IAEA-TECDOC-269

ELEMENTAL COMPOSITION OF HUMAN AND ANIMAL A Review by G.V. IYENGAR

A REPORT PREPARED UNDER THE AUSPICES OF THE INTERNATIONAL ATOMIC ENERGY AGENCY IN COLLABORATION WITE HTH WORLD HEALTH ORGANIZATION

A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1982 ELEMENTAL COMPOSITION OF HUMAN AND ANIMAL MILK: A REVIEW IAEA, VIENNA, 1982 IAEA-TECDOC-269

PrinteIAEe th AustriAn y i d b a September 1982 IAEe Th A doe t maintaisno n stock f reportso thin si s series. However, microfiche copies of these reports can be obtained from

INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria

Orders should be accompanied by prepayment of Austrian Schillings 80.00 in the form of a cheque or in the form of IAEA microfiche service coupons orderee whicb y dhma separately fro INIe mth S Clearinghouse. PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK FOREWORD

For the past three years, the International Atomic Energy Worle Agencth dd Healtan y h Organization have been collaboratinn o g a joint research project to obtain definitive baseline data on the concentrations of twenty-four mineral and trace elements in human milk, specimens collected from nursing mothers in six Member States. Over the same period, the IAEA has also organized and provided suppor a coordinate o t d research programme, wit 3 participant1 h n i s 1 Membe1 r States n comparativo , e e studmethod th f traco yr fo se elements in human nutrition; this programme has also been concerned, inter alia, with the analysis of human milk. In both these programmes, nuclear analytical techniques, particularly neutron activation analysis, have playe n importana d t role a fac, t which explain n pare i IAEA'sth t s interes n supportini t g this kinf o d research. In the joint IAEA/WHO research project, for example, 16 of the 24 elements under investigation (As, Cd, Cl, Co, Cu, Fe, Hg, ) havZn ed beean V n , analyseSn , Se y neutro b d, Sb , nP , Mo , IMn , activation analysif advanceo d sai d wite th research h nuclear reactors. The important advantages of this technique in such application s higit h e analyticaar s l sensitivity, relativelw lo y susceptibility to matrix effects and analytical blanks, and the possibilit determininf yo g several elements concurrently.

» As background material for both the above-mentioned programmes, e respectivth s fely b wa t t i e participants that a grea thers wa te need for a comprehensive modern review of the published literature e th elementaon l compositio f o human n milk, together with comparative data on animal . The present report, containing data provided by a variety of analytical techniques, both nuclear and non-nuclear, was commissioned by the IAEA to help fulfill this need, and the Agency acknowledges with gratitude the contributions of the author, Dr. lyengar, in compiling and evaluating the data presented here.

This technical report was edited and prepared for publication by Dr. R.M. Parr and Ms. S.A. Clements, of the IAEA's Medical Applications Section, Department of Research and Isotopes. PREFACE

Breast-milk is the best source of for the young infant; it s i usually sufficien o covet tl nutrienal r t requiremente th o t p u s x monthssi f agfou o eo t r. Thereafter t i remain, n excellena s t sourc f proteio e d othean n r nutrient t e supplementeneedb bu s o t s d by other . Wite progresth h f o industrializations , breast- feeding has been declining in all developed countries. This, however, has had few harmfull consequences because breast-milk substitutes have been developed by industry which are highly nutritious and safe when properly used. While no, or very little, e chils th resulteha har do t m d under these circumstancese th , situation is quite different in developing countries where the decline of breast-feeding, especially in urban and peri-urban areas, may have dire consequence e healtth d nutritionar an hfo s l statuf o s the young child and may result in an increased morbidity and mortality. On the other hand, new information has become available which indicates that breast-mil t onl no a ysourc s i k f nutriento e s but contributes.also to the defence mechanisms of the child against infectious alsdiseasesy oma contait I . n some other constituents, the significanc f whico e s i stilh l poorly understood. This explains the renewed interest in breast-feeding, not only among health personnel but also in other circles which have become alarmed by its decline.

The importanc t o trace e element n i nutritiowidelsw no y s i n recognize e lis f th elemento td an d s thae indispensablar t o goot e d nutrition is increasing steadily- Greater attention is therefore bein e gtrac th pai eo t d element conten f foodse o td th stud an f ,o y compositio f breast-milo n n thii k s respec s i essentiat n viei lf wo s uniquit e contributio e feedinth o f t ninfantso g Worle Th d. Health Organization has initiated a number of studies on the composition of breast-mil e Internationath d an k l Atomic Energy Agenc s collabha y - orated on some of them. The present publication constitutes a particularly useful contribution to this joint endeavour and will no doubt provide useful informatio n somo n e aspecte compositioth f o s n of breast-mil r beefa kno s whicdifficult s t impossibleha hno f i , , to obtain anywhere else, The Agency and Dr. G.V. lyengar should be congratulated for this endeavour.

E.M. DeMaeyer WHO, Geneva ABSTRACT

A revie s presentei we elementath f o d l compositio f humao nd an n animal milk with special reference to trace elements. Literature data e discussear d tabulate an 0 d5 separat n i d e tables (on r eacefo h element )perioe mainlth r d fo yafte r 1950. Each table use a sstandar d format comprising 10 columns indicating (1) source of milk. (e.g. human or animal), (2) status of the milk (, transitional or mature), (3) country of origin, (4) year of data publication, (5) mean concent- ration, (6) range of single values or standard deviation of the mean, ) numbe(7 f samplero s analysed ) analytica(8 , l technique employed) (9 , literature datae sourcd th (10 an ,f o e) relevant remarks f anyi , e .Th most abundant data refer to the minor elements Ca, Cl, K, Mg, N, Na, P . e tracFeweZn th d eo r t an element date d e availF ar an aan , S dCu - s able for Cd, Hg, I, Mn, Pb and Se. For the remaining elements', including such biologically importan, F t , tracCr , e Co element , As s a s Mo, Ni, Si and Sn, very few reliable data so far appear to exist. EDITORIAL NOTE

Ia publlcacion f chino ss almos I kin t I dt inevitable that some errors may have been made either in extracting the data from the original references or in preparing them for publication. If any such errors shoul e dattentio th come reader o th t e f t woulo ni , e b d appreciated if he or she would report them both to the editors and to the author, Dr. lyengar*.

The views and conclusions expressed in this report are not necessarily those of the International Atomic Energy Agency or the World Health Organization.

* Address for correspondence

Dr. G.V. lyengar Institut fur Medizin KFA Jiilich P.O191x Bo 3. D-5170 Julich 1 Federal Republi f o Germanc y CONTENTS.

1. INTRODUCTION ...... 1 .

2. SOME BASIC PROPERTIES OF MILK ...... 2

3. TYPES OF MILK ...... 2

4. COMPONENTS OF MILK ...... 3

5. FACTORS INFLUENCING THE COMPOSITION OF MILK ...... 6

6. ANALYTICAL CONSIDERATIONS ...... 6 .

7. SOURCE INFORMATIOF SO MILN NO K ...... 1 1 .

8. ELEMENTAL COMPOSITIO MILF NO K ...... 8 1 .

3.1. General Remarks ...... 13 8.2. Tabulatio Literaturf no e Dat Specifir fo a c Elements ...... 9 1 .

Aluminium (Tabl ...... ) 5 e 0 2 . Antimony (Tabl ...... ) 6 e 4 2 . Arsenic (Table?) ...... 5 2 . Barium (Table 8) ...... 26 Beryllium (Tabl ...... ) 9 e 8 2 . Bismuth (Tabl ...... ) 10 e 8 2 . Boron (Table 11) ...... 29 Bromine (Table 12) ...... 30 Cadmium (Tabl ...... ) 13 e 2 3 . Caesium (Table 14) ...... 34 Calcium (Table 15) ...... 36 Cerium (Table 16) ...... 42 Chlorine (Tabl ...... ) 17 e 4 4 . Chromium (Table 18) ...... 48 Cobalt (Table 19) ...... 50 Copper (Table 20) ...... 52 Europium (Tabl ) ...... 21 e 9 5 . Fluorine (Table 22) ...... 60 Germanium (Tabl ...... ) 23 e 2 6 . Iodine (Table 24) ...... 63 Iron (Tabl ...... ) 25 e 7 6 . Lanthanum (Table 26) ...... 75 Lea • d (Tabl ) ...... 27 e 6 7 . Lithium (Tabl ...... ) 28 e 0 8 . Magnesium (Tabl ...... '...... ) 29 e 1 8 . Manganese (Tabl ...... ) 30 e 6 .8 Mercury - (Table 31) ...... 91 Molybdenum (Table 32) ...... 94 Nickel (Table 33) ...... 96 Niobium (Table 34) ...... 98 Nitrogen (Table 35) ...... 100 Phosphorus (Tabl ...... ) e36 2 .10 Potassium (Table 37) ... o...... 107 Rubidium (Tabl .....) 38 e . c...... 4 .11 Scandium (Table 39) ...... 115 Selenium (Table 40) ...... 116 Silicon (Tabl ...... ) 41 e 0 .12 Silver (Table 42) ...... 121 Sodium (Tabl ...... ) e43 2 .12 Strontium (Tabl ...... ) e44 8 .12 Sulphur (Table 45) ...... 130 Tellurium (Tabl ...... ) 46 e 2 .13 Thorium (Table 47) ...... 132 Tin (Table 48) ...... 133 Titanium (Table 49) ...... 134 Uranium (Tabl ...... ) 50 e 6 .13 Vanadium (Table 51) ...... 137 Yttrium (Table 52) ...... 138 Zinc (Table 53) ...... 139 Zirconium (Tabl ...... ) 54 e 5 .14

9. COMPARISO E ELEMENTATH F NO L COMPOSITION PROFILES OF MILK AND BLOOD ...... 146

10. NUTRITIONAL AND BIOCHEMICAL DIFFERENCES BETWEEN HUMA BOVIND NAN E MILK ...... 1 .15

11. CONCLUSIONS ...... 152

ACKNOWLEDGEMENTS ...... 3 .15

REFERENCES ...... 154

ANNEX (3 letter country codes) ...... 186 . 1 INTRODUCTION

a compleMil s i d uniquk an x e secretion synthesisee th n i d mammary glands from precursors available from circulating blood. It is generally recognised that the protein concent of milks in various mammals is adapted to the rate of growth of the offspring in early postnatal life and to the time required by the young to double their body weights [29] proteiw . lo Mil f o kn concentration n humansi s a , , s i generally foun n lactatini d g species that feed their offspring relatively frequently. Rabbits and mice are extreme examples among mammals which feed their offspring respectively only once, and many times, a day [132].

From a nutritional point of view, milk is a complex food and an almost indispensable part of the diets of infants and children. Its qualit s i determiney d e proportionmainlth y e b individuayth f o s l components such as protein, fat, vitamins and carbohydrates on the one hand, and the microbial characteristics on the other. For the calf bovine milk can be regarded as a complete food because it is adequat n thesi e e component n additioi s o beint n a majog r sourcf o e the elements calcium and phosphorous; however, it is deficient in most of the essential trace elements, with the result that the calf thrives on it for only a. short period of time after birth and seeks supplementation through additiona y l e alsb ma sourceso t I . mentione n thii d s context that trace element store n foetai s l liver e sufficienar e ea-rlt th onlr y fo ypost-nata l stag f lifeo e . Simil- arly, human milk qualifies as the ideal food for the human infant, at least fov*the first few months, provided there is enough on it. Milks fro a mnumbe f otheo r r species suc s a buffaloh , camel, cow, , horse, reindeer k hav, ya eshee d beean p n use o t supplemend t human nutrition in different parts of the world. There ara major differences in the gross composition of milks from these species as evidenced by published data for various nutrients such as proteins, carbohydrates, fats, vitamins and major minerals in the milk of , 11189 , , Il4a63 huma d othe, an ,n60 r, animal43 , 35 s, 30 [25 , ,29 115, 116, 118, 119, 141, 162, 180, 187, 228],

In the past two decades there has been increased interest in e trace th studth f eo y element compositio f milo n k e becausth f o e recognition of the paramount role that trace elements play in the effective functioning of biological systems. However, significant progres s beeha sn achieve a e greayeardlasw r th fe onl tfo t sn i y number of elements following the development of newer analytical techniques that could yield reliable results at low concentration levels n importanA . t revie y Murthb w y which appeare n i 197d 4 summarise e doccurrenc th dat n 0 elemento 2 a o t f somo en 5 humai s1 e n and bovine milk [215],

In 1977, a review of the literature for data on trace elements n humai d animaan n l mils undertakewa k e presenth y b n t e authoth t a r t publishedno s wa requese IAEA th t .bu f o , t However a summar, f o y these data, namely for about 34 elements in human milk, is included n i another report published elsewhere e e [127]purposch Th f . o e present review is to extend the coverage to 50 elements, particu- larly for human and bovine milks from different geographic locations. The review is not equally extensive in respect of other milch animals in view of the paucity of data for many of the trace elements n particulai , e newl r th som fo f ry o e acknowledged essential elements such as Cr, Ni, Se, Sn and V. Some information on the compositio f milo n k from non-milch animal s alsi s o include mako t d e the revie s comprehensiva w s possiblea e o attempN . s beeha tn made to evaluate the composition of milk powders or of various baby foods since the primary aim of this report is to consider only natural milk. Furthermore, emphasis has been placed on acquiring more data on essential trace elements from many geographic locations covering various population groups, rather than bulk elements such as Ca, Cl, N, Nas K and P since these are adequately covered in the literature, at leas humar d bovinfo t nan e milk [19 , 11883 , , 130, 132, 152, 160, 187].

2. SOME BASIC PROPERTIES OF MILK

Milk is a combination of 3 physical states namely solution, emulsion and colloidal suspension. In the aqueous portion of milk, fat occurs in emulsified form while a number of other constituents such as lactose, water soluble vitamins and minerals are dissolved. The proteins are dispersed in a colloidal state. In addition a number of compounds such as phospholipids, fat soluble- vitamins and sterols are held in the Eat globules.

e whitenes Th o colloidat e milf du so s lki yelloe caseith d w an n tint f see i ,t globules nfa wite th h , indicate s associatioit s n with carotene. Milkt containinno s g caroten e whitear e , e.g. from buffalo, ewe and goat. In contrast, mature human milk has a bluish appearanc d colostruan e a brigh s ha mt lemon-yellow colour. Freshly draw w milco n k generall a slightl s ha y y sweet odou d flavouan r r ** ^dependent, however o somt , e e feeextenth d n o tconsume n excesi d s [152].

Some other properties :n osmoti i mil s i kc equilibrium with blood; human milk has a specific gravity of 1.034 at 20°C [160] 3 [132] 7. e specifi Th f .o H p can a w gravitdmil co kf o variey s between 1.031 and 1.032 at 16°C; its viscosity is twice that of water and the average freezing point is -0.555°C, but varies with the amount of water soluble components such as chloride and lactose and fluctuates between -0.535° -0.565°d Can C [152].

3. TYPE MILF SO K

e classifieb Milky ma s d int 2 basio c group - snatura d an l treated. A brief description of certain selected types of milk will be given as these terminologies appear frequently in Tables 5 to 54.

Natural milk. Natural mil s i furthek r sub-divided int3 o groups: colostrum, transitional milk and mature milk.

Colostrum: this is the secretion of the first few days after parturition. Becaus f o individuae d speciean l s differencee th s precise duratio e colostrath f o n l perio s i dispute ds i gener t bu d- ally believed to extend up to .7 days post partum, and is charac- terised by a high protein content in relation to later secretions.

Transitional milk: the composition of milk changes with time followin e onse th f glactationo t , progressively adapting itselo t f suie demandth t f milo s k production. Thus e concentrationth , f o s some constituents increase and those of others decline. Generally, mammar e 14t th y pos hyda o t t secretionp partuu y mda h s 7t afte e th r are regarded as transitional milk.

Mature milk: wite progresth h f lactatioo s e concentrationth n s oe constituentf th mos f o t f milo s k ten o t stabilizd r declino e e very slowly. The composition of such a milk (usually after the 14th day) represents the normal or the mature milk of a given species.

Whole milk: thi s i unmodifies d milk direct froe mammarth m y gland. In commercial samples several sources are usually mixed to yield so called pooled whole milk. Such pooling is generally beneficial since individual variation e therebar s y reduced.

Treated milk. The data for treated cow milk (commonly referred s markea o t t mil r dairo k y milk) have been adequately discussed [160] . basiw fe Onl ca y difference e outlinear s de th belo r fo w commonly known varieties.

Standardized milk n essenci : e thi s i merels y whole milk with about 3 per cent fat content.

Reconstituted milk: this is powdered whole or skim milk mixed with an appropriate volume of water.

Skim milk: thi s i obtaines y separatinb dt frofa me th wholg e milk.

Toned milk: a mixturthi s i s f locallo e y produced whole milk and reconstituted skim milk with a standardized content of fat Hrtd non-fatcy solids. Toning is especially useful for reducing the fat content of milk of certain species (e.g. buffalo and certain breeds of cow) whic r hcent pe hav t 0 content.1 fa e o t p u s

Homogenised milk: thi s i obtaines y forcinb d e milth g k through a very small orifice at high pressure to break the fat globules and thus to prevent formation.

Evaporate e d namth milk es a implie: s thi s i obtaines y b d partial remova f watero l .

Dried milk: complete removal of water from the milk resales in y powderdr a . Microbial growt s i therebh y inhibited enabling long storag easd an ey transport.

Market milk. Market milk usually consists of cow milk from , but might include milk from other animals depending upon the geographical location. This apart, market milk represents a type of processed milk since it is handled by a . Therefore e namth e market mil e s investigatora th quotek y b d s beeha s n retained in Tables 5 to 54 in order to clearly separate data based only on cow milk analysis.

