-Speed Rail Accident Fault Tree 1-6 1.2.3 Past U.S. Rail Passenger Experience 1-10 1.2.4 Summary of Safety Issues and Sub-Issues 1-18 1.3 WORLDWIDE DEVELOPMENT OF HIGH SPEED RAIL SYSTEMS 1-23 1. 3.1 Introduction 1-23 1.3.2 Systems Operating at 125 mph on Existing Tracks 1-23 1.3.3 High Speed Systems Operating at Speeds Substantially Over 125 mph 1-25 1.3.4 Carbody Tilt Systems and High Cant Deficiency Operations 1-2g 1.3.5 Automatic Train Control 1-2~ 1.4 SUMMARY OF KEY SAFETY ISSUES AND RECOi\lMENDATIONS FOR FURTHER RESEARCH 1-31 1.4.1 Introduction 1-31 1.4.2 Summary of Recommendations - Rolling Stock 1-33 1.4.3 Summary of Recommendations-Track and Infrastructure 1-3(, 1.4.4 Summary of Recommendations-Signalling and Electrification Systems 1-37 Vl TABLE OF CONTENTS (Continued) Page PART II - DETAILED INFORMATION AND ANALYSIS --,'- ILl DESCRIPTION OF HIGH SPEED RAIL SYSTEMS II-I II. 1. 1 Introduction II-I ~ II. 1.2 Canada - The Light Rapid Comfonable (LRC) Train II-4 11.1.3 The French Train A Grand Vitesse (TGV) 11-9 11.1.4 France - ANF Turbo Train II-22 11.1.5 Gennany - The ICE and the Neubaustrecken 11-25 11.1.6 Gennany - The Class 120 Locomotive 11-35 11.1.7 Great Britain - The HST 11-37 11.1.8 British Rail Intercity 225 (Class 91/Mark IV Coach) 11-43 11.1.9 Italy - The Pendelino (ETR 450) 11-48 11.1.10 Italy - The ETR 500 High Speed Trains and Infrastructure II-53 11.1.11 Japan - The Shinkansen II-56 11.1.12 Spain -TALGO 11-67 11.1.13 Sweden - The X2 11-71 11.1.14 Switzerland - Bahn 2000 11-75 11.2 ANALYSIS OF INDIVIDUAL SAFETY ISSUES 11-78 11.2.1 Introduction 11-78 11.2.2 Rolling Stock 11-92 11.2.2.1 Rolling Stock Structural Strength 11-92 11.2.2.2 Engineers Cab Crashwonhiness and Safety II-97 11.2.2.3 Truck Design and Construction II-101 II.2.2.4 Brake Installation and Perfonnance 11-103 11.2.2.5 Track-Train Interaction Including High Cant Deficiency Operation II-106 11.2.2.6 Rolling Stock Inspection and
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • 37779 H0 Elektro-Schnelltriebwagen Baureihe 403, Als Lufthansa Airport Express
    37779 H0 Elektro-Schnelltriebwagen Baureihe 403, als Lufthansa Airport Express. German Federal Railroad (DB) class 403 electric express as the Lufthansa Airport Express. Fliegen auf Schienen Flying on rails Unser Insider-Modell 2015 Our Insider Model for 2015 MHI Exclusiv Das Bahnpersonal nennt ihn „Flipper“, Bahnanhänger sprechen vom „Donald Duck“, Control Unit Mobile Station Mobile Station 2 Central Station Digital-Funktion 6021 60652 60653 60215 „Schie nen hecht“ oder „Weißen Hai“ – gemeint ist der „Lufthansa Airport Express“, der Spitzensignal x x x x 1982 auf Basis der drei IC-Garnituren der Elektrotriebzug-Baureihe 403/404 zum Schienen- Modellhighlights Panto-Geräusch x x x x star avanciert. In den Hausfarben der Kranich-Linie übernehmen die gecharterten Schnell- • schwere Metall-Ausführung E-Lok-Fahrgeräusch x x x x züge vier Mal am Tag den Fluggasttransport zwischen den Flughäfen Düsseldorf und • vorbildgerechte Form-Anpassungen Signalton x x x x Frankfurt/Main. „Damit ersetzt die Lufthansa mit einem Umlauf aus zwei Zügen und einer • 2 Hochleistungsantriebe mit Schwung- Tischlampen x x x x Reserve garnitur eine unrentable innerdeutsche Flugverbindung“, nennt Thomas Land- masse im Großraum-Mittelwagen Bremsenquietschen aus x x x • mit Spielewelt mfx+ Decoder und Schaffnerpfiff x x x wehr, Dokumentar bei Märklin, den Hintergrund des Service, der vom 27. März 1982 bis umfangreichen Betriebs-, Geräusch- 23. Mai 1993 angeboten wurde. „Mit dem Konzept bringen die Triebzüge Lufthansa-Flair und Licht-Funktionen Türenschließen x x x • Bahnhofsansage