. 4 COMPONENT MILF O S K

The basic components of milk are water, fatty and non-fatty fractions e non-fattTh . y part contains nitrogenous substances, carbohydrates, water soluble vitamins and minerals. The fatty fraction contain e triglyceridesth s , othe t fa solublr e compounds TABL 1 E Major Constituent f Milso k from Different Species (Values expresse) % n i d

Species Water Total Fat Non-fatty Lactose Protein Ash solids solids

Human 87.4-87.7 12.4 3.8 8.97 7.0 1.23 0.20 Ass 89.9 8.5 0.6 8.60 6.1 2olO 0.40 Buffalo 76.8-82.7 17.2 7.4 9.32 5.5 3.78 0.80 Camel 87.6 13.6 4.5 8.70 5.0 3.70 0.70 Cow 86.2-87.9 12.7 3.7 8.85 ' 4.8 3.40 0.70 Dog 75.4-77.4 22.6 8.3- - 4.1 7.5-10.1 1.30 Elephant 79.1 20.1 9.3 10.80 3.7 5.10 0.73 Ewe 80.8-82.9 19.3 7.4 - 4.8 5.60 1.00 Goat 85,7-87.9 13.2 4.5 8.70 4.1 3.30 0.80 Giraffe 77.1 23.8 12.5 - 3.4 5.80 0.90 Llama 86.5? 16.2? 2.4 10.30 6.0 3.90 0.80 Mare 89.0-90.7 11.2 1.9 8.50 6.2 2.20 0.50 78.5 21.5 10.0 - 3.0 8.40 1.50 Rabbit 69.5-73.1 31.1 16.7 - 2.0 10.40 2.00 Red Deer 74.8? 21.1 8.5 - 4.5 7.14 1. 11 Reindeer 62.0-64.3 33.1 16.9 14.20 2.8 10.30 1.40 Rhinocerus 91.2 8.8 0.5 - 6.1 1.50 0.34 Seal 44-50 67.7 53.2 * - 5.5 9.7 0.86 Sow 78.8 21.0 8.5/9.6 - 4.8 5.80 0.94 Whale++ 50 49.1 35.1 - 3.9 10.6 1.20 Yak 82.5 17.3 6.5 10.90 4.6 5.20 0.90

++) Blue and Fin ) Dat+ a pooled from [10, 132, 160, 183, I92aj such as fat soluble vitamins and phospholipids in addition to certain trace elements which are attached to the fat globules. The water part when separated as milk serum contains the milk serum proteins. These component t constanno e d varar san ty among differ- ent species as well as within the same species for various reasons mentioned elsewhere (sectio. 5) n

Table 1 gives some details of the composition of milk from different species in. terms of water, total solids, fat, fat-free solids, carbohydrate, protein, and ash. The implications of each component in relation to the overall composition of milk has been extensively discussed [132, 152, 160]. However, these points will be mentioned very briefl n thii y s repor n ordei t o facilitatt r a e better appreciatio e informatioth f o n n relate a wid o t ed varietf o y species presented in Tables 5 to 54.

The water content varies widely among different speciea s a s result of differences in the total solids present. These differ- ences stem e frodifferinth m g fat, protei d carbohydratan n e contents. Fluctuations als oe gros th occu sn i r solids amone th g same specie r genetifo s c reason d becausan s f differenceo e e th n i s stage of . To give some specific examples, milk from Jersey cows has a high fat content, and total solids from the first 24 hour colostrum are 23.9 % as compared with 12.7 % obtained for normal milk [160].

Among other milk components, the fat content varies much more e otheth f ro tha majoy n an thar f o constituentst . Thi s i becauss e the amount of fat in milk is not only influenced by breed and stage of lactation but also by the diet. Further, it undergoes diurnal variations and changes during the course of a single itself. It is known that the last portion of the milk from the gland, generally called hin e highesd th milk t s contenfa ha t , t [118, 132, 152, 160]

Regarding non-fatty solids, variations observe a give r fo nd specie t wela s l defined stage f lactatio o t sgreat no e , ar n sinct i e is the fat content that is mainly responsible for the changes in total solids. However, non-fatty solid chango d s e during lactation.

Lactose is the characteristic carbohydrate present in milk. Other form f o sugas r whic e presenar h t onl n i smaly l quantities include galactose nitrogew , fe glucosa nd an containine g carbohyd- ratese lactosTh n .i colostrue w contenlo d increasean ms i t s gradually wite progresth h f lactatioo s d variean n s widely between species. For example, the highest level (7 %) is seen in man wherea s i totall t i s y e milabsenth k n i frot m marine species sucs a h California a liose nn [238] n contrasI . o fatt t e suga,th r content o t feasil no mil s yi k influence e dietth y .b d

The protein conten f milko t s from various species varies widely and contributes to the species differences seen in the total solids. Its concentration falls progressively through the colostral and transitional phase d remainan s s almost steady throughoue th t e lactatioth res f o t n period [131, 132]. Milk also contains non- protein nitrogen which is as much as 23 % in human [lOOa] and about 5 % in cow milk [152]. This non-protein nitrogen of cow milk is present in the form of urea, free amino acids, creatine, creatinine, uric acid, ammonia, phospholipid certaid an s n vitamins. The ash content of milk varies among different species and is dependent on the total solids present. Since some of the organic acids suc s citria h c acie losar d t completely during ashinge th , basic minerals are present in ash in excess of the acidic radicals. Therefore, it does not fully represent the salt constituents in milk. Colostru a highe s h contentmha as r , usually abou 5 time1. t s tha f maturo t e milk.

5. FACTORS INFLUENCING THE COMPOSITION OF MILK

Several factors have been identified whic e responsiblar h e either directly or indirectly for the variations observed in the composition of human milk. These are both physiological and non- physiological in origin and include genetic factors, age, physique, parity, stage and duration of lactation, frequency of breast feeding or the milking interval, mode of milking, nutritional status, time of day, psycho-physiological reflexes, stress, disease, medication, stimulants f i any, , user promotinfo d g lactation, pregnancy, effects of contraceptive d habitan s s (smoking, alcoholis d drugs)man . More- over, variations also arise e frodissimilaritth m n i d timy an e methods of sampling and finally analytical errors. As for the variations observed in animal milk, in addition to some of the common factors listed above, difference n breedi s , seasonal fluctu- ation d effecan sf milo t k processin d preservatioan g n should alse b o considered. The implications of these factors have been discussed comprehensively in various published documents [14, 36, 73a, 73b, 118, 120, 124, 130, 132, 133, 152, 160, 163, 188, 196, 208, 216, 218, 233. 243a, 250, 253, 260, 299, 304, 329, 330].

ANALYTICAL CONSIDERATIONS

Choic f analyticao e l techniqu e ideaTh el techniqu e thaon ts L e is applicable to all elements. However, it is evident that no single technique can meet the needs of all the elements of the periodic table n practicI . e choicth e f techniquo e e dependo tw n o s considerations firse Th t. concern e extenth s f elementao t l coverage foa giver n technique whil e seconth e d e relatedetectioth o t s n limits obtainable in respect of the elements with highest and Lowest sensitivity. Clearly, detection limits cannot be the same for all elements, with the result that any simultaneous multi-element approach has to make compromises in experimental conditions which are bound to affect the accuracy and precision for at least a few elements. Even when thera metho s i e f analysichoic o th d r fo ef o s a particular elemen t i shoult e recogniseb d d thas effectivenesit t s depende concentratioth n o s e elementth f o n , whic y varma yh widely between different biological specimens. Furthermore, there ar e situations (e.g. dependin e concentratioth n o e g elementth f o n , sample size, nature of the biological matrix and associated inter- element effects) where different analytical technique e preferar s - abl r eveo e n necessar determin• o t y e samth e e elemen n i different t matrices givo T a e.specifi n i huma l c A nexample d kidnean d d C an y, lung samples respectively can easily be analysed by instrumental neutron activation analysis following a short irradiation. But the determinatio f thes o nelemento tw e n serumi s , mild urinan ks i more e effective by other methods, e.g. atomic absorption spectroscopy. Similarly, certain method e exceptionallar s y suitabl r specififo e c elemente widelar d n i useyan s , although thee singlar y e element techniques. Example e seleniuar s y fluorimetrb m d fluorinan y y b e the use of an ion-selective electrode. In general, each method has some special feature and for this reason che various techniques tend o complement t each other.

Role of the analyst and quality control These cwo factors go han n hant i onld no dy s sinci importan t i e o havt t a gooe d analyt- ical technique but also a good analyst. Various considerations such s financiaa l resources, desired analytical accuracy, e naturth f o e biological sample and the speed with which the analysis is required jointly influence the selection of the analytical technique. However, one basic requirement is that the analytical error caused e methobth y d shoul t exceeno de normath d l physiological variations e substancth of e measured. Furthermore t i shoul, e recogniseb d d e mosth tr fa importanthae analysy th b t s i y analysit t an par f o t s and even an indifferent technique can be turned into a good one in e a competenhandth f o s t analyst d vican ,e versa. Although elemental analysi t a tracs e level s unusuaha s l problemss i t i , possibl o obtait e n acceptable f accuraco e d us precisio an ye th y b n good quality controe laboratoryth n i l . Deciding factor n i sucs h endeavour e frequenar s t analysi f biologicao s l reference materials covering a wide range of concentration of each element, continual checking of possible sources of errors and knowledge of the short- coming a give f o sn method. Further s i necessar t i , o re-evaluatt y e a metho r typw eacf fo o sampldne e h e analysed, becauss i t i e impossible to predict a_ p ri o ri, whether a particular procedure for ..an element will a givewor n i kn matrix, althoug t i hcoul e applicb d - able to other types. In such cases prior knowledge of the basic compositio e matrie analyseth b f f greao o o nt x s i dt help.

Regarding suitability of the existing analytical methods, Parr [231] has recently assessed the state of art of analysis for some biologically important element se result basech n f o internationdo s - ally acceptable standard reference materials such as bovine liver, orchard leave d Bowen'an s s kale. Tabl 2 show ee conclusionth s s e reporteth n Z d reached an result y e thib F d e , s ar sCu survey r Fo . consistently satisfactory, which may be accounted for by the gener- ally high concentration f theso s e element e e sampleth th d n i an ss availability of dependable reference materials. For Hg, Mn and Se, f borderlino whic e ar h e acceptability e consistencth , s e i poory Th . main reason r thifo s s unsatisfactor levelw y lo situatiof o e s th e ar n these elements and possible volatilization losses for Hg and Se. The third group, containing As, Cd, Go, Cr, Mo, Ni, Pb and Sb, is the problem group with generally unacceptable reliability. One of the important factors accountin r thifo g s situatio e lacf th o k s i n suitable reference materials resembling the natural concentration levels in real samples. However, this alone does not explain the inconsistencies observed sinc e resultth e s e reportesamth er fo d element in the same intercomparison vary over a range of several orders of magnitude, e.g. for Cr [231]. These discrepancies suggest that some analysts are probably 'unaware of the practical difficul- tie f obtainino s g reliable result r thesfo s e elements.

Important methods in use at present for trace element analysis mae classifieb y d inte followinth o g groups: TABL 2 E State-of-the-ar f analysio t r somfo s e biologically important trace elements [231]

Status Element Reference Analytical Materials Techniques

Satisfactory Cu BL OL K A NA L AACO S Fe BL OL K AAS COL NAA Zn BL OLA KNA L CO S AA

Borderline Hg K BL LO AAS NAA Mn BL OL K A NA L AACO S Se K L BLO FLU NAA

Unsatisfactory As OL K A AANA S Cd BL OL K L PO A AANA S Co K COL NAA Cr Y A NA S AA Mo K COL NAA . Ni OL AAS Pb BL OL AAS POL Sb K AAS NAA

*Reference materials : BS bovinLNB =• e liver M 157,SR 7 K = Bowen 'kals e OL =• NBS orchard leaves M 157SR , 1 Y 3 NBS brewers yeast, SRM 1569

**Analytical methods: AA = atomiS c absorption spectroscopy COL = colorimetry FL = Ufluorimetr y NA neutro= A n activation analysis POL =• polarography Atomic Absorption and Emission Spectroscopy, Chemica d Electrochemicaan l l Methods, Mass Spectroraetry, Nuclear Activation Techniquesd ,an X-ray Methods

Their suitabilit d potentiaan y r simultaneoufo l s characteris- ation of 28 elements of biological interest in such diverse biolog- ical material s bovina s e liver, porcine muscle, Bowen1s kald an e blood seru e discussear m a recen n i d t monograph publishee th y b d IAEA [119]. Most of these methods have also been used for the analysis of milk and the pros and cons have been presented [31, 102, 119, 135, I9la, 215]. More recently n intercomparisoa , s beeha n n e IAEth f mad o resultAy b e r varioufo s s inorganic constituentf o s milk powder, a reference material specially prepared for this purpose [60a]. The results showed that the determination of its s i generall P d an ya N bulwithi , ke Mg th constituentn, K , Cl , Ca s capabilitie f moso s t laboratorie a variet y b sf differeno y t tech- niques. Similar conclusions als oe trac th appl eo t y element, Fe s Mn, Rb and Zn, and also, but with some reservations, to the trace . HoweverSe d an r othe g fo ,H element, r biologicallCu , Co s y import- d an n S , Sb , Pb , Mi , Mo , t I trac an , F e , elementCr , Gd , s As suc s a h V, the results of the intercomparison were so poor, or so few in number, thao conclusionn t s coul e drawb d n concerning their "real" concentrations in this material. Obviously these findings have serious implications with e confidencregarth o t d n haveca ee thaon t e accuracth e n valuei f th somo y f o es e followinquoteth n i d g cables of this report.

Sampling procedures Milk, liky othean e r biological fluids i , prone to various analytical hazards such as contamination due to interaction with container surfaces, e analytelosseth f o s s during drying and ashing, and changes in mean composition (e.g. formation of layer n standino s a lon r gfo g time r decompositioo , e milth kf o n during various phases of sampling and sample preparation). For a further discussion of some of these hazards the reader is referred to chapters 5 and 6 of reference [119].

From a physiological point of view the analysis of random milk sample s onlha sy limited qualitative value. Ideally e shoulon , d collec 4 hou2 t r sample a bette r fo s r assessmen e individuath f o t l constituents. This requiremen s i easilt y fulfille r farfo dm animals. Depending upon the type of milk to be analysed (e.g. individual samples from several cows, collective samples from several cows, collective sample o represent s e entirth t e farmr o , even pooled samples from the market supply), the desired quantity of the fluid should be collected in precleaned polyethylene bottles taking appropriate precautions.

The human situation, however, is more complicated. In order to retain real physiological significance, it is necessary that the milk sampled for analysis should be representative in quality and quantity of that received by the infant during feeding. Although it is possible to meet this condition by collecting 24 hour samples, in practice, thi s i difficuls t with human subjectse followinth d an ,g compromise arrangemen s generalli t y used.

9 TABL 3 E Reference Source n Milo s k Include n Thii d s Review

HUMAN ANIMAL

Data Source Ele- Data Source Special dis- Special dis- ment cussions cussions Market Milk Cow Other Animals

Ag Qualitative, 102,213 198,213,217 quoted by Archibal] [9 d

Al 56,88,310 56,198,310 49a,86,102 74,88,150,151,152,153, 11,88,2l8(Ewe), 86,102,152 217 76(Moose),88(Goat,Mare), 218(Buffalo)

As I2,3la,89a 102,269 3la,74,115,150,151,152, 76(Moose),l98(Goat) 152,191,269 191,198

B 86,71,102 68,116,128,150,198,228 116,l98(Goat) 10,144,152,228

Ba 5,25 86,102 217 218(Ewe,Buffalo) 86,278a

Be 195

Bi 102

Br 143 49a,73,l02 35,186,198 35,84,152,186

Ca 13,15,16,19, 129,158,235, 67,86,102, 3,27,38,43,83,108,150, 10(Red Deer),11,838114a, 23,86,108,111, 42,46,47,83, 243,286,287, 294 151,152,153,168,183, 234(Ewe),19,54,83, 129,152,223,253 165,178,188, 294,319,324, 190,198,209,217,294 198(Goat),76(Moose),83, 198,235,243, 326 U4a,309(Mare),89(Whale), 286,294,311, 170,183(Buffalo),l83, 319,324 l92a(Sow),l92a(Elepnant, Rhinoceros,Rabbit), H4a,l92a(Giraffe) Taking adequate precaution e nippleth s e cleanear s d pattean d d dry with clean paper tissue. Milk is collected either by manual expression or by using a plastic breast pump. It is necessary to empt t a leas ye breason t t completely. Followin e expressioth g f o n milk the contents are mixed thoroughly before taking the subsample for analysis. The stage of lactation and time of day of sampling should be noted.

Even this metho f samplino d g fall se ideal th shor f o .t First, both manual milking and mechanical pumping are not physiological and it can only be assumed that the sample so obtained is representative of "suckled" milk obtainee infantth y b d. Second e representth , - ativeness of the fat content of the milk is open, to question because e changeth of s which occur during emptyin e breastth f o g . Moreover, n practicei n infan a receivy , ma t e only fore-milk from both breasts during the course of a single feed either because of the infants's unwillingnes o t completels y empt e breasth y ta (perhapo t e du s chang f tasto e e e causeincreas th t contenty fa b d n i e r becauso ) f o e the mother's wanting to release the pressure from both breasts.

7. SOURCES OF INFORMATION ON MILK

The main source f o informatios n quote n i thid s report were identified by a computerized search conducted through DIMDI (Deutsches Institut fiir Medizinische Dokumentation und Information) covering literature published durin e perioth g d 1950-1979w fe A . additional references known to the author have also been included. A summar f -theso y e source s i givesd literatur n an i Tabln , 3 e e references for individual elements are also identified in each of the Tables 5 to 54 of this report. V The following notes give some additional information about special sources of data:

General source f o informatios n o humad nanima an n l milk Comprehensive report n compositiono s , nutritiona d analyticaan l l aspects, [9,44 107, 93 , , 111, 133, 160, 161, 187, I91a, 215, 222]; biosynthesi d certaian s n qualitative aspects, [60, 133]; infant nutritio d adequacan n f humao y n milk, [255, 256]; effec f hormoneo t s on milk production and composition, [58, 299]; effect of heat treatment [72].

Human studies only Comprehensive discussions, [122, 127, 130, 162, 208, 225, 302, 310]; milk and infant nutrition, [14, 16, 18, 44, 64, 66, 159, 301]; physiology of lactation, [70, 78, 118, 120, 132, 163, .196, 236]; uniqueness of human milk, [132, 188]; iron and infant nutrition , 140], 69 [44; , 45 othe, r breast secretions [78]; Ga-67, lactoferrin and breast cancer, [113, 173]; milk and infant body composition [137]; post-natal growth, trace element d bioan s- chemical disturbances, [51, 52, 91, 149, 158, 327]; Zn binding in human milk [61, 63a, 117, 219].

Animal studies only Comprehensive discussions, [17, 134, 152, 252, 312]; influence of mastitis on milk composition, [23, 157]; Cu, cow milk, distribution, [211, 254, 279]; Zn, cow milk, deficiency in suckling mice , excretion Zn [202 d an , 224n ,M , , Ni 303] , Cd ; secretion in cow, [203]; Co and Cu, ruminant nutrition, [4]; Cu, Fe and Mn metabolism in cow [106, I49a, 197, 210, 211].

11 Table 3 continued: Reference Sources on Milk Included in This Reyiew

HUMAN ANIMAL

_ _ . ., Data Source _ . . ,, Ele- Data Source Specia Tl dis- ______Special dis- raent cussions •«., «.».•• cussions w Co Market Milk Other Animals

Cd 3la,33,34, 96,169 22,28,39, 3la,33,34,49,53,59,92, 76(Moose) 156,184,185,203, 214 102,135,169, 213,306 306 175,185,213, 261

Ce 102

Cl 19,47,83,188, 233,286,331 49a,l02 19,83,150,151,198,241, 10(Red Deer),11,83,163, 10,152,232,241, 198,233,286 242 183,234(Ewe),183,241 253,331 (Buffalo),76(Moose), 83(Mare),89(Whale), 192a(Elephant,Giraffe, Rhinoceros,Sow),19,198, 232(Goat)

Co 41,893,164,198, 249,317,325 49a,275 40,75,108,128,145,150,151, 76(Moose) 108,152S166S325 229,249,317 152,153,198,296,325

Cr 32,33,4l,89a, 96,100,194,310 49a,86,102, 33,74,79,100,108,150,151, 32(Buffalo),76(Moose) 100,152 100,194 264 152,153

Cs 41 49a,l02 41,109,295 108 Tabl continued3 e : Reference Source n Milo s k Include Thin i d s Review

HUMAN ANIMAL

Data Source Ele- Data Source Special dis- Special dis- ment cussions cussions Market Milk Cow Other Animals

Cu 16,19,33,34, 5,96,237,247, 8,22,28,86, 7,8,19,313,33,34,40,53, 1,2,19,57,82,83,88,103 7,8,57,81,86,102, 37,47,83,88, 249,300,310, I2l,l35a,305 59,75,79,88,95,121,128, (Goat),11,88,198,218(Ewe),104,106,I49a,154, 89a,198,2l4, 317,325 147,150,151,152,153,168, 76(Moose),88,309,3lOa 209,211,241,242, 220,237,247, 198,209,211,241,242,247, (Mare) ,103, 217,241, 242, 279,305,309,325 249,292a,3lO, 254,306,325 (Buffalo),154,3lOa(Rat) 3ll,3l7,3l8a

Eu 41

F 2,115,47,62, 64,71 102,227 19,53,62,138,198, 138,152,227 62a 227

Fe la,16,19,3la, 5,45,69,730,77, 8,22,49a,86, 7,8,33,3-1,40,53,69,75, l,2,46s103(Goat),ll,83, 40,45,69,77,86, 33,34,37,41, 9l,236a,237, I02,12l,135a, 83,108,121,128,150,151, 218(Ewe),46(Reindeer), 108,149a,152, 46,47,69,83, 243,246,249, 318 152,153,168,198,209,210, 103,218,2^1,242(Buffalo) 180,210,241,242, 140,165,179, 255a,255b,257, 217,241,242,246,325 76(Moose),!60,180(Rat), 257,298,300,302, 198,214,220, 285b,300,302, 160,180,298(Rabbit),160 316,325 237,240,243, 317,325,328 3lOa,316(Sow),l60(Dog), 246,249,285b, 309(Mare),3l4(Seal) 311,317,325

Ga (Ga-67)113,l73

Ge 274 Tabl continued3 e : Reference Source Miln o s k Include n Thii d s Review

HUMAN ANIMAL

Ele- Data Source Special dis- ______Data Source______Special dls- ment cussions w Co MMarke i _t mMil 11k Other Animalr> s n i. A j. -. cussions

Hg 3la,41,80,136, 239 22,39,49a, 31a,47,52a,53,282 76(Moose) 22,251,282 239 297

I 19,47,123,32 31Oa,32, 64 , 18 5 5 102,308,327 1,19,27,3la,50,110,123, 123(Ewe),1,l23(Goat), 27,124,126,152, 124,125,128,150,151,152, 123(Sow) 3lOa,3l5,325 176,177,308,315,325

K 13,16,19,46, 94,129,233,243, 67,86,102 3,19,43,74,83,150,151, 10(Red Deer),11,83,Il4a, 10,58,86,129,152 47,83,165,174, 286,324,331 152,153,168,198,209,217, 163,234(Ewe),19,46,54,83, 232,241,242,331 188,198,233, 241,242,294 Il4a,198,232(Goat),46 243,286,294, (Reindeer),330(Rat),76 324 (Moose),83,H4a,1839 ,30 (Mare),89(W hale),170,241, 242(Buffalo),192a(Elephant, Giraffe,Rabbit,Rhinoceros), 314(Seal)

La ' 102

2 10 7 30 i L 25,260

Mg la,13,16,19, 129,158,243, 49a,67,86 3,7,19,38,43,83,150,151, lO(Red Deer),11,234 10,86,129,152, 5 42,47,83,188, 244,276,286, 102,276 152,153,209,217,323 (Ewe),19,54,83,114as 218,323 198,243,244, 287,310,324, l98(Goat),76(Moose), 286,311,324 89(Whale),l83(Buffalo), H4a,183,309(Mare),192a (Elephant),3l4(Seal) Table 3 continued: Reference Sources on Milk Included in This Review

HUMAN ANIMAL

Data Source Ele- Data Source Special dis~ Special dis- raent cussions cussions Market Milk Cow Other Animals

Mn la,5,31a,33, 5,96,192,300, 8,49a,86,102, 7,8,l9,3la,33,34,5la,53, 1,2, 57,83, 88, 103(Goat), 57,86,146,152, 34,88,192,214, 310,325 I35a,270,3l8 75,79,83,88,103,128,150 218(Ewe, , 88 , 11 76(Moose), ), 197,203,270,325 229,303,310, 151,153,168,198,209,217, 88(Mare )103, , 2l8(Bu alof ) 211 303,325

Mo 25 3lOa,325 8,102,121, 7,8,75,79,121,128,150, 76(Moose),105(Goat), 105,114,152,167, 278,289,291, 150,151,152,153,198,217, 2l8(Buffalo),114, 310a,325 Ul 305,318 3lOa,325 218(Ewe)

15,178,183, 9l,lOOa,ll8,1397 6 , 183,223,324 89(Whale),i83(Goat,Sow9 61a,73a,100a,l52, 183a,216,286, 183a,216,235, Buffalo),183,234(Ewe) I60,l62,l9la,325 319,324 243,286,319,324

Na 13,16,19,46, 94,233,243,286, 67,86 3,43,83,150,151,152, 10(Red Deer),11,163, 58,152,258,331 47,83,165,174, 324,331 153,168,198,209,217,241, 234(Ewe),46(Reindeer), 188,198,233, 242 54,83,232(Goat),330(Rat), 243,286,324 76(Moose),89(Whale),170, 241,242(Buffalo),192a (Elephant,Giraffe,Rabbit, Rhinoceros) , 309(Mare), 3l4(Seal)

Nb 102,268 Table 3 continued: Reference Sources on Milk Included in This Review

HUMAN ANIMAL

Data Source Ele- Data Source Special dis- Special dis- ment cussions cussions Market Milk Cow Other Animals

Ni 25,33,34,41, 193 263 33,34,41,79,150,151,153, 76(Moose),155(Rat) 152,155,203,226 164,193 217,226,296,3lOa

13,15,16,19, 111,129,235,287, 67,86,102 3,19,38,43,83,150,151,152, lO(Red Deer),11,83,183, 10,86,111,129, 42,46,47,83, 294,319,324,326 153,190,198 234(Ewe),19,46,54,83, 152,160,223,253 165,188,198, H4a>l98(Goat)>83,ll4at 235,243,319, 309(Mare),89(Whale),183 324 (Buffalo),183,192a(Sow), 192a(Elephant,Giraffe, Rabbit,Reindeer Rhino- ceros), 3l4(Seal)

Pb 5,33,34,55, 5,55,171,172, 22,28,102, 33,34,53,59,74,150,151, 21,218,3lOa(Ewe), 21,85,142,152, 85,171,172, 205,283,290 135,141, 152,153,171,172,212,217, 76(Moose), 171,172,185,191, 214 204,212,262 292,306 218(Buffalo) 204,255,290

Rb 4l,89a 49a,102,212 41,109

S 30,188 102 19,30,150,151,152,153, 30(Ass,Buffalo,Cat,Dog, 26,152,322 322 Rabbit,Sow),30,83(Goat), 30,183(Ewe,Mare)

Sb 3la,4l 49a,l02 3la,41

Sc 41 41

Se 3la,4l,47,89a, 18,97,99,112, 28,98,181, 20,24,41,48,87,108,148, 76(Moose),l89(Sow) 98,215,284,310a, 97,99,181,182, 182,206,284, 207,271 7 32 181,182,200,201,285,303 200,284,285, 321, Table 3 continued: Reference Sources on Milk Included in This Review

HUMAN • « ANIMAL

Data Source Ele- Data Source Special dis- Special dis- ment cussions cussions w Co Market Milk Other Animals

Si 5,25,88,198 5 102 88,150,151,153,198 88(Goa8 t ,Mare21 , 88 ), 152 (Ewe),218(Buffalo)

Sn 25,3la 3lOa 102,259,267 313,217,267 267

Sr 5,25 5,278a 86,l02,278a 198,217,245,295 2l8(Ewe, Buffalo) 2l5,278a

Te 272

Th 102

Ti 5,25,88 5 265 79,88,217 88(Ewe, Goat, Mare) 265

U 101,102

V 5,3la 5 266,288 31,217

W 211a( radiotungsten) 211a

Y 1 102

Zn la, 5, 16, 19, 5,18,61,96,218, 8,22,28,49a, 7,8,33,34,40,41,53,59,74, l,57,103(Goat),ll,57, 6,57,61,86,90, 3la,33,34,37, 219,237,243, 86,102,273, 95,108,128,150,151,152, 218(Ewe),60b(Sow),76 108,152,153,154, 4l,47,89a,198, 248,249,293, 318 153,168,198,209,217,219, (Moose),103, 217,218 160,184,199,202, 214,219,220, 3lOa,3l7,320, 230, 248, 280, 306, 3135 ,32 (Buffalo), 3lOa(Rat), 203,219,221,230, 237,243,248, 325 309(Mare) 280,281,300,309, 249,303,311, 313,325 3l7,3l8a,325

Zr 102,271 8. ELEMENTAL COMPOSITION OF MILK

8.1* General Remarks

Major elements Calcium, chlorine, magnesium, nitrogen, phos- phorous, potassium, sodiu d e sulphuregardeb an m y s ma majora d r element n bovini s e milk. However e relativth , e concentrationf o s these elements vary among milks from different species as illus- trated in Table 4 for human and bovine milk.

TABLE 4 Approximate concentrations of major elements in human and bovine milk (tng per litre)

Element Human Bovine Ca 300 1200 Cl 500 1000 0 50 100K 0 0 12 0 4 Mg N 2000 5500 Na 150 500 P 150 1000 S 150 300

With the exception of K all the elements occur at still higher concentration n colostrui e sresponsibl ar e high d th as an hmr fo e conten f earlo t y secretions. However, their levels rapidly decrease throughou e transitionath t l phas d remaian e n either stead r cono y - tinue to decline at a slow rate throughout the rest of the lactation period.

The concentrations of the major elements in milk are by and large genetically determined while environmental, nutritionad an l other related factors affect these only marginally. When the input e majooth f r mineral s criticalli s y low, body store e usuallar s y mobilized to restore the deficiency, but beyond certain critical limits the effect is characterised primarily by declining milk yield to safeguard against excessive depletio f bodo n y stores, e.ga C . froe skeletonth m .

Trace elements These occur at levels ranging from not detect- able to a few tag per kg. Over 40 trace elements have been quanti- fied wit hele f moderth ho p n analytical method n varioui s s milks.

As already mentioned the protein content of milk varies among different species. This variation is naturally reflected in corres- ponding changes in the concentrations of those elements which are mainly protein bound. Therefore, for essential metals like Zn, large differences between milks from different species are to be expected. However, unlike major element t seasil no whic e yar h influence y externab d l factors, trace element e alterelevelb n ca sd by extrinsic or intrinsic considerations. For instance, I, Mn, Mo and Se are affected by dietary status while other elements like Fe are under homeostatic control. It must be recognised that homeo- static control would be expected to be operative only under normal nutritional circumstance t undeno rd an scondition f prolongeo s d malnutritio undernutritionr no .

18 Normal values As already mentioned, milk is in osmotic equil- ibrium wich bloode osmotiTh . c effec n mili t k comes from lactose and several other ions, mainl , + d Na~*Cl~K an y " . Thuse th , regulatory influence exerte e reasonably osmosith b d d an s e consist- enc e yprotei th see n i nn conten f milo t k withi a ngive n species should giv a enarro w dispersio e resultth n i ns e obtaineth r fo d major element compositio f o mil nf o thak t particular species. However, when one surveys the available data for bovine and human milk, the spread of values observed for the major elements do not strictly e abovconforth o et mexpectations . Furthermore, this tendency is more pronounced in human milk than in bovine milk.

The chief reason for these discrepancies appears to be the lack of representativenes e milth kf o sspecimen s obtaine r analysisfo d . Another difficult e changinth s i y g compositio e milkth f , o nvit h time post partum. As can be seen from the tabulated results for a number of element , severa54 n Tablei so t l 5 selement s sho a wdistinctl y declining trend with the progress of lactation. Since not all investigators have systematically recorde e precisth d e tim f milo e k samplin n termi g f weeko s r montho s s pos t cleat no partumo t rs i t i , what extent these uncertaintie havy ema s contributed_t e overalth o l variability s i firs t I t . necessar o eliminatt y e variabilitth e y arising from these factors to be able to assess the true individual variations among different population groups base n "comparableo d " milk samples.

Fro n analyticama l poin f viewo t s discussea , d under sectio, 6 n e mosth tf o vulnerablsamplin e on s i g e steps. Among other prevalent errors, mention shoul e classi e th rua

n generalI e widch ,e dispersion observee dacr majoch fo a n i dr elements in milk results from a cumulative process reflecting all or most of the sources of variation mencioned in section 5. Regarding trace elements, especiall r thos fo yg concen k e r occurrinpe - g u t a g tration levels, analytical errors are chiefly responsible for che great sprea f valueso d . However, this doet applno so t elementy s suc s a iodineh r whicfo , h ther s i clear-cue t evidence e thath c nutritional statu alten e valuesca s th r .

n vieI f o theswd othean e r considerations (a-g- geographical variations) e evaluatioth , f o norman le elementath value f o s l concentration n biologicai s l system a globa n o s l a basifrus s i s- trating task. Therefore, for the time being, using the best available data, onl a yprobabl e rang f o average ee th value r fo s concentration of various elements in milk can be suggested.

8.2. Tabulacion of literature daca for specific elements

The elemental composition of milk from human and several animals suc s assa h , buffalo, cat, cow, dog, elephant, ewe, giraffe,

19 TABL5 E Elemental Compositio f Milko n : Aluminium

Unit: r jape g kg (* = par litre)

Abbreviations: = Ccolostrum = transitional T , , M = ma t u re t detecteno N= D d

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Human C USR 69 5 15 6- 6 ? AES 310 Milk from 15 mothers, original results based on milh analysias k s

T USR 69 23 - 872 ? AES 310 ••

M USR 64 330* + 42 30 AES 88 Original result e basear smil n h analysio d as k s M USR 60 250* ? AES 56 M USR 69 2400 +800 ? AES 310 Milk collected from 15 mothers, original results are based on milk ash analysis

Market cm 79 820* N D- 196 0 49 NAA* 49a Both liquid and samples milk UK 72 900* +10S M 2 1 0 102 Bottled cow's milk USA 70 2000 ? AES 86 Whole milk from hospital menus

Buffalo M BUL 68 75 - 0121 0 35 AES 218

Cow M BUL 75 48 - 0306 S 0AE 0 32 217 Rang f meao e n values from different areas, country-wide study M GFR 56 700 S +93AA 0 0 1 150 See also [151, 152 and 153] M USA 500 ? AAS 74 Quoted by Franzmann [76] M USR 64 1766 +243 24 AES 88 Original result e basear s mil n h analysio d as k s goat, mare, moose, rabbit, rat, red deer, reindeer, rhinoceros, d whalean seal s w wela ,s so "marketa ,l " milk s presentei , n i d Tables 5 to 54. However, comprehensive elemental coverage is avail- able only for cow, human and market milks. Due to the paucity of analytical information the remaining sources are covered to a lesser extent e f resulto Th . g e generallk ar sr pe g u y r expresseo g m n i d liquid milk; values expressed per litre are separately indicated by an asterisk.

e date tabulateTh ar a a standar n i d d format comprisin0 1 g columns indicating 1) source of milk, 2) status of the milk (colostrum, transitional or mature, denoted by C, T and M, respectively), 3) country of origin, 4) year of data publication, 5) mean values, 6) range of single values or standard deviation of the mean, 7) number of samples analysed, 8) analytical technique employed ) 9 literatur, ) relevan10 ee datad th sourcan ,tf o e remarks, if any.

o T denot e variouth e s analytical technique e followinth s g abbreviations are used:

AAS Atomic Absorption Spectrometry ASS Arc Emission Spectrometry CAT Catalytic method (auto-analyser r iodin)fo e CHEM Miscellaneous Chemical Methods FES Flame Emission Spectrometry GLC Gas-Liquid Chromatography GRV Gravimetry ISE Ion Selective Electrode 1 KJ. Kjeldahl s Method MS" Mass Spectrometry NAA Neutron Activation Analysis POL Polarography SAS Solution Absorption Spectrometry (Colorimetry) SFS Solution Fluoresence Spectrometry VOL Volumetric analysis XRF X-Ray Fluorescence Spectromecry

The occurrenc e variouth f o e s elements reviewe n Tablei do t 5 s n 5differeni 4 t type f milo d factors an k s influencing their levels e brieflar y discussee followinth n i d g paragraphs. Since th e biological significance of these elements has already been excel- lently reviewed by Underwood [3lOa], this subject is not discussed in detail here.

Aluminium Concentration f thio s s elemen n buffaloi t , cow, ewe, goat, human, mare, moos d markean e t milk e showar s n i Tabln . 5 e Although Al does not belong to the group of elements known to be essentia s bee ha r lifen fo t li foun , n appreciabli d e quantitien i s e sampleth s mentioned above.

Based on the limited studies on human milk carried out in Russia wich the help of A2S, it appears that Al is lower in colost- rum than in lacer secretions [310]. The results for mature human milk vary over a factor of nearly 10, ranging from 250 to 2400 ug per kg [88, 310, 3lOa]. In cow and market milk samples, the concen-

21 Table 5 continued (Aluminium)

Source Status Country Year Mean Range or SD n Me t hod Ref. Remarks

Ewe M BUL 68 3340 - 4720 8 AES 218 M UK 66 1700 12 SAS 11 Clun Forest ewes K> M USR 64 3688 +493 28 AES 88 Original results are based on milk ash analysis

Goat M USR 64 2208 +373 24 AES 88

Mare M USR 64 564 +78 16 AESt 88

Moose M USA 76 1240 +500 21 AES 6 7 Alaska g wittrationk l a rangr hprobablA pe f o 200 c o esg u 0 fro e80 m averag e. Amonkg valu r f 100o gepe otheg 0u r animal e reporteth s d concentrations of Al vary from the mare (550), buffalo, (1000), moose (1200) , e (170goaew t0- e 4720)(2000th l al o valuet , ) s expressed in ug per kg.

n i mil Ths i l ekhardlA rolf o ye understood e studOn y. reported that milk from women suffering from hypogalactosis showed r litrepe g u ) les0 l compare(1525 A s o 0t d with normal women whose milk always contained more than 250 ug per litre. Another tendency noticed related to the increased excretion of this element in milk with progres f o lactatios n i norman l mothers whil n i subjecte s affected with hypogalactosis there was a steady decrease [56]. The significanc f o these e alteration t clear no n I cows l s i A . s, supplementation significantly increases the output of this element r n milki pe r exampl l Fo A . y feedinf b o e g n equivalenm a g 4 11 f o t day in the form of alum, the mean concentration increased to 800 ug n controi g s comparek a r l pe cow g du s wit0 wit50 ha h norma l diet [9]- Antimony Table 6 shows the rather limited data available for this element.