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • Die Zukunft Der Schiene Soll Rasch Beginnen
    DIE ZUKUNFT DER SCHIENE SOLL RASCH BEGINNEN Umfassender Konzeptvorschlag: INDUSTRIEBEITRAG FÜR INDUSTRIELLES ROLLOUT DSTW/ETCS Verband der Bahnindustrie in Deutschland e.V. Inhaltsverzeichnis Vorwort 8 1 Einleitung 11 2 Vorgehen und Ziele 13 3 Grundlagen 16 3.1 Ausgangslage LST-Infrastruktur und Betrieb 16 3.2 Ausgangslage Fahrzeugausrüstung 22 3.3 Prozessablauf Anlagenplanung und -bau 25 3.4 Bahnübergänge 26 4 Zielbild und seine Erreichung 28 4.1 LST-Infrastrukturausrüstung 30 4.2 Zugsicherungsausrüstung auf Fahrzeugen 34 5 Migration und Releases 36 5.1 Standardisierung der Anlagenkonfiguration 36 5.2 Effizientes Ablaufmodell 37 5.3 Release-Planung für die Infrastruktur 40 5.4 Phasen für den Rollout 43 6 Umsetzungsprogramm 48 6.1 Programmaufbau Infrastruktur 49 6.2 Programmaufbau Fahrzeugausrüstung 53 6.3 Programmhochlauf 57 6.4 Rolloutorganisation 61 6.5 Notwendige nächste Schritte und Terminschiene 63 7 Risikomanagement 66 8 Zusammenfassung 69 3 Abbildungsverzeichnis Abbildungsverzeichnis Bild 2-1 Umfang des Vorschlags eines industriellen Umsetzungskonzeptes für den Rollout DSTW/ETCS 14 Bild 3-1 Stellwerksausrüstung DB Netz AG nach Kategorien 16 Bild 3-2 Altersstruktur im staatlichen Sektor in Deutschland 17 Bild 3-3 Bau von Stellwerken seit 1950 in Stelleinheiten 18 Bild 3-4 Nachbarschaftsbeziehungen Stellwerk 19 Bild 3-5 Mengengerüst der umzurüstenden Fahrzeuge 23 Bild 3-6 Prozess nach HOAI in Leistungsphasen 25 Bild 4-1 Ableitung optimiertes technisches Zielbild aus Rollout DSTW/ETCS 28 Bild 4-2 Top-down-Ansatz für das Zielbild aus
    [Show full text]
  • Progress in Rail Reform Inquiry Report
    Progress in Rail Reform Inquiry Report Report No. 6 5 August 1999 Commonwealth of Australia 1999 ISBN 0 646 33597 9 This work is subject to copyright. Apart from any use as permitted under the Copyright Act 1968, the work may be reproduced in whole or in part for study or training purposes, subject to the inclusion of an acknowledgment of the source. Reproduction for commercial use or sale requires prior written permission from AusInfo. Requests and inquiries concerning reproduction and rights should be addressed to the Manager, Legislative Services, AusInfo, GPO Box 1920, Canberra, ACT, 2601. Publications Inquiries: Media and Publications Productivity Commission Locked Bag 2 Collins Street East Melbourne VIC 8003 Tel: (03) 9653 2244 Fax: (03) 9653 2303 Email: [email protected] General Inquiries: Tel: (03) 9653 2100 or (02) 6240 3200 An appropriate citation for this paper is: Productivity Commission 1999, Progress in Rail Reform, Inquiry report no. 6, AusInfo, Canberra. The Productivity Commission The Productivity Commission, an independent Commonwealth agency, is the Government’s principal review and advisory body on microeconomic policy and regulation. It conducts public inquiries and research into a broad range of economic and social issues affecting the welfare of Australians. The Commission’s independence is underpinned by an Act of Parliament. Its processes and outputs are open to public scrutiny and are driven by concern for the wellbeing of the community as a whole. Information on the Productivity Commission, its publications and its current work program can be found on the World Wide Web at www.pc.gov.au or by contacting Media and Publications on (03) 9653 2244.