A single paper foun r humafo d n milk from Italy indicates wide variations in Sb content (80 to 5300 ng per litre); the reasons for the individual high values are not given [41]. It may be mentioned that some Sb compounds find their way into human systems as medication. In cow milk a concentration of less than 100 ng per litr s beeha e n reported [41, 31a] studieso .Tw , one^ach froK U m and Chile, have obtained identica r litrpe n i g eu l 0 value1 f o s market milk [49a, 102].

Arsenic Only a few results, presented in Table 7, are availabl r thifo e s elemen n cowi t , goat, human, marmarked an e t milk samples.

Althoug n elemena h f o toxicologicat l interest s appearA , o t s have been scarcely investigated in milk samples apart from cow milk. One source dating back to 1937 reported 36 ug per kg in human milk [12]. In cow milk it is present at up to 60 ug per kg in n colostrumi g u 0 25 matur .o t p eu mild an k

The influence of excess As intake on milk in animals has not been investigated adequately e studOn y. experimenting with Jersey cows reported no increase of this element in milk even after high doses of lead arsenate [191]. In another study, 13 external application f 0.1o sr cen6pe t sodium arsenite were mad o cowt et a s days7 interval o t ; 6 milf o s k collecte e houon r t a afted e lasth r t treatmen a r pealitr pe d t k g an eshoweu concentratio 0 28 d f 149o n 0 ug per litre was seen after 72 hours. Thereafter, the excretion of As declined steadily wich time. [285a]. A concise assessment of As pathway o milt d mils an kk product d soman s e toxicological implic- ation e presentear s n referenci d e [198a].

Barium The measurement of this element in human milk appears o havt e been carrie e e resultUSSR t th onlTh ou e dn .showi yar s n i n Tabl 8 togethee r with some single values obtaine r buffalofo d , cow, ewe and market milks.

23 TABLE 6 Elemental Composition of Milk: Antimony r litrepe = )* ( g k r pe Unitg ja :

Abbreviations: C = colostrum, T = transitional, M = mature t detecteno N - D d

Country Year Mean Range or SD n Method Ref. Remarks Source Status i

Human T YUG 78 <0.02 7 NAA 3la Pooled samples fro mothers8 m , converted from dry weight

M 1TA 77 - 5.300.08 * 18 NAA 41

Market CHI 79 10* ND - 74 49 NAA 40a Both liquid and powdered milk samples milk UK 72 9.4* + 1.70 12 MS 102 Bottled cow's milk

Cow M ITA 77 <0.1* 2 NAA

Unit: }ig per kg

Abbreviations : C = colostrum, T = transitional, M = ma t u re p= pos pturr pa nt

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Human C GRE 78 2.6 0.6 - 5.0 15 NAA' 89a 24 hours pp

T GRE 78 3.6 3 6. 0. 8- 15 NAA 89a 5 days pp T YUG 78 0.15 +0.01 2 NAA 3la Pooled samples fro mothers8 m , converted from y weighdr t

M GRE 78 3.2 1.6 - 6.0 5 NAA 89a 30 days pp Ol M IN 37 36 9 12 Quote y Archibalb J ] [9 d

Market UK 72 <1 12 MS 102 Bottled cow 1s mil k milk USA 66 170 ? SAS 269

Cow C FRA 74 25 - 250 150 SAS, 53 4 day1- s lactation C USA 38 47 - 77 188 Reference source

M 38 0 6 3- 2 1 9 115 M 63 <50 4 SAS 191 Lactat'ng Jersey cows M GFR 57 34 +25 9 AAS 151 See also [150, 152] M USA 38 8 5 4- 2 9 198 llolstein, Jersey and Brown Swiss breed M USA 74 30 74 Alaska, quoted by Franzinann [76] M YUG 78 0.24 +0.01 6 NAA 3la Converted from dry weight

Goat M USA 38 55 t ? 198

Moose M USA 76 <50 21 AAS 76 Alaska TABL 8 E Elemental Compositio Milkf o n : Barium r litrepe » = )* ( g k r pe Unit g u :

Abbreviations = colostrum C : = transitional T , , M = mature = pos p p t partum

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Huma n C + T USR 68 24 2-80 AES 5 1 weep kp

M USR 44 20 ? AES ' 25 Quote Archibaly b d ] [9 d M USR 68 42 2 - 170 AES 5 mont1 p hp M USR 68 39 0 16 3- AES 5 2-4 months pp M USR 68 6 2-15 AES 5 6-10 monthp sp

Market UK 72 200* +100 12 MS 102 Bottled cow's milk milk USA 70 100 ? ? 86 Whole milk from hospital menus

Buffalo M BU 8 L21 Rang % f meaS o e6 8AE n values 5 - 3 277 0 ,0 46 country wide study

Cow M BUL 75 40 - 180 320 AES 217

Ewe M BUL 68 8 21 S AE 1200 8 -1400 e concentrationTh f chio s s elemen n maturi t e human milk from , 25][5 .g k Russiar pe g u n O subjectA o t 0 e ordes2 th werf o rf o e d markean w t co s presenmilk i n I t i st distinctl a t y higher levels e otheth rn O hand s concen. it ,kg r -pe g u wit n averag0 a h 10 f o e tration exceed e miln buffali ew k g d k ssamples an or 100 pe 0g f u I . these figures truly represent the Ba content of milk from these cwo animals, it is difficult to explain why they are so high. Even if the chemica s takei a nB l intd similaritan o a considerationC f o y , the situation still remains puzzling a concentrationC ; s vary ovea r 0 fol 1 n contras i de factoo th differenc tw o t tf r o e seen betweee th n extreme Ba values.

It may be mentioned that, except for market milk, all Ba values were obtaine AESy b d .

Beryllium and Bismuth Analytical results for these two elements were found onlmarker fo y e presentetar mild an kn Table i d s e mentioneb y ma t dI tha . t10 thes d o elementan tw e 9 e botar s h considere e recognize ar e toxi b d o an ct d s occupationaa d l hazardn i s some industries.

Boron No values were found for this element in human milk. The few results found for cow, goat and market milk samples are shown in Table 11.

This element occurs at a concentration of about LOO to 1000 ug l thesal n ei pethreg k r e type f milko s . However n exceptioa , s i n seen for samples of cow milk from India where extremely low values o fg hav k les r e spe bee thag u n n1 reporte d [128].

Regardin e variatio3 conten th e g th f mil o tf n o investigna k - ation involving 22 cows showed no significant difference between breed d stag an sf lactatioo e n [116] n normaI . l milk containin% 4 g fat, roughly 25 % of the B is associated with the cream and the rest is found in skim milk [218]. Oral supplementation with 3 or the use of feed f higo s h content increase e concentratioth s f thio n s element in milk. For instance, 300 mg of B administered daily to 6 cows for a period of 6 months in the form of sodium tetraborate resulted in a 5 time2. s increasr litrn milki pe B g e, u f o enamel3 65 o yt fro0 27 m [68]. It was also observed that the total amount of 3 secreted daily remained mor r leso e s constant regardles e volumth f f o o es milk produced.

Bromine Table 12 summarises the few available data on bovine and market milks.

In milk from Iranian mothers the Br concentration is reported to be 1520 jag per kg [143]. In most cow milk samples it is reported e present b on averag a t , wita t kg e h r levesomepe f aboug o lm - 2 t what higher valueK markeU r fo st milk [102],

The concentration of Br in milk is influenced by intake. Animal feeds contain Br in the form of naturally occurring bromides and also sometimes in.forms resulting froe applicatioth m - Br f o n containing fumigants for treating forage and grain. Methyl bromide n establishea s i d fumigan r varioufo t s agricultural commoditied an s is regarded as one of the factors that influence the Br concen- tratio n animai n l milk. Thi s beeha s n demonstrate y feedinb d g cows

27 TABL 9 E Elemental Compositio f Milkno : Beryllium

Unit: pg per kg

Source Status Country Year Mean Range or SD n Method Ref, Remarks

Market AUL 67 0.17 0 - 0.75 50 SFS 195 milk

N) oo TABL 0 1 E Elemental Compositio Milkf no : Bismuth

Unit: jig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mea n nMetho D RangS dr o e Ref. Remarks

Market UK 72 2.2* 12 MS 102 Bottled cow's milk milk TABL I I E Elemental Compositio f Milko n : Boron

Unit: ug per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Couny tr Year Mean D RangS r o e n Method Ref. Remarks

Market UK 72 MOO +100 S M 12 102 Bottled cow's milk milk USA 70 280* ? AES 86 Whole milk from hospital menus 70 70 - 220 ? ? 71

Cow M 68 50 1000- 0 ? ? 8 19 Reference source M GFR 56 950 +188S AA 0 0 1 150 M IN 57 0.19 - 0.25 3 SAS 128 Maharastra region M UK.' 44 700 1 SAS 228 M USA 39 94 -S 22SA 8 2 2 6 11 Holstein, Brown Swiss, Jerse d Ayrshiran y e breeds M USA 58 270 0 36 19 - 3 6 SAS 68

Goat M 70 180 ? ? 8 19 Reference sourc, e M USA 39 177 SAS 116 TABL 2 1 E Elemental Compositio Milkf o n : Bromine

Unit: ^ig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mean Range od r ho S t De ti n Ref. Remarks

Human M IRA 72 1520 +200 10 NAA 143 Nursing mothers

Market CHI 79 2090* 520 - 8980 49 NAA 49a Both liqui d powderean d d milk samples milk UK 72 4200* +400 12 MS 102 Bottled cow's milk USA 40 2000 73

Cow M 68 0 24 1 8- 198 Reference source M ITA 46 214 7 CHM 35 M USA 63 2133 1000 - 5000 9 ? 186 with a grain ration that had been fumigated with methyl bromide. A r 3 f o fee g m d 0 containin2 f bromid o o g t resulte g r u 0 1 pe 3 e 4 gn i d milkf o mile peg th ;k rt affectedk no yiel s wa d . Furthermors wa t i e observed that bromide concentrations in milk were correlated with the levels of Br in blood [186].

Cadmium This element has been more frequently analysed in bovine and market milk than in human milk (see Table 13). It has also been measured in [76].

Amon e limiteth g d data availabl r humafo e n milk e studon , y [214 A reporte]US froe th md concentration, kg s r exceedinpe g u 0 1 g while investigations from Mew Zealand found less than 2 ug per kg [33, 34]. The Yugoslav data were even lower [3la]. Despite the availability of more data for cow and market milk samples, it is difficult to arrive at a meaningful average value for this element in these two types of milk because of what appear to be true regional variations. However, it cannot be entirely ruled out that som f theso e e variation y havma so eanalyticat beee du n l errors. Among the reported results for cow milk, the variations reported n somi eg k sampler rangpe A g e[49su US fro froo 1 ovee t ]0. mth mr 100 ug per kg in Bulgarian samples [306], while the remaining values take intermediate r positionsamplefo g k s sr fro pe betwee mg u 3 n Missouri (USA) [59] and 37 jjg per kg in samples from France [53]. Market milk shows mor r lese o same th se picture e lowesTh . t values g werk r e 3 pe Swedisfoun9 g n u i d 2 ho 0. fsample s n som[135i ed ]an sample A [185]sUS froe .th m Higher values rangin4 34 o gt fro8 11 m g havk r e upe gbee n reporte r milfa dk from Puertoe Rico^h . "] *9 (3 averag d concentratioC e n mili n kfro• m differentA US e citieth n i s g wite k 6 [213]th 2 a mear h n pe f varieO o n . g u 0 d3 betweed an 7 1 n other hand 5 sample22 , s from Californian markets were founo t d contain 5 ^ 3 ug per kg [28].

s i regarded s founwatei a C an dd n foodi s an dr a r d ai , cumulative poison. One obvious source of Cd in milk is through food and water, whicy explaima h e variatioth n n observed between different locations even within the same country [169]. A few investigations have attempted to study the influence of high dietary e n fat cowCi f th ds thio wela e s s sa l elemen n milki r t Fo . example, when Holstein cows wers d dailCdCl2a fe ed yC , witg 3 h less tha e adden th d appeare C 0.0e dmilkf o th 2% ,n i d thus demon- stratin a biologicag l filtering capability [203] n I anothe. r investigation involving rats, pregnant and lactating animals showed notable abilit o concentratt y e radioactiv n i thei d rC e mammary tissues, but very little of it was released into milk. This is indicative of a basic biological defense mechanism which protects the suckling from toxi d ionC c s [184].

Regarding the distribution of Cd in milk, following adminis- s recoverewa tratiod C e df CdCl2 o th n fro f o m, % abouaci 9 d1 t casein and proCeins . In a recent study which investigated the transfer and distribution of Cd in cow milk following a. single oral dos f 10'CdClo e 2 solution s preferentiallwa d C , y associated with milk proteins (casein 29 % and albumin 5.5 %). Following a single ingestio a MayZe sf o nleave s contaminated with radioactive th , Cd e Cd secreted into milk was less associated with protein; only 18 and 4 % were measured in casein and albumin respectively [156].

31 TABLE 13 Elemental Composition of Milk: Cadmium

Unit: jig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, e r Mu t = a m

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Human T YUG 78 <0.25 V NAA 3la Pooled samples fro mothers8 m , converted from dry weight

M NEZ 77 <1 25 AAS 34 Pooled samples M USA 76 <2* 25 AAS 33 Pooled samples from 25 mothers U) M USA 71 19 +27 22 AAS 214 Collected in glass stoppered bottles 10

Market CZE 71 10 5 AAS 175 milk GFR 75 10 5-3640 ? 22 Pasteurised milk PUR 76 4 34 - 8 11 ? NAA i 39 Pooled from dairies SWE 76 0.2* 93 AAS) 135 POL) UK 72 34 +5 12 MS 102 Bottled cow1 s milk USA 61 2.4 3 SAS 261 Fresh milk USA 68 15* 12 - 20 AAS 169 Montana area USA 0 3 68- 7 1 26 ? AAS 213 Nation-wide study, weighted mean USA 73 0.21 ? ? 185 USA 76 6 +4.?9 AAS 28 California , state wide study USA 76/77 5 +3 225 AAS 28 California market milk Table 13 continued (Cadmium)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Cow M . 74 15 ? AAS 92 M BUL 76 108 - 164 41 AAS 306 M FRA 74 37 6 6 2 - 1 150 AAS 53 Ul 77 3 9 U) M NEZ AAS 34 Homogenised cow's milk M USA 68 26 20 - 37 32 AAS 213 Samples from individual cows M USA 73 0. 1- 0.4 0 3 POL 49 18 determinations M USA 75 4 4 AAS 59 Missouri, winter season M USA 75 3 5 AAS 5') Missouri, summer season M USA 76 3* 7 AAS 33 Pooled samples M USA 73 27 33 AAS 215 Cincinnati area M YUG 78 <0.25 ? NAA 3la Converted from dry weight

Moose M USA 76 60 AAS 76 Alaska TABL 4 1 E Elemental Compositio f Milko n : Caesium

Unit: ug per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M =e r mu at

Source Status Country Year Mean Range or SD n Method Ref . Rema rks

Human M ITA 77 1. 6- 31. 7 29 NAA 41 t e Mark CHI 79 - 448 8 6402 0 * 49 NAA 49a Both liqui d powderean d d milk samples milk UK 72 6.6*' +1 12 MS 102 Bottled cow's milk

Cow M GFR 78 1.8o 4-0.65 2 NAA 109 Multiple determinations, over two years M GFR 77 3.81 2 NAA 109 Multiple determinations M HUN 75 0 40 30 0- ? FES 295 During 1972 and 1973 M ITA 77 146 2 NAA 41 A brief review of Cd pathways to milk, and milk products and toxicological implications has recently been published [198a].

Caesium While radiocaesiu s attracteha m d widespread interest because of radioecological considerations, very little attention has been given to the natural content of this element in milk, as can be seen from Tabl. 14 e

Onl a ysingl e sourc f o informatioe s foun r wa humanfo d n milk from Italian, subjectsg k r n whici ,pe g a hconcentratiou 2 3 o t 2 f o n was reported [41] mil w e resultco kTh . r fro fo 4 scountriem s suggest a 100 fold variation. Analytical difficulties appear to be one of the sources of error. The probable average range of concentratiog k r milpe w co g ku r appear 4 fo e nbetweeb d o an t s 2 n [109] n markeI . t milk sample o resulttw d s an sK U availabl e th r fo e Chil g [49ak e , r alspe 102] og u .var 0 fol0 10 yd64 d betweean 6 6. n

Calcium This element has been analysed in several types of milk and in many countries. Some of these results are summarised in Table 15.

Most of the reported results for this element in mature human . Amonkg e deviatinr th gpe g m 0 g mil35 values e d betweeli k an 0 , 25 n e eacon h Guinew froNe m a [13 d Nigerian ] a [15] show rathew lo r concentrations of 153 and 203 mg per kg. A similar trend is seen f sampleo t afte A e se lactatio th sa US r fror e fo th d mprogresse ha n d beyon 7 monthd s [311] n conformitI . y wite facth h t that colostrum and transitional milk e enrichear s n a i concenproteinC d e th -, trations in these secretions are considerably higher than in mature fluid (range of mean values 150-481 mg per kg). In cow milk, with the exception of a couple of high values, the majority of the results from several countrie e withili s a nnarro w rango t f 110o e0 n I colostruw Co . kg . mr kg pe contain r g pe o m t 160 g 0p m 130u s 0 3 markeavailabl e th t f milo e 2 kresult e froe n ar Tabli sth m 5 1 e USA and show just over 1000 mg per kg, while the third result r litrpe obtaine g em . show 0 [102]dUK 10 s _ froe + 1400.th m Among other species, compared with the cow, buffalo shows slightly more Ca (1500-1850 mg per kg) in its milk. Since the milk protein content of thes o animale sameth e tw edifferenc th s ,i s e observee b y ma d attributed to the variation in fat content (see Table 1). Table 15 also shows Ca values in milk from a number of other animals such as elephant, ewe, giraffe, goat, mare, moose, rabbit, reindeerd re , deer, rhinoceros, seal, sow and whale, which show values ranging from 700 mg/kg (seal) to 5 g/kg (rabbit). The concentrations observe r goaelephand fo dan t e similaar t o that r rcow fo t, whiln i e giraff d moosan e e the e yrang th fal n ei l observe r buffalofo d a C . concentration e see r ar ewe fo ng s, k exceedin r reindeerpe g d 2 gre , deer, sow and whale milks, all of which have a high protein content.

n i colostrum w n marI lo es i mil , a C reachek d peak valuen i s transitional and early mature milk and declines at 2 to 4 months post partum (Table 15). Curiously the ash content (which is also shown in the Table) shows a reverse picture in that its concent is e colostrath hig t a h d vicl an stag e w verslo e s wherai a [309]C e .

The distribution of Ca in milk is dealt with in Section 10 (page 151). Regardin e variation maturi th g a C ef o nhuma n milka , large proportio e datth af o nfro m several countries falls withie th n

35 TABLE 15 Elemental Composition of Milk: Calcium r litrepe = ) * ( g k r pe Unit g m :

Abbreviations = colostrum C : = transitional T , = matur M , e pp = post partum

Source Status Country Year Mean Range or SD n Method Ref . Remarks

C Human 49 481 6 65 24 - 2 28 ? 188 Review C 68 300 9 ? 108 Reference source C 74 310* 130 - 660 9 19 Reference source a\Ul C 0 7 SOU 273 +66 37 AAS 2^3 5 days pp , white subjects aged 24+6 years, converted from dry weight basis assuming 12.4% dry matter C SOU 70 220 +64 84 AAS 243 5 dayp p s , Bantu subjects aged 24+6.5 years, converted from dry weight basis assuming y dr 12.4% matter C UK 73 150* 26 AAS 42 3 days pp C UK 73 410 26 AAS 42 5 dayp p s

T 49 464 230 - 628 46 ? 198 Reference source T 74 340* 180 - 360 ? 19 Reference source T UK 65 307 +54 10 GRV 324 5-7 days PP Table 15 continued (Calcium)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Human M 49 344 173 - 609 628 ? 188 Review M 63 330 ? ? 46 Reference source M 68 330* ? ? 83 Reference source M 68 320 ? ? 198 Reference source M 74 330* 150 - 610 19 Reference source M AUL 53 311 5 34 26 5- 7 ? 235 Canberra region 7 month2- , f lactatioo s n M IN 59 342 298 - 488 191 GRV 16 From poor Indian women M NIG 56 203* 100 - 320 146 VOL 15 Mothers with babies aged up to 12 months M PNG 65 153 +3.4 24 ? 13 M VAN 53 258 0 34 18 6- 51 ? 235 South Pacific Islands, 2-24 mqntho s ? lactation Ul -4 M PAK 74 284 +7.4 9 VOL 178 Lower socioeconomic group M SOU 54 287 +61 250 ? 319 Bantu subjects M UK 61 267* +60 18 ? 286 M UK 77 350 ? 7 47 M , UK 65 288 3 GRV 324 4-6 weeks pp M USA 65 237 16 ? 294 Colorado region, pooled samples M USA 65 215 20 ? 294 Chicago region, individual samples M USA 77 257 28 AAS 311 1-3 months pp M USA 77 236 39 AAS 311 6 month4- p p s M USA 77 175 23 AAS 311 7-9 months pp M USA 77 170 13 AAS 311 10-12 months pp M USA 77 180 28 AAS 311 13-18 monthp p s M USA 77 150 30 AAS 311 Ove 9 monthr1 p sp M USR 71 '»10 ? ? 165 Table 15 continued (Calcium)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Market UK 72 1400* +100 12 MS 102 Bottled cow1 s milk milk USA 70 1050 9 AES 86 Whole milk from hospital menus USA 72 1011 +10 13 AAS 67

Buffalo M 68 1850 ? 9 183 Reference source M IN 75 1500 249 NAA 170

Cow C 68 1470 9 ?•' 198 Reference source C GFR 56 1640 . 7 AAS 150 1st milking

U! C GFR 56 1300 7 AA Sh milkin7t d 15gan 0 h 6t CO M 70 1200 9 9 198 Reference source M 68 1330 9 9 83 Reference source M - 68 1250 ? ? 183 Reference source M BUL 75 lls 9 - 1340 320 AES 217 Range of mean values from different areas, t country wide study M FIN 70 1160 - 1230 68 AAS 168 Average values fro differen5 m t breeds M FRA 75 1225 +30 800 AAS averagl i 20n 9io t e Na M GFR 57 1200 +320 18 AAS 151 See also [152, 153] M GFR 62 1079 14 9 43 M GFR 77 1265 +185 2 NAA 108 215 determinations over two years M GRE 75 1227 325 ? 3 Bulk samples pooled from 6 dairies M ITA 76 1207 1153 - 1234 146 9 190 1506 determinations Table 15 continued (Calcium)

Source Status Country Year Mean D RangS r o a n Method Ref. Remarks

Cow M UK 65 1712 1380 - 1720 20 FES 27 Samples from farms, May ~ Sep. 1963 M UK 65 2022 182 233- 0 0 16 ••** FES 27 Samples from farms, Jan. - Apr» 1963 M USA 65 1140 10 294 Samples collected from Chicago area M USA 76 1250 +130 151 AAS 38 Fro differen6 m t breeds

Elephant M AFR 70 1320 +425 30 AAS I92a Wild elephants, samples collected by manual expression after shooting

Ewe C NEZ 58 1930 - 2020 12 AES 234 6 day0- p p s

M + T NE2 58 156 185- 0 0 12 AES 234 7-111 days pp

M 68 1900 1 9 83 Reference source M UK 66 2000 12 ? 11 Clun Forest ewes 9 9 M 47 2100 ? Quoted by [114a]

9 Giraffe M 60 1540 Quoted by [192a] M 9 47 1140 - 1500 ? 9 Quote y [Il4ab d j Tabl 5 continue1 e d (Calcium)

—— *.# ——————— —

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Goat M 68 1290 7 ? 83 Reference source M 70 1400 9 7 198 M 74 1300 103 - 1760 0 ? ? 19 Reference source M WIN 72 855 +116 16 AAS 54 breed, E meaS + n M WIN 72 899 +98 16 AAS 54 Anglo-Nubian breed, E meaS + n

Harp M CAN 71 727 7 AAS 314 16 da/s pp Seal

*• Mare C USA 66 847 +40 8 VOL 309 At partuin, ash = 0.72 % o C USA 66 782 +42 10 VO% L0 5 . 0 30 = 9 h 2 as hour1 , pp s C USA 66 973 +56 10 VOL 309 24 hours pp, ash = 0. 53 % C USA 66 1110 +52 9 VOL 30 0.5= 9 h 48 as hour4 % , pp s

T USA 66 1199 +39 10 VOL 30 0,5= 9 h 4% as 5 day , pp s T USA 66 1278 +52 10 VOL 309 8 days pp, ash - 0. 55 %

M USA 66 1261 +35 10 VOL 309 3 vieeks pp, ash = 0. 50 % M USA 66 1110 +29 10 VOL 309 5 weeks pp, ash = 0.43 % M USA 66 905 +35 10 VOL 309 2 months pp, ash = 0. 37 % M USA 66 708 + 18 10 VOL 309 = 0.3 h 3 month2as % , pp s M USA 66 614 +28 10 VOL 309 = 0.2 h 4 month7as % , pp s M 68 1000 7 7 83 Reference source M USA 47 1020 780 - 1420 26 7 11 4a Sampled from 5 marcs Table l'5 continued (Calcium)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Moose 6 M7 A US 1562 1 +232 2 6 7 S AA Alaska

Rabbit M 59 5000 Quotey b d [192a]

Reindeer M 63 2540 ? ? 46 Reference source

Red Deer C UK 74 2700* 1 ? 10 Scotland, up to 3 days PP

T UK 74 2200* 5 ? 10 Scotland, 3-30 dayp sp

4 M7 K U 2200* 5 ? 10 Scotland, 31-100 dayp sp M UK 2500* 5 ? 10 Scotland, 100 days pp

Rhino M 65 600 7 ' ? Quoted by [192a] Sow M 61 2700 Quotey b d [I92a] I M 68 2100 ? 183 Reference source

Whale M UK 55 2700 - 3400 GRV 89 TABL 6 1 E Elemental Compositio f Milko n : Cerium

Unit: jig per kg (* = per litre)

Abbreviations: C •= colostrum, T = transitional, M = mature

to Source Status Country Year Mean Range or SD n Method Ref. Remarks

2 10 Bottle S dM cow' 2 1 s milk 2 <1.707 . * K U Market milk . Howeverkg r pe ,g m close 0 35 ro t examinatiorang 0 25 e e th f o n individual sets of results indicates some inconsistencies. First of all n contras i ,e ver th y o t tnarro w range observe r bovinfo d e milk (110 r kg) pe - 0130 ,g m 0huma n milk samples diffe n theii r a C r conten a facto y b tf nearl o r . 2 Thiy s quiti s e surprising because this woul dg shif bi mean termi t a n f biochemicao s l components associated with Ca in milk, such as casein and whey proteins. This sor f shifo t s inconceivabli t e becaus n mili s believei ka C e b o t d genetically determined for a given species and may be expected to remain relatively constant except for the declining trend observed d phasen towardf o lactatione th s . Another factor whics i h associated with the decline of Ca, at least in cow milk, is the environmental temperature s alsi [152] ot I .know a nC e thath t conten t influence f no milo t s i k y died b thad an t t when body stores are critically challenged it is the yield that is affected and not the composition. Therefore, within a population group exposed to comparable conditions it is reasonable to expect that the overall variations are minimal. Extending the same argument, the variations observed between different populations cannot be as great as presently indicated by the published data on Ca concentration. It may be mentioned in this connection that the fat content of milk is also associated with variations in Ca values since the membrane of milk fat globules has a relatively high content of Ca [152]. n mili Moreover kt e amounfa varieth f s o ta , s from fractioo t n fraction of a single feed or milking, this could in part account for the observed variations.

These inconsistencies suggest some hitherto unrecognised error. An analytical flaw could arise in two ways. For results base n caseio d n plus whey proteins, inaccuracie n proteii s n assess- ment coul e responsibleb d e otheTh . r sourc f erroo ey arisma rn i e estimating ashen totai a dC l milk samples; however, thi s unlikeli s y since the disparities are too great.

It is therefore more likely chat the differences seen in the Ca content of mature human milk from different population groups are a cumulative produc f severao t l analytical problems rather than being merely geographic in origin. It may be stressed in this connection that it is important to specify fully the collection procedures used n mili k composition studies e estimatioTh . f milo n k output appears n importana e tb o t facto o takt r e into accoun n normalisini t e th g fluctuations of several constituents. A comparable problem arises for urine. In this case it is normal to make a 24 hour collection for elemental analysis. Among other sources of variation the decline in Ca content during the later stages of lactation appears to be well founded. As seen from a systematic study covering 30 subjects from 1 to over 19 month f lactationo s g k r pe ,g m consistentl 0 18 o t w 0 valuelo 15 y f o s were obtained after the 7th month [311]. These results are also show Tabln ni . 15 e

Cerium K Onle markeU resul on yr fo tt mil s availabli k r fo e this element (Table 16) .

Chlorine Table 17 summarises the available literature data for this elemen n milki t s from buffalo, cow, elephant, ewe, giraffe, goat, human, mare, red deer, rhinoceros, sow and whale as well as in market milk.

43 TABL 7 1 E Elemental Compositio f Milko n : Chlorine

Unit: nig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature pos= p tp parCum

Source Status Country Year Mean Range or SD n Methpd Ref. Remarks

Human C 49 586* 435 - 1007 8 ? 188 Review C 74 910* 200 - 2330 ? ? 19 Reference source

T 49 457 305 - 721 21 ? 188 Review T 74 540* 170 - 1160 ? ? 19 Reference source

M 49 375 88 - 734 216 ? 188 Review M 68 420 198 Reference source M 68 360 ? 83 Reference source M 74 430* 90 - 3550 ? 19 Reference source M 77 430 ? ? 47 M DEN 75 505 178 - L 110VO 1 9 1 233 From right breast M DEN 75 536 249 -L VO 959 9 1 233 From left breast M 1 6 UK 693* +289 18 ? 286

Market UK 72 1300* +100 12 MS 102 Bottled cow's milk milk cm 7 9 688* 171 - A 102NA 7 9 4 49a Both liquid and powdered milk samples Table 17 continued (Chlorine)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Buffalo C IN 58 1522 4 ? 241

M 68 655 ? ?' 183 Reference source M IN 58 669 48 ? 241

Cow C 68 1090 ? ? 198 Reference source C GFR 56 1880 +1300 7 150 1st milking C GFR 56 1340 +1320 7 150 6th and 7th milking C IN 59 1289 12 ? 242

M 68 1050 ? ? ,83 Reference source M 70 1100 ? ? 198 Reference source M 74 1030* 700 - 2900 ? ? 19 Reference source M GFR 57 1330' +1960 7 ? 151 See also [152, 153] M IN 58 856 148 ? 241

1 Elephant M APR 70 1500 +400 30 VOL 192a Wild elephants, sampled after shooting

Ewe C NEZ 58 1330 12 VOL 234 6 day0- p p s

T+M NEZ 58 1260 12 VOL 234 7-111 days pp

M 68 1400* ? ? 83 M 68 540 ? ? 183 M UK 66 764 12 VOL 11 Clun Forest ewes M UK 72 859 +61 4 ? 163 shaWelsd a M an m h ewes Table 17 continued (Clilorine)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Giraffe M 60 1340 Quotey b d [192a]

Goat M 70 1500* ? ? 198 Reference source M 73 1374 ? ? 232 M 74 1590* ? ? 19 Reference source

Mare M 68 200 ? ? 83 Reference source

Red Deer C UK 74 1190 1 ? 10 Scotland, up to 3 days pp

T UK 74 700 5 ? 10 Scotland, 3-30 days pp

M UK 74 710 0 1 ? 5 ScotlanJ , 31-100 dayp sp M UK 74 800 5 ? 10 Scotland, 0 day10 p sp

Rhino M 65 800 ? ? Quotey b d [192a]

Sow M 61 900 ? Quotey b d [192a]

Whale M 5 5 UK 1100 - 2900 3 CUM 89 Wide variations are apparent in ths results of some investig- ations, e.ge sourc on s . recordeha e a d40-fol d range [19]. Almost certainly, analytical difficultie n importana e ar s t sourc f thio e s apparent variability. Based on a few selected mean values, the probable average valu r humafo e n mature milk lies d betweean 0 40 n r humaFo n. colostrukg r pe o referenc60g mtw m 0 e sources quota e value of 600 to 900 mg per kg [19, 188]. In cow milk the Cl concen- tratio s i nabou , whilkg t r e100 pe colostrug 0m s beemha n showo t n contain up to 2 g per kg, especially for the first milking after calving [150], Two values recorded in Table 17 for market milk show 1300 and 700 mg per litre for samples from the UK and Chile respect- ively [102, 49a]. Value r othefo s r species cove a widr e rangf o e r marfo g e k mil r r goao aboufo kt pe 20g g t k m 0tmil r 150n i kpe g 0m e followinth g sequence: mar rhinocerobuffal< e< e d deere ew o< < r s< sow< giraffe < elephant < goat.

The chlorine conten f milo ts i kindependen e minerath f o tl e diet statuvarieth bu tf o ss unde e influencth r f environmentao e l temperatur d mastitisan e temperatur w Lo . e lower e concentrationth s ; both high temperatur mastitid an e s have oppositth e e effect [152].

Chromium This element has been scarcely analysed in most types o fw result fe milk . A s. fro 5 countriem a limite r fo s d numbef o r samples of human, buffalo, cow, moose and market milks are summarised in Table 18.

t I shoul e pointeb d t e thaou dete-otinatioth d tn i r C f o n biological materials is associated with serious analytical problems and thae resultth t s reported should therefor e regardeb e d with some measur f scepticismo e n humaI . n mile overalth ke th ll al rang f o e available results stretches from 2.6 to 80 ug per kg. (Less than 1 ug per litre using AAS and well controlled experimental conditions s recentlha y been reporte r Finnisfo d h mothers [I69a].) However, most of the mean values fall within the range of 10 to 30 ug per kg.

Cobalt Tabl 9 summarise1 e e literaturth s e r datthifo a s element in human, cow, moose and market milks; other species do not appea o havt r e been studied.

Cobalt occurs in human milk at very low concentrations and is therefore subjec o variout t s analytical uncertainties depending upon the method used. The available results are too few and widely scattere o t permidy realisti an t c assessment. Howevers i t i , reasonabl o suppost e e that this elemeng u t occurr 1 beloo e t wth a s per kg level in human milk. For cow milk many of the results o C e Th . kg r pe g u 8 0. o t reporte 3 e rang0. th f dn o ei appeae b o t r concentration in bovine colostrum could be as high as 5 ug per kg [145].

The Co concentration in cow milk is influenced by dietary supplementation. Such supplementation also increases the vitamin contene milth kf o t[152] .

Copper Cu has been analysed in milk from many countries and several species as reported in Table 20.