    [Show full text]
  • Annual Report 2000 Higher Transport Performance We Were Able to Increase Our Transport Performance in Passenger and Freight Transport Significantly in 2000
    Annual Report 2000 Higher Transport Performance We were able to increase our transport performance in passenger and freight transport significantly in 2000. Positive Income Development Our operating income after interest improved by € 286 million. Modernization of Deutsche Bahn AG A comprehensive fitness program and the expansion of our capital expenditures will pave the way to our becoming an even more effective railway. Key figures Change in € million 2000 1999 in % Revenues 15,465 15,630 – 1.1 Revenues (comparable) 15,465 14,725 + 5.0 Income before taxes 37 91 – 59.3 Income after taxes 85 87 – 2.3 EBITDA 2,502 2,036 + 22.9 EBIT 450 71 + 533.8 Operating income after net interest 199 – 87 + 328.7 Return on capital employed in % 1.6 0.3 – Fixed assets 34,671 33,495 + 3.5 Total assets 39,467 37,198 + 6.1 Equity 8,788 8,701 + 1.0 Cash flow (before taxes) 2,113 2,107 + 0.3 Gross capital expenditures 6,892 8,372 – 17.7 Net capital expenditures 1) 3,250 3,229 + 0.7 Employees (as of Dec 31) 222,656 241,638 – 7.9 Performance figures Change Passenger Transport 2000 1999 in % Passengers DB Reise&Touristik million 144.8 146.5 – 1.2 DB Regio million 1,567.7 1,533.6 + 2.2 Total million 1,712.5 1,680.1 + 1.9 Passenger kilometers DB Reise&Touristik million pkm 2) 36,226 34,897 + 3.8 DB Regio million pkm 2) 38,162 37,949 + 0.6 Total million pkm 2) 74,388 72,846 + 2.1 Train kilometers DB Reise&Touristik million train-path km 175.9 177.5 – 0.9 DB Regio million train-path km 563.9 552.4 + 2.1 Total million train-path km 739.8 729.9 + 1.4 Freight Transport
    [Show full text]
  • Shinkansen - Wikipedia 7/3/20, 1048 AM
    Shinkansen - Wikipedia 7/3/20, 10)48 AM Shinkansen The Shinkansen (Japanese: 新幹線, pronounced [ɕiŋkaꜜɰ̃ seɴ], lit. ''new trunk line''), colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. Initially, it was built to connect distant Japanese regions with Tokyo, the capital, in order to aid economic growth and development. Beyond long-distance travel, some sections around the largest metropolitan areas are used as a commuter rail network.[1][2] It is operated by five Japan Railways Group companies. A lineup of JR East Shinkansen trains in October Over the Shinkansen's 50-plus year history, carrying 2012 over 10 billion passengers, there has been not a single passenger fatality or injury due to train accidents.[3] Starting with the Tōkaidō Shinkansen (515.4 km, 320.3 mi) in 1964,[4] the network has expanded to currently consist of 2,764.6 km (1,717.8 mi) of lines with maximum speeds of 240–320 km/h (150– 200 mph), 283.5 km (176.2 mi) of Mini-Shinkansen lines with a maximum speed of 130 km/h (80 mph), and 10.3 km (6.4 mi) of spur lines with Shinkansen services.[5] The network presently links most major A lineup of JR West Shinkansen trains in October cities on the islands of Honshu and Kyushu, and 2008 Hakodate on northern island of Hokkaido, with an extension to Sapporo under construction and scheduled to commence in March 2031.[6] The maximum operating speed is 320 km/h (200 mph) (on a 387.5 km section of the Tōhoku Shinkansen).[7] Test runs have reached 443 km/h (275 mph) for conventional rail in 1996, and up to a world record 603 km/h (375 mph) for SCMaglev trains in April 2015.[8] The original Tōkaidō Shinkansen, connecting Tokyo, Nagoya and Osaka, three of Japan's largest cities, is one of the world's busiest high-speed rail lines.