47 TABLE 18 Elemental Composition of Milk: Chromium

Unit : r litrejipe g pe= )r* ( kg

Abbreviations: C = colostrum, T = transitional, M = mature ND = not detected = pos p p t , partum

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Human C GRE 78 48 22 - 79 15 NAA 89a 24 hours pp

T GRE 78 28 12 - 58 15 NAA 89a day5 p sp

00 M EGY 68 53 - 80 ? AA-S^ 32 Healthy motherss 3-6 weeks pp M EGY 68 5 6 43- ? AAS 32 Poor mothers, 7-13 monthp p s M GRE 78 27 18 - 40 5 NAA 89a 0 day3 p sp M ITA 77 2.6 - 37 18 NAA 41 M USA 71 12 6. 18.4- 5 4 AES 100 M USA 76 10 25 AAS 33 Pooled samples fro mother5 2 m s M USR 66 29* +21 31 SAS 194

Market cm 79 34* ND -' 210 49 NAA 49a Both liquid and powdered milk samples milk UK 72 47* +5 12 MS 102 Bottled cow1 s milk USA 62 10 9 SAS 264 Homogenised whole milk USA 70 <£150 12 AES^ 86 Whole milk, hospital menus

Buffalo M EGY 68 50 ') AAS 32 Tabl 8 continue1 e d (Chromium)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Cow C GFR 56 57 +69 7 AAS 150 1st milking C GFR 56 24 +37 7 AA Smilkinh 7t 15d g0an h 6t

M GFR 57 13 +12 8 AAS 151 See also {152, 153] M GFR 77 1 1 3. 2- 2 NAA 108 93 determinations over two years M USA 71 8 ? AES 100 M USA 74 15 9 ? i 74 Alaska, quoted by Franzraann [76] M USA 76 20* +10 7 AASV 33 Pooled samples M USR 64 10 - 40 3 AES 79

Moose M USA 76 •ao 21 AAS 76 Alaska TABLE 19 Elemental Composition of Milk: Cobalt r litrepe = )* ( g Unitk r :pe g |i

Abbreviations : C = colostrum, T = transitional, M = mature pp = post par turn

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human C GRE 78 3.4 1.70 - 4.60 15 NAA 89a 24 hourp p s C USR 60 6-23 78 SAS 229 C USR 61 Trace2 3 - s 107 ? 164 Women aged 18 years and above Ul o T GRE 78 1.9 0.9 - 03.9 0 15 NAA 89a 5 dayp p s T USR 61 4-44 107 AES 164 Women aged 18 years and above

M GRE 78 2 .0 0 1.33 - 0 5 NAA 89a 30 days pp

M ITA ( 77 1 3. 0. 3- 29 NAA 41 M USR 68 1 198 Reference source M USR 64 8.6 11 SAS 317 Donors aged 22-28 yearss milk obtained by a single spurt froe breason m t M USR 65 6.3 +1.2 8 SAS 249

Market USA 67 60 ? SAS 275 Raw whole, milk milk CHI 79 1.4* 0.15 - 6.6 49 NAA 49a Both liqui d powderean d d milk samples USA 67 30 2 SAS 275 Homogenised milk Tabl 9 continue1 e d (Cobalt)

Source Status Country Year Mean Range or SO n Method Ref . Remarks

Cow C GFR 61 5.2 ? SAS 145 t milkin1s g C GFR 56 3.60 +6.0 7 AAS 150 1st milking C GFR 56 1.60 +2.5 7 AA Sh milkin7t 15d 0an g h 6t

M 68 0.2 - 01.1 0 ? ? 198 Reference source R GF M 61 0.82 +0.02(0-2.3) 500 SAS 145 Comprehensive sampling net- work R GF M 57 0.9 +1.30 17 AAS 151 See also [152, 153] M GFR 77 0.315 +0.13 2 NAA 108 209 determinations over two years M IN 57 1.80 - 1.92 3 SAS 128 Maharastra region M UK 69 0.4 - 00.7 0 ? ? 325 A US M 75 1 1 ? 75 Alaska R US M 63 7 8 SAS 296 Georgian region R US M 70 3.4 9 SAS 40

Moose M USA 76 21 AAS 76 Alaska TABL 0 2 E Elemental Compositio f Milko n : Copper

Unit: jig per kg (* = per litre)

Abbreviations : C = colostrum, T = transitional, M = mature pp = post partum

Source ' Status Country Year Mean D RangS r o e n Method Ref. Rems ark

HumaC n 74 200 - 6000 ? ? 19 Reference source C GRE 78 1100 600 -A 160NA 0 5 1 89a 4 hour2 p p s C ITA 74 360* +80 55 AAS 220 5 days pp

T 74 500 ? ? 19 Reference Source T GRE 78 670 0 3486 0- 15 NAA 89a day5 p sp T YUG 78 283 +5 3 NAA 3la Pooled samples from 8 mothers, converted from dry weight

T+M IN 78 480 +11 96 ? 16 1 month, mean + SE

M 74 400* ? ? 19 Reference source M 68 500 ? ? 83 Reference source M 69 150 - 170 325 M 70 40 ? ? 198 Reference source M FIN 79 250 - 600 229 AAS a 8 1 3 27 Mothers, 2-31 weekp sp M GRE 78 460 0 50 38 0- 5 NAA 89a 0 day3 p p s M GFR 75 345 +80 ? ? 292a 2-3 months of lactation, mean + SE Tabl 0 continue2 e d (Copper)

Source Status Country Year Mean Range or SD n Method Ref . Rema rks

t M Human IN 78 280 +14 64 ? 16 1-3 month) s M IN 78 210 +9 80 ? 16 4-6 months ) From poor Indian women M IN 78 170 +9 59 ? 16 7-12 months) M IN 59 410 0 2656 0- 25 SAS 16 M ITA 74 290* +40 55 AAS 220 5 day1 p p s M NEZ 77 400 25 AAS 34 Pooled milk samples M UK 64 510 - 770 10 SAS 37 5-8 weeks pp M UK. 77 390 ? ? 47 in M USA 71 240 +80 22 AAS 214 Collected in glass stoppered bottles Ui M USA 76 245 +77 50 AAS 237 Daily samples M USA 76 232 +69 50 AAS 237 Weekly samples M USA 76 228 +77 50 AAS6 237 Within day samples M USA 76 400* 25 AAS 33 Pooled samples fro mother5 2 m s M USA 77 430 28 AAS 311 • 1~3 months pp M USA 77 330 39 AAS 311 6 month4- p sp M USA 77 310 23 AAS 311 7~9 months pp M USA 77 240 13 AAS 311 10-12 monthp sp M USA 77 280 28 AAS 311 13-18 months pp M USA 77 270 30 AAS 311 Over 19 months pp M USR 64 246 +27 30 AES 88 Original results based on milk ash analysis M USR 64 424 11 SAS - 317 Donors aged 22-28 years, milk obtainea y b d single spurt from one breast Tabl 0 continue2 e d (Copper)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Human M USR 65 237 +37 8 SAS 249 M USR 69 197 +15 23 SAS 247 M USR 69 420 +34 45 AES 310 Milk fro mothers5 1 m . Original results basen o d mil analysih kas s

Market FIN 73 61 + 11 39 SAS8 8 Market milk from various dairies milk GFR 75 80 40 - 400 64 ? 22 Pasteurised milk JAP 61 158 +85 47 SAS 121 Converted from ash weight SWE 76 51 +13 98 AAS I35a From dairies all over Sweden USA 70 60 ? AES 86 Whole milk from hospital menus USA 77 5 11 2- 3 ? 7 28 USR 69 42* 10 AES 305 Kiev region, samples from district t endemino s c n goitri e

Buffalo C IN 59 224 4 ? 242

M BUL 75 60 - .160 35 AES 217 M IN 58 212 48 ? 241 IN 72 200 5 SAS 103

Cow C GFR 56 170 +170 7 AAS 150 6th and 7th milking C GFR 56 670 +690 7 AAS 150 1st milking C IN 59 237 12 ? 242 Table 20 continued (Copper)

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Cow M 68 100 ? ? 83 Reference source M 68 0 45 50- ? 9 198 Reference source M 68 50 - 150 ? ? 325 M 74 300* 4 4000- 0 ? ? 19 Reference source M BUL 76 107 - 253 33 AAS 306 M FRA 74 100 0 80 20- 150 AAS 53 M FRA ' 75 127 +20 800* AAS 209 National average M FIN 70 90 - 130 68 AAS 168 Fro differen5 m t breeds

Ln M FIN 73 57 +12 39 SAS 8 milw Ra k receive dairiest a d e als] se ,[7 o in M GFR 57 340 +720 18 AAS 151 See also [152, 153) M GFR 61 20* 0 - 128 102 SAS 147 Summer samples M GFR 61 32* 0-80 97 SAS 147 Winter samples M NET 64 20 - 40 ? SAS 211 M IN 57 21 - 28 3 SAS 128 Maharastra region M IN 58 210 144 ? 241 M JAP 61 91 +44 43 SAS 121 Individual raw milk samples M JAP 61 97 +43 36 SAS 121 Composit milw ra ek samples M NEZ 77 60 25 AAS 34 Pooled samples M USA 75 10 ? ? 75 Alaska M USA 75 87 5 AAS 59 Missouri, winter season M USA 75 115 4 AAS 59 Missouri, summer season M USA 76 60* +10 7 AAS 33 Pooled samples from 25 mothers Table 20 continued (Copper)

Source Status Country Year Mean Range, or SD n Method Ref . Remarks

Cow M USR 61 103 83 - 130 70 ? 95 M USR 64 96 +19 24 AES 88 Original results based on railk ash analysis M USR 64 120 - 200 3 AES 79 M USR 69 417 +21 74 SAS 247 M USR 70 69 9 SAS 40 M YUG 78 41 +4 6 NAA 31 a Converted from dry weight

Ewe T UK 77 370 - 1200 20 AAS 11 Clun Forest and Suffolk x Clun Forest ewes 2nd week of lactation

M BUL 68 2 9 7- 5 8 AES 218 M 70 89 ? SAS 198 Reference source M UK 77 0 38 18 0- 20 AAS 11 Clun Fores Suffold an t kx Clu n Forest ewes 7th week of lactation M USR 64 77 +23 28 AES 88 Original results based on milk ash analysis

Goat C GFR 74 2000 +1800 ? 57 1st day of lactation C NIG 79 3940* + 120 10 AAS 1 5 day1- p p s

T GFR 74 2900 +1800 ? ? 57 14th day of lactation

* M 54 200 ? 9 i 82 Review M 61 400 ? ? 2 Reference source M 64 41 +5 24 AES 88 Original results based on railk ash analysis M 68 400 9 83 Reference source Tabl 0 continue2 e d (Copper)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Goat M 74 1500 + 700 ? ? 57 56th day of lactation M 74 400 0 2050 0- ? ? 19 Reference source M IN 72 280 5 SAS 103 Numbe f determinationo r s M NIG 79 280 +200 10 AAS 1 2-18 weeks pp

Mare C USA 74 730 +30 10 AAS 309 4 hour2 p sp C USA 74 900 +90 8 AAS 309 15-30 minutes pp

T USA 74 440 +30 10 AAS 309 day8 p sp

M 77 170 9 ? * Quoted by Underwood [310a] M USA 74 200 +10 10 AAS 309 month4 p p s M USR 64 138 +16 16 AES 88 Original results base mil n analysio h d kas s

Moose M USA 76 2900 +1280 21 AAS 76 Alaska

Rat M CFR 75 2500 - 3000 12 AAS 154 2-25 mg of Cu per kg diet M GFR 77 2800 - 3800 ? 9 Quote Underwooy b d d [3lOa] n maturI e human milk ther s i considerable e variatioe th n i n reported results from various geographic regions, ranging 0 fro20 m r somfo eg k sample r upe g s froe USSth m R [247n i g o almost p ] 0 50 t Indian samples [16] . w exceptionBarrinfe a e gaverag th s e concentration applicable to many countries appears to be between 300 contenu C e f colostruo Th t . kg s mi r somewha pe g ji 0 t anhighe40 d r than that of mature milk of the same subjects. As seen from an Italian study colostrum contained 360 + 80 ug per kg compared with mature milk which had 290 + 40 jag per kg [220]. In cow and market milk concentratiosampleu C e th s s i ndistinctl y lowerg , p, abou 0 10 t . Firskg r tg pe k milkincolostru w r co pe f g o gu m 0 contain60 o t - up s e concentratiobuth t n declines rapidly with subsequent milking [150 ]. Average values observed for other species are as follows (ug r kg)pe : buffal o t 400 oo 0 t 400 ,10 200 0 goad mare 20 ,an t, eew (colostrum =» 800, mature =» 200). Moose and rat milks appear to contain the highest Cu concentration, i.e. 3 mg per kg.

The Cu concentration in human milk is significantly influenced by the stage of lactation. Systematic follow up in two studies has clearly demonstrated a decline from 450 ug per kg in the transit- iona d earl t an a labou y2 g 1 k maturt r pe e g u mil - abou0 to k 20 t months post partum. Similarly, in an experiment involving ewes, milk samples take t a ninterval s fro 4 groupm f eweo s s were studies for 6 to 12 months post partum. The Cu contents showed a marked declin s lactatioa e n advanced [11].

Seasonal variations in the Cu content of cow milk have also been observed. The milk from winter months contained 60 % more Cu tha n summei n r months [147]. Ther s i almose t general agreement that the Cu content of feed has no influence on the concentration of this elemen n experimen a n i milk n t I . t involvin e effecth gf o higt h nutritional supplementation of Cu in cows (up to 550 mg CuS04«5H20 per day per cow in addition to the 300 mg of Cu already providee dailth yn i d ration) o ,significan n thers wa e t concentratiou C increas e th n i e n mili n ke otheth [279] n rO han. a d prolonged intak f subnormao e s i lpromptl u levelC f o sy reflecten i d e milth k [152].

Cu in milk is predominantly found in the fat phase [4]. The casein fraction contain e totath u [254] f C lo s % abou. 5 3 Invest - tigations to follow the fate of natural and added Cu in milk have revealed that marked differences exist between these two forms. Naturally occurring Cu is concentrated at the surface of the fat globule (up to 35 %) whereas added Cu associates itself with skim milk proteins. Furthermore, only 2 to 3 7, of the total added Cu is found in association with the fat globules [149a].

Several reviews have discusse e occurrenc th dn mili d u an kC f o e s rolit n milmild i e an kk products, especiall n relatioi y o biot n - chemical factors [8, 187, 198a, 211, 215, 310a].

Europium This element appear o havt s e been reporte n onli d 5 y market milk samples from Italy (Table 21).

Fluorine More results are available for this element in bovine milks than in human milk. The results are shown in Table 22.

Froe limiteth m d human date probablth a e average concentration appears to be about 50 ug fluorine per kg of milk. In cow's milk its

58 TABLE 21 Elemental Composition of Milk: Europium

g k r pe Unit g p :

Abbreviations - colostrum C : = transitional T , matur= M , e

Source Status Country Year Mean n Metho D RangS dr o e Ref. Remarks

7 7 1 4 A A 0.008-0.0IT NA 5 HumaM 4 n TABLE 22 Elemental Composition of Milk: Fluorine r litrepe = )* ( g k r pe Unitg ji :

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Human M FIN 80 7* 4-14 15 ISE 62a Total fluorine watep = ta , rF 200* 80 5* 3 - S ISE 62a Ionic fluoride, tap water F = 200* M NET 74 48* 22 - 87 10 GLC lib Total fluorine, tap water F = 100* 53* 21 - 81 9 ISE lib Total fluorine watep = ta , F r 1000* M NET 74 4 3 - 7 7 ISE. lib Ionic fluoride watep ta = , F r 100* 8 5-14 5 IS* lib Ionic fluoride, tap water F = 1000* M SWE 69 <50 ? SAS 62 M SWE 71 25 ? ? 62 M UK 77 77 ? ? » 47

Market GFR 71 70 7 VOL 227 milk UK 72 91* ±17 12 MS 102 Bottled cow's milk

Cow M 68 200 1 ? 198 Reference source M 74 160 70 - 280 1 ? •19 Reference source M FRA 74 19 2 11 5- 150 ISE 53 M GFR 71 50 369 VOL 227 M POL 74 355* ? SAS 1,38 M POL 74 638 ? SAS 138 Samples collecte n Juni d e M POL 74 1179 ? SAS 138 Samples from winter months M SWE 71 30' ? 1 62 concentration varies rather widely between 19 and 1179 ;ig per kg. Among the individual results the highest values between 355 and 1179 ug per kg were obtained in Poland using SAS [138]. It is not clear o what t extent these figures truly reflecF concen e th f Polisto t h cow milk since the dependable analytical technique for this element s i ISE cautiouA . s estimate froe remaininth m g result n Tabli s 2 2 e f milko g k . r Thipe F ssuggest f o g p. n averag a s0 5 o t e 0 valu2 f o e estimate is less than the reported F concentration of market milk r kg)pe g .ji 0 9 (7o t 0

Seasonal variationF conten e th f milo tn i sk which have been associated with altered inputs through forage have been observen i d a Polish studye highesTh . t values were obtainee winteth n i rd months [138]. Animal feeds produce e vicinitth n i df F-emittino y g sources have been implicated in causing a 4 to 5 fold increase in concentratioF e th n mili n k [227].

s i mainlF y associated wite aqueouth h milw s co phask n i e [152] F conten. f milo d othet an k r food source n i relatios o t n human health have been discusse y severab d l authors [53 , 310a]61 , .

Germaniu onle Th ym result e authoknowth o s t i thanr t reported by Schroeder for market milk (Table 23).

Iodine The concentrations of I in human, cow, ewe, goat, sow and market milk e presentear s n Tabli d. 24 e

Although radioactive iodine in milk has attracted considerable interest in connection with ecological studies, there have been • surprisingly few investigations concerned with stable iodine in human milk. One or two earlier studies have made their way into standard reference sources [19 , 18347 , , 325]. Thuse oftth , - repeated range of values for this element in human milk is 40 to 80 s i highe t I n colostrui d decliner . an kg ) r kg msupe gr (25pe g u 0 y posda t h partum5t e th .o y normat b g k l r levelpe g f u abouo s 0 5 t w milFoco kr there ar severae l reports coverin a gnumbe f o r different countries. Whil e overalth e l range observe r singlfo d e values is as wide as 1 to 2900 ug per litre or kg, the range of mean values is only slightly smaller, i.e. from 3.5 to over 400 ug per litre or kg. This is not surprising since this element is easily subject to fluctuations by factors such as stage of lactation, seasonal influence and n ,particulari e dietarth , y intake. Evef i n a few extreme values are excluded the probable average value may vary by a factor of no less than 20 between 14 and 270 ug per kg. In colostrum a concentration of 264 j- 100 ug per kg has been reported for the first milking of German cows [150]. One way of overcoming individual variation d disparatan s e o valuet poo s li s milk from several different sources, provided all are not coming from I-deficient areas. Such a positive effect is usually seen in e iodinth e valu f o markee t milk which generally show a sstead y concentration of about 200 to 400 ^g per kg (about 200 ug per kg is thought to. be desirable to ensure an adequate supply in the diet of children) .