    [Show full text]
  • High-Speed Railway Ballast Flight Mechanism
    Construction and Building Materials 223 (2019) 629–642 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Review High-speed railway ballast flight mechanism analysis and risk management – A literature review ⇑ Guoqing Jing a, Dong Ding b, Xiang Liu c, a Civil Engineering School, Beijing Jiaotong University, Beijing 10044, China b Université de Technology de Compiègne, Laboratoire Roberval, Compiègne 60200, France c Department of Civil and Environmental Engineering, Rutgers University-New Brunswick, Piscataway 08854, United States highlights Review of studies about ballast flight mechanism and influence factors. Recommendations of ballast aggregates selection and ballast bed profile were provided. Sleeper design and polyurethane materials solutions were presented. The reliability risk assessment of ballast flight is described for HSR line management. article info abstract Article history: Ballast flight is a significant safety problem for high-speed ballasted tracks. In spite of the many relevant Received 16 March 2019 prior studies, a comprehensive review of the mechanism, recent developments, and critical issues with Received in revised form 19 June 2019 regards to ballast flight has remained missing. This paper, therefore, offers a general overview on the state Accepted 24 June 2019 of the art and practice in ballast flight risk management while encompassing the mechanism, influencing factors, analytical and engineering methods, risk mitigation strategies, etc. Herein, the problem of ballast flight is emphasized to be associated with the train speed, track response, ballast profile, and aggregate Keywords: physical characteristics. Experiments and dynamic analysis, and reliability risk assessment are high- High speed rail lighted as research methods commonly used to analyze the mechanism and influencing factors of ballast Ballast flight Risk management flight.
    [Show full text]
  • Cfs0997all2.Pdf
    Acknowledgements United States Department of Transportation Secretary Federico F. Peña; Rodney E. Slater Deputy Secretary Mortimer L. Downey Federal Railroad Administration Administrator Jolene M. Molitoris Deputy Administrator Donald M. Itzkoff Associate Administrator for Railroad Development James T. McQueen Deputy Associate Administrator for Railroad Development Arrigo P. Mongini Study manager; general editor; principal writer Neil E. Moyer System benefits; financing; Alice M. Alexander Magnetic levitation John T. Harding contract administration James L. Milner Transportation analysis Bruce Goldberg Chapter 1; liability; State Gareth W. Rosenau Helen Ng opportunities Volpe National Transportation Systems Center Senior study advisor; Volpe Center project manager Ronald A. Mauri Travel demand forecasting Simon P. Prensky System concept definition Michael N. Coltman David M. Nienhaus Leonore I. Katz-Rhoads Sarah J. Lawrence* Robert P. Brodesky* Model implementation: Todd C. Green* Energy and emissions model Howard M. Eichenbaum* projections of operating results David L. Skinner implementation and investment needs *EG&G/Dynatrend Argonne National Laboratories Charles River Associates Energy and emissions model Donald M. Rote Demand model development Dan Brand development Zian Wang Thomas E. Parody Mark R. Kiefer DeLeuw, Cather & Co. and Associated Firms DeLeuw, Cather project manager Michael Holowaty Operating expense model Duncan W. Allen Ancillary activities model Steven A. LaRocco development Winn B. Frank development Richard L. Tower (Wilbur Eric C. MacDonald Smith) Charles H. Banks (R.L. Banks) Public benefits model design and Guillaume Shearin Liability Charles A. Spitulnik implementation Robert J. Zuelsdorf (Wilbur (Hopkins & Sutter) Smith) Kenneth G. Sislak (Wilbur Anne G. Reyner (Wilbur Smith) Smith) Jeffrey B. Allen Parsons Brinckerhoff Quade & Douglas, Inc. Parsons, Brinckerhoff project manager John A.
    [Show full text]
  • 'Queasy Rider:' the Failure of the Advanced Passenger Train
    ‘Queasy Rider:’ The Failure of the Advanced Passenger Train. A dissertation submitted by 0529050 Benjamin Robert Goodwin as part of the requirements for the degree of B.A. with Honours in Medieval and Modern History. February 2006. 1 ‘Queasy Rider:’ The Failure of the Advanced Passenger Train. Contents. Abbreviations and Acronyms………………………………………………3 Introduction………………………………………………………………....4 Chapter One – Technical Problems…………………………………………9 Chapter Two – Inadequate Management…………………………………..23 Chapter Three – The Intervention of the Government and the Media………………………………………………...38 Conclusion………………………………………………………………….52 Appendix…………………………………………………………………...56 Bibliography………………………………………………………………..59 Acknowledgements……………………………………………………...…64 Frontispiece: The prototype APT-P (370001) sits in the yard at the Derby Test Centre, June 1978. Only one half of the train is seen here. Source: BR Publicity Photograph 2 Abbreviations and Acronyms AAPT Advanced American Passenger Train AGT Advanced Ground Transport APT Advanced Passenger Train APT-E Advanced Passenger Train Experimental APT-P Advanced Passenger Train Prototype APT-S Advanced Passenger Train Squadron ASLEF Associated Society of Locomotive Steam Enginemen and Firemen BR British Rail BRB British Rail Board BREL British Rail Engineering Limited CM & EE Chief Mechanical and Electrical Engineer’s Department TGV Train á Grande Vitesse WCML West Coast Mainline 3 Introduction When the Advanced Passenger Train (APT) was immobilised formally in 1987, all three prototype rakes were dismantled save one half set; numbered 370003. Visitors to The Railway Age, Crewe, can now visit this relic. Incongruously, the train that was once described by early enthusiasts as ‘the Concorde of the rails’ is now used to host children’s parties at the aforementioned visitor centre.1 If you’ll excuse the pun, British Rail saw the Advanced Passenger Train Project as a piece of birthday cake, yet it merely ended as the insipid icing.