Iodine occurs in milk mainly in the inorganic form. About 10 % is bound to protein; fat contains negligible quantities. Oral supplementation with iodine e feedinth , f planto g s grow iodinen o n -

61 TABLE 23 Elemental Composition of Milk: Germanium

Unit: jag per kg

Abbreviations > colostrum= C : = transitional T , matur= M , e

Source Status Country Year Mea n nMetho D RangS dr o e Ref. Remarks

Market USA 67 L511 ? SAS 274 Homogenised milk milk USA 67 240 ? SAS 274 Evaporated milk TABLE 24 Elemental Composition of Milk: Iodine

Unit: jig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature p= posp t parturn

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human C 52 250 ? ? 123 1 day pp, reference source C 52 141 ? ? 123 2 dayp p s , reference source C 52 99 3 12 ? ? 3 days p p, reference source C 52 61 ? ? 123 4 days pp, reference source a\ C 52 45 ? ? 123 5 days pp , reference source CJ C 74 120* 45 - 450 ? ? 19 Reference source

T 52 35 3 12 ? ? 7 day6- s PP T 74 20* ? ? 19 Reference source

M 69 40 - 80 ? ? 325 M 74 70* 40 - 90 ? ? 19 Reference source M UK 77 70 ? ? 47

Market AUL 72 250 ? ? 308 Bottled milk milk SWE 63 30 - 55* 72 ? 327 1-2 samp collectes le d fro dairie6 m se oveon a r year period (1962-63) 72 400* t-100 12 MS 102 Bottled cow's milk Table 24 continued (Iodine)

Source Status Country Year Mean Range D oS r n Me t hod Ref . Remarks

Cow C GFR 26 165 ? ? 12 3f lactationo y 1sda t , Reference source C GFR 26 35 9 9 12 3f lactationo y 2nda d , Reference source C GFR 26 30 ? ? 123 3rd day of lactation, Reference source C GFR 56 264 +100 7 AAS 150 1st milking C GFR 56 71 +81 7 AAS 150 6th and 7th milking C SUE 73 34 +20 9 CAT 125 Immediatelp p y C SHE 73 17 +8 9 CAT 125 2 days pp C USA 51 202 - 309 3 9 177

M 69 30 - 70 ? 9 325 M 74 210* 4 - 1870 •? 9 19 Reference source M AUL 72 270 1 - 750 ? 9 308 M AUL 69 14* 5 - 97 1420 CAT 176 Samples from different dairies representing 10587 cows M CUR 52 28 9 ? 123 Reference source M GFR 57 98 +82 14 AAS 150 See also [152, 153] M HUN 52 3.5 ? 9 123 Reference source M IN 57 4.9 - 5.5 3 SAS 128 Maharastra region M NET 66 36* 21 - 51 10 ? 315 Study testing pastur d indooan e r feed M NEZ •52 15 - 25 39 9 123 Reference source M SPA 52 38 33 - 42 2 9 123 Reference source M SWE 74 17 - 22 9 CAT 124 Nation wide study, samples collected June-Aug. A rich soils or the use of feeds such as sea weed, which are naturally rich in this element, promptly increase the excretion of this element into milk. Conversely, cows grazing in iodine deficient areas produce milk, depleted in iodine [152], These and other sources of variation of iodine have been discussed by several authors [27, 50, 110, 124, 125, 126, 215, 299, 310a].

Iron Literature data on Fe in milk from different countries and species are shown in Table 25.

In mature human mile overalth k l variatio s i nrathe r high, ranging from 150 to 1500 ug per kg. These limiting values are cited by two well known literature reference sources [19, 198], while the results from individual investigations (i.e. excludine th g "referenc. e kg sources" r o 130t pe 0 g 0e u 20 rang ) th f fal o en i l Two results from Indi ae USSth [16 Rd ]respectivelan y [246] have th e highest values (1200 and 1400 jug per kg). Both of these investig- ations have used colorimetr e assayth r .fo y However a carefu, l evaluation of available results from Table 25 indicates a probable average concentration of 300 to 500 ug per kg for this element in mature human milk. While the concentration of Fe in transitional milk is comparable to that of mature milk, it is high in colostrum and exceeds 1 mg per litre because of the protein enrichment of the early secretions.

Co we matur th milk n i e, stage, contains slightly les e thaF s n s i foun n humai d n milk e concentrationth ; s generalle y th fal n i l . Colostrukg r pe g f mthio ji 0 s 40 anima o t s 0 i especl rang30 f o -e ially rich in iron; it may contain as.much as 12 mg per kg., j.n the first milking fraction [150]. Such high values are not surprising since early colostru s mi secrete d almost lik a esemi-soli d protein concentrate. However, trace f blooy alsO se entraineb ma od d into this pasty secretion whic s i anotheh re higreasoth hr valuesfo n . Thera e sharcontenF s i e p th drot n i betweep e colostrath n d an l transitional stages [152].

For market milk the average value lies in the same range as that of cow milk. However, this could easily change from source to source or batch to batch from the same source depending upon the storage and handling conditions. Among the results shown for market mil e rathe n Tabli kon 5 2 re high valu s beeha en reporte r Britisfo d h market milk (4100 + 700 ug per litre) using MS for the measurement [102]. This value is so unusual that one is tempted to suspect an analytical error.

Milks of other species vary widely with respect to Fe content. Whil t i eappear e lowes b 9 s muca o s n ) t seai a sht kg l r (10pe g 0u mg per kg has been reported for dog, with other species like ewe, goat, mare, moose, rabbit, rat, sow and reindeer sharing intermed- iate positions.

s beeha n t I reporte e concentratiodF thae th t n i human n milk increases during the day and that different fractions drawn during the course of a single feed show great variations. In one invest- igation e mea th e concentratio,F n n rose significantly from 0.23o t 0.34 ug/ml in foremilk samples and from 0.25 to 0.51 ug/ml in hind- milk samples [236a]. It may be recalled in this context that the fat content increases greatl n i hindmily k suggestin n intera g - relationship d irobetweean n t contentfa n .

65 Table 24 continued (Iodine)

Source Status Country Year Mean RangD S r o e n Method Ref . Remarks

Cow M SUE 73 39 +23 9 • " 125 28 days pp M SWE 74 * 47 3- 3 ? 124 Nation wide study, samples collected Jan.- May M SWI 52 15 5-24 2 ? 123 Reference source ' M UK 65 34* 10 - 70 28 SAS 27 Samples from British farms (May-Dec. 1963) M UK 65 0 21021 *- 0 14 6 1 SAS- 27 Samples from British farms (Jan. -Apr. 1963) M USA 51 93 67 - 136 9 ? 177 M USA 72 425 67 - 915 13 ? 110 Milk samples from 13 farms M USA 75 360 - 2900 7 XRF 50

Ewe M 52 50 3 ? 123 Reference source

Goat C 52 96 64 - 175 6 ? 123 Reference source C 52 17 5-36 14 ? 123 1-4 days pp, reference source C NIG 79 320* +14 10 ? 1 1-5 days pp

M 52 258 14 - 8 ? ? 123 day7 2- s after farrowing M NIG 79 109* +28 10 ? 1 2-18 weeks pp

Sow C 52 160 ? ? 123 Immediately after farrowing, reference source C 52 50 ? ? 123 7 day2- s after farrowing, reference source TABLE 25 Elemental Composition of Milk: Iron litrer pe = ) * ( g k r pe g Uniu t :

Abbreviations colostrum= C : = transitional T , matur= M , e pp = post partum

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Human C FIN 55 500 - 1400 ? 140 Quoted by Loh [179] C ITA 74 370* 5 5 0 +5 AAS( 220 1 day pp C ITA 74 360* 5 5 0 +7 AAS' 220 5 dayp sp C MAL 71 818* +101 14 SAS 179 2 days pp, Chinese subjects C MAL 71 566* 9 1 4 +6 SAS 179 day2 , pp s Indian subjects C MAL 71 1534* +242 1 0 SAS 179 2 days pp, Malay subjects C SOU 70 2604 +1996 37 AAS 243 5 day, pp s white subjects aged 24+6 years, converted froy weighdr m t y (12dr .% 4 matter) C SOU 70 3150 +2943 84 AAS 243 day5 , pp s Bantu subjects aged 24+6.5 years, ., converted from dry weight (12. 4% dry matter) C USR 71 130 +4 ? AES la day2 p sp C 74 900<130- ? *0 020 ' ,19 Reference source

T ITA 65 405 29 ? 240 T 74 400* 200 - 500 ? ? 19 Reference source T USR 71 32 +8 ? AES la day9 p sp T YUG 78 335 +12 3 SAS 3la Pooled sampies fro mothers8 m , converted from dry weight Table 25 continued (Iron)

t, Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human M 68 150 ? 198 Reference source M 68 500* 83 Reference source M 69 300 - 600 ? 325 Review M 74 1500* 200 - 4500 19 Reference source M FIN 79 300 - 600* 270 AAS 285b Sampled from 27 mothers M BEL 69 580 27 1210- 0 40' • S SA 69 Pooled samples from 36 mothers M IN 59 1215 1150 - 1280 20 SAS 16 From poor Indian women M ITA 65 338 29 ? 240 a\ M ITA 65 310 29 ? 240 Fromonth 6t m f lactatioho n co M ITA 74 410* +80 55 AAS 220 15 days pp, mothers aged 10-35 years M ITA 77 7"819- 8 29 NAA 41 M NEZ 77 720 ? AAS 34 Pooled samples M UK 64 290 - 1450 10 SAS 37 week8 5- p sp M UK 77 760 ? ? 47 M USA 71 840 +410 22 SAS 214 Collected in glass stoppered bottles M USA 76 202 +170 50 AAS 237 Daily samples M USA 76 232 +190 50 AAS 237 Weekly samples M USA 76 190 +350 50 AAS 237 Withi y sampleda n s M USA 76 720* 25 AAS 33 Pooled from 25 mothers M USA 77 490 28 AAS 311 1-3 months pp M USA 77 430 39 AAS 311 6 month4- p p s M USA 77 420 23 AAS 311 7-9 months pp Tabl continue5 2 e d (Iron)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human M 63 1000 ? ? 46 Reference source M USA 77 380 13 AAS 311 10-12 months pp M USA 77 380 28 AAS 311 13-18 months pp M USA 77 420 30 AAS 311 Over 19 months pp M USR 65 1290 +200 8 SAS 249 M USR 64 419 11 SAS 317 Donors aged 22-28 years, milk obtainea y b d single spurt froe breason m t M USR 68 1440 77 0227- 0 21 SAS 246 M USR 71 560 ? ? 165

Market cm 79 890 317- * 0 10 49 NAA 49a Both liqui d powderean d d milk samples milk FIN 73 290 +20 39 SAS 8 Market milk from various dairies GFR 75 730 25 0100- 0 64 ? 22 Pasteurised milk JAP 61 489 +213 47 SAS 121 Values converted froh weighas m t basis SWE 76 212* +41 98 AAS 135a From dairies all over Sweden UK 72 4100* +700 12 MS 102 Bottled cow's milk USA 63 230 8 AES 318 USA 70 280 ? AES 86 Whole milk from hospital menus

Buffalo M BUL 68 85 - 195 35 AES 218 M IN 58 975 48 ? 241 M IN 72 300 5 SAS 103 n = number of determinations M IN 59 622 4 ? ' 242 Tabl continue5 2 e d (Iron)

Source Status Country Year Mean Range or SO n Method Ref. Rema rks

Cow C GFR 56 12600 +38500 7 AAS 150 1st milking C GFR 56 1630 +3050 7 AAS 15 milkin0h 7t 6td ghan C IN 59 689 22 ? 242

M BUL 75 500 - 1500 320 AES 217 Rang f meao e n values from different areas, country wide study M BEL 52 448 250 - 750 4 SAS 69 Collected directly from udder M FIN 70 270 230 - 330 39 AAS 7 Samples collected from tanks from various dairies M FIN 70 390 - 430 68 AAS 168 From 5 different breeds M FIN 73 260 +25 39 SAS 8 milw Ra k receive dairiet a d s M FRA 74 937 125 - 2250 150 AAS 53 M FRA ' 75 422 +70 800* AAS 209 National average M GFR 55 899 - 1266 712 ? 257 7 month1- f lactatioo s n M GFR 57 990 +760 18 ? , 151 e alsSe o [152S 153J M GFR 77 360 +105 2 NAA 108 determination1 21 s oveo yeartw r s M IN 58 1055 144 ? 241 M IN 57 212 - 242* 3 SAS 128 Maharastra region M JAP 61 91 +44 44 SAS 121 milkw Ra , individual samples, values converted from ash weight basis. M JAP 61 570 +242 36 SAS 121 Composit milkw ra e , values converted froh as m weight basis M NET 64 150 - 250 ? •* ? 210 M NEZ 77 330 AAS 34 Pooled milk samples M USA 75 500 ? ? 75 Alaska Table 25 continued (Iron)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Cow M 68 0 70 15 0- ? ? 198 Reference source M 68 440* 83 Reference source M 69 0 3060 0- ? ? 325 Review M USA 76 330* +40 7 AAS 33 Pooled samples M USR 68 2090 1080 - 4940 72 SAS 246 M USR 70 920 9 SAS 40 M YUG 78 127 +13 3 SAS 31a Converted from dry weight

Dog M? 61 9000 ? ? Quote y [160b d ]

Ewe T UK 66/77 350 - 1060 20 AAS 11 Clun Forest and Suffolk x Clun Forest ewes 2nd week of lactation M BUL 68 140 - 340 8 AES 218 M UK 66/77 500 - 1060 20 AAS 11 Clun Forest and Suffolk x Clun Forest ewes 7th week of lactation M UK 66 770 12 SAS 11 Clun Forest ewes M 68 1000 ? ? 83 Reference source

Goat C NIG 79 2460 +270 10 AAS 1 5 day1- p p s

M 61 400 9 7 2 Reference source M 63 1000 ? ? 46 Reference sourc• e M CAN 72 370 5 SAS 103 n = number of determinations M NIG 79 430* +120 10 AAS 1 2-18 weekp sp Tabl continue5 2 e d (Iron)

Source Status Country Year Mean RangD S r o ed ho t e M n Ref . Remarks

Harp M CAN 71 87 1 AAS 314 6 day1 p sp seal

Mare C USA 74 1050 +10100 AAS 309 1 day pp C USA 74 1310 +1380 AAS 309 15 minutes pp

T 0 US+8 A 74 0 88 S AA 0 1 309 8 days pp

M USA 74 490 S +6AA 0 0 1 309 4 months pp

Moose M USA 76 3120 +1250S AA 21 76 Alaska

Rabbit M 61 1200 ? ? Quoted by [160]

Rat M 61 7000 ? ? 160 Quote y [160b d ]

Reindeer M 63 1000 ? ? 46 Reference source

Sow C UK 47 1650 ? SAS 316 C UK 47 2750 ? SAS 316 1 day pp

T UK 47 1790 ? SAS 316 5-7 days pp T UK. 47 1800 ? SAS 316 10-12 days pp

M 61 1800 Quote y {160b d } M 77 140 240- 0 0 I I Quoted by Underwood [3lOa] The Fa concentration appears to remain reasonably constant during the entire lactation period in human milk. In a systematic study designed to observe the fluctuations in Fe content between 1 and 19 months of lactation, its level was found to remain between g [311]k r .pe g u Thes 0 43 e d stepwisan 0 38 e result e alsar so shown, in Table 25. An additional example is shown in Figure 1 for an Italian subject showing the values observed for Fe concentrations between 60 and 140 days post partum. Dietary supplementation of Fe s verha y little influenc iroe th n n conteneo mile th k f o t[310aJ . The Fe in milk is mainly bound to lactoferrin and to the fat globule membrane [73a, 3lOa]. In an experiment designed to follow the fate of natural and added iron in milk, it was found that while the distribution of natural Fe favours the fat globules, none of the adde e becamF d e associated witt globulesfa h . t Naturano , Fe l associated with fat s mor,wa e concentrate n whei d y proteins than i n casein [149a]. The occurrence of Fe in milk and related biochemical aspects have been reviewe y severab d l author , 152[8 s , 198a, 210, 215, 298, 300, 31Oa].

Lanthanu e onlTh my dat ae autho th knowe thoso r ar rt n fo e market mil kK (TablU froe th em 26).

Lead Becauss toxicologicait f o e l interests ha , lik, Pb ,Cd e been widely studie n biologicai d l systems. Quit a large e numbef o r investigators have studied or measured this element in human, cow, buffalo, ewe, moose and market milk samples (Table 27). Surprisingly e overalch , l rang en huma i observe b nP r milfo dk is relatively narrow e probablTh . e averag b contenP e n maturi t e human milk is about 20 to 30 ug per kg. In both cow and market milk samples, witw exceptionsfe h b contenP e s th relativel,i t y constant . Thikg r s pe generalisatio g ji a0 t5 betweed an s substant5 i n2 n - iatecomprehensiva y b d e study surveying market milk samples fro1 6 m cities in the USA which showed an average lead value of 49 ug per kg with a spread of 23 to 79 [212]. Among other species, both buffalo and ewe have been reported to secrete up to 130 ug of Pb per kg of milk produced [21, 218]. Surprisingly, moose from Alaska produce milk containing as much as 390 ug of Pb per kg [76].

Pb concentrations in milk may fluctuate for many reasons. They may be affected by automobile exhaust, the release of Pb from mining activities, the effect of milk processing, the application of Pb- containing chemicals for various purposes and by storage. Depending upon the type of milk and duration of contact, storage in tin cans b lininwitP n causa h ca g e significan b contaminationP t . Sincr ai e a ricdus s i ht sourc f thio e s element n extremi , e case a consids - erable amount of Pb contamination may also be picked up by lengthy exposur o externat e l air. Studies have beee th n n carrieo t ou d effect of environmental Pb pollution on the Pb content of human milk. For example, in an investigation involving 28 subjects from a town with prominan b pollutioP t e atmosphereth f b conceno nP e th ,- s comparea g trationk r dpe g su wer0 2 e + e elevatefoun b 0 o 42 t d o t d witSpanisn i h g controk hr motherspe lg u value0 3 ' f milso k [85].

73 SUBJECTF Fe

0.4- 5 Q. 0.3- Q. 0.2-

1 ,1, i • > 0.7- hi ' >• < Mif 1 1 1 1 1 1 1! 1 1 0 70 0 9 0 3 0 7 SO 770 0 74 720 0 73 750 days after birth

Figure 1 Concentration changes of iron in human milk (Reproduced wite permissioth he authorsth r f o Fo n . details see Cigna et al.