    [Show full text]
  • El Tren De Pasajeros, Metro Y La Propuesta De Alta Velocidad Alumno: José Luis González Campillo [email protected] Fecha De Entrega: Lunes 25 De Enero De 2021
    1 Universidad Nacional Autónoma de México Facultad de Ingeniería Materia: Ferrocarriles Semestre 2021-1 Prof. Jaime de Jesús Paredes Camacho [email protected] El tren de pasajeros, metro y la propuesta de alta velocidad Alumno: José Luis González Campillo [email protected] Fecha de entrega: lunes 25 de enero de 2021 Tren arribando a la estación Flughafen/Messe del tren de cercanías (S-Bahn) de Stuttgart, Alemania 2 Índice I. Introducción 3 II. Marco teórico 5 II.1. Un poco de historia del ferrocarril 5 II.2. Ferrocarril de pasajeros en el mundo 8 II.2.1. Ferrocarril de larga distancia 10 II.2.1.1. Tren de alta velocidad 11 II.2.1.2. Tren interurbano 12 II.2.1.3. Tren regional 13 II.2.1.4. Tren de mayor velocidad 14 II.2.1.5. Tren nocturno 15 II.2.2. Ferrocarril de corta distancia 15 II.2.2.1. Tren de cercanías 16 II.2.2.2. Metro 17 II.2.2.3. Tranvía 18 II.3. Trenes de alta velocidad 19 II.3.1. Italia 23 II.3.2. Japón 25 II.3.3. Francia 28 II.3.4. Alemania 30 II.3.5. España 32 II.3.6. China 34 II.3.7. Corea del Sur 37 II.3.8. Otros sistemas de alta velocidad 39 II.3.9. Cuestiones técnicas 42 II.3.10. Estadísticas generales de la alta velocidad ferroviaria 45 II.4. Sistemas de metro 45 II.4.1. El metro en el mundo 48 II.4.2. Datos operativos 54 II.5.
    [Show full text]
  • K Novel Technologies
    Rocky Mountain Rail Authority High‐Speed Rail Feasibility Study Business Plan ‐ Appendices K Novel Technologies A key requirement of this study is that all proposed technologies should be proven and capable of receiving required regulatory approvals within the implementation time scales of the project. The study has assessed proven technology options and their potential speed, focusing on existing technologies that have been proven in actual revenue service. Proposed “Novel” or new technologies that are still under development cannot be considered practical for this study unless they can show that they can be implemented within a 5‐10 year time horizon. This includes meeting FRA/FTA safety regulatory requirements as well as demonstrating the practical capability to commercially operate in the Colorado environment. Accordingly, and consistent with the scope of the I‐70 Draft PEIS, it has focused on rail and Maglev‐based technologies. Various groups have advocated new or “novel” technologies for potential application to the Colorado corridors. However, the RMRA funding grant from the Colorado Department of Transportation specifically excluded detailed consideration of “novel” technologies from this study, restricting application of funds only to proven technologies: 1. The CDOT Transportation Commission Resolution Restricting Front Range Commuter Rail Study passed 6 to 1 in November 2006. 2. DMU, EMU, Diesel Locomotive Hauled or Magnetic Levitation are the only technologies allowed by the Transportation Commission because of work done previously in I‐70 Draft PEIS. Per this direction from the RMRA and CDOT, “novel” technologies cannot be evaluated at the same level as “proven” technologies. Nonetheless, a survey was conducted that includes novel technologies so we can understand their development potential for possible long‐run implementation.
    [Show full text]