74 TABL 6 2 E Elemental Compositio f Milko n : Lanthanum

g k r pe Unitg ji :

Source Status Country Year Mea n nMetho D RangS dr o e Ref. Remarks •-j 01 ______

2 10 Bottle S dM cow 2 11 s mil k2 7 <1.5 K U Market milk TABL 7 2 E Elemental Compositio Milkf o n : Lead

Unit: ug per kg (* = per litre)

Abbreviations = colostrum C : = T , transitional matur= M , e p= posp t partum

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Huma n C+T USR 68 30 0-80 10 AAS» 5 wee1 p kp

Ol M NEZ 77 •ao 25 AAS 34 Pooled samples M SPA 72 420 +28 28 SAS 85 Town with prominen pollutiob P t e th f no atmosphere M SPA 72 30 12 SAS 85 Contro e abovlth tower fo ninvestigatio n M USA 71 12 +4.0 22 AAS 214 Collecte glasn i d s stoppered bottles M USA 73 20* 0-70 7 AAS 171 Connecticut area, milk collected in lead free bottles M USA 74 ^50 10 AAS 172 M USA 74 26 6-58 29 AAS 55 Different A partUS f so M USA 76 20 25 AAS 33 Pooled samples fro mother5 2 m s M USR 68 7 4 29- AES 5 Range of average values for 1, 2-4 and 6-10 months pp Tabl continue7 2 e d (Lead)

Source Status Country Year Mean RangD S r o e n Method Ref. Remarks

Market GFR 75 20 5-60 110 ? 22 Pasteurised milk milk SWE 76 2* 3 3. 1- 93 POL) 135 AAS) UK 72 25* +8 12 MS 102 Bottled cow1 s milk USA 40 20 - "4D 3 AES 141 USA 61 45 2 SAS 262 Evaporated milk USA 67 49 23 - 79 245 AAS 212 Nation wide study USA 74 40 270 AAS 204 From processing plants, uppe Yorw rNe k State USA 76 91 +66 ? AAS 28 California raw milk, state wide study USA 76/77 60 +32 225 AAS 28 California market milk

Buffalo M BUL 68 33 - 130 35 AES 218

Cow C GFR 56 130 +191 4 AAS 150 1st milking C GFR 56 67 2 AAS 150 6th and 7th milking

M BUL 75 20 - 100 320 AES 217 Rang f meao e n values from different areas, country wide study M BUL 76 5 49 12 7- 33 AAS 306 M FRA 74 50 - 160 150 POL 53 M GFR 57 43 +39 3 AAS 151 See also [152, 153] M GFR 71 37.4 +16.3 40 POL 292 Samples from different parts of Germany M NEZ 77 50 AAS 34 Homogenised cow's milk Tabl continue7 2 e d (Lead)

Source Status Country Year Mean RangD S r o e n Method Ref. Remarks

Cow M USA 67 47 27 - 68 76 AAS 212 Holstein breed, samples from individual cows M USA 73 40* 30 - 50 10 AAS 171 Connecticut area, homogenised milk collected in lead free bottles M USA 73 420 33 AAS 215 Cincinnati area M USA 74 400 ? ? 74 Alaska, quote Franzmany b d n [76] M USA 74 <50 19 AAS 172 Homogenised cow's milk CO M USA 75 130 8 AAS 59 Missouri, winter season M USA 76 50* +20 7 AAS 33

Ewe M 77 0 1115 0- ? ?. Early lactation,, quoted by Underwood [310a] M ? 50 130 2 ? 21 M BUL 68 3-23 8 AES 218

Moose USA 74 390 AAS 76 Alaska Regardin e transfe th gb inc P o f n experimeno a milkr n i , t with cows following oral dosing with 203pt,(NO3)2 e peath , k radio- activity appeared in the milk after 30 hours and declined with a hal f0 hourse 7 totatim Th f b transferreo P e.l e b s foun wa o dt d less than 0.02 % of the administered dose [290].

The occurrence, pathway o milt d mils an kk product s wela ss a l e biologicath l toxicit f o thiy s element have been reviewey b d several authors [159, 198a, 215, 310aj.

Lithium Only three report n huma o d smarke an n t milks were found for this element (Table 28).

Since Li is used in human medication, it is not clear whether o reportetw e th d values which shog k n averagwa r pe f arouno g eu 0 5 d can be regarded as representative of healthy mothers. A value of 16 + 3 ug per litre has been reported for market milk [102].

Interest in the Li content of milk stems from the suspected toxicity to the new-born infants of milk from manic-depressive e subjectemotherar i o therapL wh o st d y during pregnancys i t I . therefore necessar o evaluatt i yconcentratioL e th ee milth k n i n from such mothers in order to decide whether the infant may be breas d withoufe t t causing excessiv i ingestioL e d concomitanan n t toxic repercussions [260, 307].

Magnesium This elemen s beeha t n analyse n i mild k specimens from several species, and some of the available data are summarised in Table 29.

Its concentration in human mature milk is steady at about 30 to 40 mg per kg. Colostrum does not appear to differ markedly from mature milk in its Mg content. For mature cow milk, most of the reported results range from 100 to 120 mg per kg. The concen- trations are higher by a factor of about 2 in the first milking of colostru d declinan m o t normae l levels dayw withife s a n[150 , 151]. Market milk contains 75 to 100 mg per kg, which is about 20 % less than cow milk (a tendency also shared by Ca). The reason for this significant reduction is unclear and may arise either because e poolinth of g effec r o becaust f o actuae l dilution durine th g preparatio e othef th o milr n sale n fo rkO hand. , high concen- trations of Mg (162 mg per litre) have been reported in fat free whole milk [276].

Among other species, milks from buffalo, elephant, d goaan t seal show a similarity to cow milk with respect to their Mg content. In ewe, red deer and whale milks the concentrations are rather high ranging from 150 to 250 mg per kg. The mare appears to n exceptiona e b ; following k a higg r hpe g initiaM g m l3 leve47 f o l of mil t a deliverk e leveth y l sharply r declinepe g m o abou t d0 10 t kg during the transitional stage and by the end of 4th month of lactation had dropped to about 40 mg per kg, corresponding to the values foun n humai d n milk [309] n contrastI . , changes observer fo d human subjects ove a 9 periormonth 1 f f o lactatioo ds n were rather marginal [16, 311].

As already noted for the major elements (page 18), the Mg conten f milo t s i onlk y marginally affecte nutritionay b d l factors.

79 TABLE 28 Elemental Composition of Milk: Lithium

Unit: jig per kg (* = per litre)

Abbreviations = colostrum C : = transitional T , , M = mature

Source Status Country Year Mean Range or SD n Method Ref. Remarks CO o

Human M ? 73 50* 17 - 86 8 FES 260 Women on Li treatment M USR 44 2 05 2 -Quote 10 Archibaly 0S b d AE ?] [9 d

Market UK 72 16* t-3 12 MS 102 Bottled cow9 s milk milk TABLE 29 Elemental Composition of Milk: Magnesium r litrepe = ) * ( g k r pe Unit g m :

Abbreviations: G = colostrum, T = transitional, M = mature p= posp t partum

Source Status Country Year Mean RangD S r eo n Method Ref . Remarks

HumaC n 49 42 2 8 31- 28 188 Review C 68 40 198 Reference source C 74 40* 10 - 80 19 Reference source C IN 72 36* 7 8 2- 2 9 AAS 244 5 day mother, 1- spp s aged 16-35 years C SOU 70 31 +5 37 AAS 243 White subjects day5 ,value, spp s converted from dry weight basis (12.4% dry matter) C SOU 70 30.3 +5.8 84 AAS 243 Bantu subjects, 5 days pp, values converted from dry weight basis (12.4 mattery %dr ) C UK 73 28* 26 AAS 42 day3 p sp C UK 73 48* 26 AAS 42 5 days pp C USR 71 3.90 +0.4 AES la day2 p sp

T 49 35 26 - 54 44 188 Review T 74 40* 20 - 50 19 Reference source T IN 72 33 23 - 43 8 AAS 244 6 daymother, pp s s aged 16-35 years T UK 65 32 +4 10 VOL 324 5-7 days pp T USR 71 7.9 +1.2 AES la 9 dayp p s Tabl continue9 2 e d (Magnesium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

M T+ Human IN 78 36.6 +1.25 96 ? 16 ^1 month, mean + SE

M 49 35 302 188 Review M 68 40 198 Reference source M 68 30* 83 Reference source M 74 40* 0 6 2 - 0 19 Reference source M IN 78 31.7 +1.16 64 ? 16 1-3 months pp +1.20 80 ? 00 M IN 78 32.6 16 4-6 months pp to M IN 78 30.4 +1.36 59 9 16 7-12 months pp M IN 72 33 3 4 2- 4 8 AAS 244 month6 Uo , t motherp pp s s aged 16-35 years M IN 59 26 9 2 2- 4 57 SAS 16 From poor Indian women M PNG 65 14 +2 24 ? 13 M UK 61 26 +67l 18 ? 286 M UK 65 33 +4 3 VOL 324 6 week4- p p s M UK 77 28 ? ? 47 M USA 77 31 28 AAS 311 1-3 months pp M USA 77 37 39 AAS 311 6 month4- p p s M USA 77 26 23 AAS 311 9 month7- p p s M USA 77 29 13 AAS 311 10-12 monthp p s M USA 77 30 28 AAS 311 13-18 monthp p s M USA 77 26 30 AAS 311 Over 19 months pp Tabl continue9 2 e d (Magnesium)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Market CHI 79 73* 20 - 175 49 NAA 49a Both liquid and powdered milk samples milk UK 72 79* +10 12 MS 102 Bottled cow's milk USA 69 102 ? AAS 276 Homogenised whole milk USA 69 162 ? AAS 276 Fat free whole milk USA 70 90 ? AES 86 Whole milk from hospital menus USA 72 95 -1-6 13 AAS" 67

Buffalo M 68 100 ? ? " 183 Reference source

Cow C GFR 56 231 +95 7 AAS 150 1st milking C GFR 56 128 +42 7 AAS 150 6th and 7th milking

M 68 130 83 Reference source M 68 100 198 Reference source M 74 120* 19 Reference source M BUL 75 0 37 25 2- 320 AES 217 Rang meaf o e n values from different areas, country wide study M FIN 70 34 8 4 25- 39 SAS 7 Samples collected from tanks from various dairies M FRA 75 110 +4 800* AAS 209 National average M GFR 57 114 +49 7 AAS 151 See also [152, 153] M GFR 62 111 14 ? 43 M GFR 73 0 13 11 5- 2612 SFS 323 Assayed using autoanalyzer M GRE 75 136 335 ? 3 Bulk samples at 6 dairy plants M SWE 70 5 10 - 0 10 68 AAS 168 Fro differen5 m t breeds M USA 76 109 +21 151 AAS 38 Fro differen6 m t breeds Tabl continue9 2 e d (Magnesium)

— —— — —- r Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

4

Elephant M APR 70 120 +35 35 AAS 192a Wild elephants, sampled immediately after shooting

Ewe C NEZ 58 170 12 AES 234 0-6 days pp

T+M NEZ 58 185 12 AES 234 7-111 days pp

M UK 66 147 12 '' ? 11 Clun Forest ewes

Goat M 68 130 ? 83 Reference source M 68 200 ? 198 Reference source M 74 160* 100 - 240 ? 19 Reference source M ? 47 0 1322 0- ? ? Quote y [Il4a]b d , rang f meao e n values M WIN 76 132 +38* 16 AAS 54 British Alpine breed, mean + SE M WIN 76 102 +16* 16 AAS 54 Anglo-Nubian breed, mean + SE

Harp M CAN 71 101 1 AAS 314 16 days pp seal

Mare C USA 66 473 +69 8 VOL 309 At parcuin = 0.7 h 2% as , C USA 66 138 +9 10 VOL % 0 305 9. 0 = 1 2h houras , spp C USA 66 110 +6 10 VOL 309 24 hours pp, ash = 0. 53 % C USA 66 92 +5 9 VOL 309 48 hours pp, ash = 0. 54 % Table 29 continued (Magnesium)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Mare T USA 66 101 +6 10 % VO 4 L5 , 0 30= 9 h as day5 , pp s T USA 66 94 +6 10 VOL 309 8 days pp, ash = 0.55 %

M 68 90 ? ? 183 Reference source M USA 47 90 50 - 147 26 ? H4a Sampled fro mare5 m s M USA 66 68 +11 10 VOL 309 3 weeks pp, ash = 0. 50 % M USA 66 63 +4 10 VOL 309 5 weeks pp, ash = 0.43 % M USA 66 49 +3 10 VOL 309 0,3= h month2 7as % , spp 00 Ul M USA 66 40 +3 10 VOL 309 0.3= h month3 2% as , spp M USA 66 43 +3 10 VOL 309 4 months pp, ash = 0.27 %

Red Deer C UK 74 250 1 AAS 10 Scotland, up to 3 days pp

T UK 74 180 5 AAS 10 Scotland, 3-30 days pp

M UK 74 180 5 AAS 10 Scotland, 31-100 dayp sp M UK 74 220 5 AAS 10 Scotland 0 day10 p p s,

Whale M UK 55 200 SAS 89 TABL 0 3 E Elemental Compositio Milkf no : Manganese

Unit: pg per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature ND = not detected, pp = post partum

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Human C USR 60 3 6 2 0- 72 SAS 229 3rd~7t f lactatioo y hda n C USR 71 5 +1 ? AES la 2 days pp

C+T USR 68 8 0-13 9 AES 5 1 week pp

T USR 71 9 +4 7 AES la 9 dayp p s T YUG 78 2.1 +0.2 3 NAA 3la Pooled samples from 8 mothers, converted from dry weight 4

M GFR 75 20 +4.4 ? ?' 303 2nd-3rd month of lactation M NEZ 72 15 0 2 12- ? AAS.. 192 M NEZ 77 20 25 AAS* 34 Pooled samples M USA 71 120 +70 22 AAS 214 Collected in glass stoppered bottle M USA 76 15* 25 AAS 33 Pooled samples from 25 mothers M USA 77 20 28 AAS 311 1-3 months pp M USA 77 24 39 AAS 311 4-6 months pp M USA 77 25 23 AAS 311 9 month7- p s.p M USA 77 18 13 AAS 311 10-12 months pp M USA 77 14 28 AAS 311 13-18 monthp p s M USA 77 19 30 AAS 311 Over 19 months pp t milkw co ,n i abou % appearg e solubl M 6 th 6 tr n Fo si e form while th e res bouns i t proteio t d n [152]. Manganes A summare f literaturo y e datr thifo as elemenn i t buffalo, cow, ewe, goat, human, mare, moose and market milks is presented in Table 30. Typically, mature human milk contains about 20 ug per kg. Several investigators from different countries have measuree th d concentration of this element in cow milk, but the results are somewhat dispersed. However, if one omits a couple of seemingly high values, the range for the remaining figures narrows down considerably to about 30 to 60 ug per kg. Mn occurs at concen- trations of up to 130 ug per kg in market milk, but a substantial e attributeb par f thio y t ma s o contaminatiot d y extraneoub n n M s which is widely distributed in the environment; air dust is just one example.

Among other species, ewe and mare milks contain about the same amount of Mn as is found in cow milk. In , the Mn content s beeha n reporte e consistentlb o t d r y pe hig g m h 2 reachin o t p u g kg. The moose, on the other hand, appears to secrete very little Mn into its milk (10 ug per kg).

n maturI e milk durin e coursth g f lactationo e n appearM , o t s undergo only minor concentration changes a recen n I .t 9 3 stud f o y mothers followed for up to 19 months of lactation, no significant fluctuations were observe e levelth f thin o si d s element [311]e Th . n contenM f milo ts influence i k y dietarb d y supplementatio f thio n s element s preseni t I n mil.i t s organia k c compounds som f whico e h are t attacheglobulesfa o t d . Various aspects e relateth o t d occurrence and role of Mn in milk have been discussed by other authors [8, 146, 197, 215, 300, 310a].

Mercury A summary of literature data for this element in cow, human, moos marked an e t milk presentes i s Tabln i d. 31 e

Only a few results for 2 countries are available for human milk. Base n theseo d e probablth , e averag n maturi eg H erang r fo e human, milk appears to be between 1 and 3 ug per kg. Colostrum contains slightly more Hg than mature milk [136]. In both cow and market milk e reporteth s d concentrations fro 6 countriem s vary widely. g havk Value 0 fir 8 e g pe f aroun o beeo st 0 n4 d reporten i d Puerto Rican market milk s compare[39a ] d witg hk lesr pe s g thau 1 n in some samples from the USA [297]. One source of variation may arise from analytical difficulties A critica. l examinatioe th f o n data indicates that Hg is present in cow and market milks in the range of 1 to 2 ug per kg.

There are several pathways for Hg co enter milk among which food and drinking water deserve special mention. For example, a recent study in the USA concerned with Hg levels in different sections of the population within a certain region reported the highes mile r litret f th pe o concentrationk n g i )u 7 2. + g (7.H 6 f so Eskimo mothers from coastal areas whose diet consisted predominantly of fish that containe a higd g contenH h e otheth tn r O [80]hand. , Eskimo subjects from the interior and urban regions showed 3.2 + 0.8 litrr pe eg u respectivel 5 0. + cows3 r any3. Fo d ,[80] ther. e ar e 87 Table 30 continued (Manganese)

Source Status Country Year Mean RangD S r o e n Method Ref . Remarks

Human M USR 64 19 + 1.3 30 AES 88 Original results base mil n h analysio d kas s M USR 68 19 - 29 AES 5 Range of average values for 1, 2-4 and 6-10 months pp M USR 69 40 +8 45 AES 310 Milk from 15 mothers, original results based on milk ash analysis t e rk a M cm 79 ND to 630 49 NAA 49a Both liqui d powderean d d milk samples milk FIN 73 35 +8.5 39 AAS 8 Market milk from various dairies e als] se ,[7 o

00 SWE 76 24* +8 98 AAS 135a From dairies all over Sweden 00 UK 72 74* +8 12 MS 102 Bottled cow's milk USA 63 16 8 AES 318 USA 66 140 ? SAS 270 Milk direct from udder USA 66 190 ? SAS 270 Bulk whole milk USA 70 -^100 9 AES 86 Whole milk from hospital menus

Buffalo M BUL 68 9 1 12- 35 AES 218 M IN 72 120 5 SAS 103 n = number of determinations

Cow C GFR 56 130 1 AAS 150 1st milking

T YUG 78 11.0 +0.4 3 NAA 3la Converted from dry weight Table 30 continued (Manganese)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Cow M 68 0 37 3- 7 ] 198 Reference source M 68 20* ; 83 Reference source M 69 0 3 2- 0 325 Reference source M 74 20* 10 - 40 ? 1 19 Reference source M BUL 75 20 - 210 320 AES 217 Range of mean values from different areas, country wide study M FIN 70 5-31 66 AAS 168 From different breeds M FIN 73 40 +9.5 39 AAS 8 Raw milk received at dairies, see also [7] M NET 67 25 120 NAA 5la Base miln o d k powder analysis, 60 samples each i fro dairiesm2 . M FRA 74 54 20 - 125 159 AAS* 53 M FRA 75 56 +6 800 AAS 209 National average numbe= n , f o r determinations M GFR 56 110 +130 11 AAS 151 See also [152, 153] M GFR 75 28 10 - 58 ? ? 303 M IN 57 1 2 1 8- 3 SAS 128 Maharastra region M IN 72 180 5 SAS 103 n = number of determinations M NEZ 77 60 ? AAS 34 Homogenised cow's milk M USA 75 *10 ? ? 75 Alaska M USA 76 63* +5 7 AAS 33 Pooled samples from 25 mothers M USR 64 40 - 120 3 AES 79 M USR 64 122 +13 24 AES 88 Original results based on milk ash analysis Tabl continue0 3 e d (Manganese)

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Ewe T UK 77 47 - 71 12 MS 11 Clun Forest and Suffolk x Clun Forest ewes, 1st week of lactation M BUL 68 0 27 9 0- 8 AES 218 M UK 77 38 - 69 12 AASi 11 Clun Forest and Suffolk x Clun Forest ewes, 6th « wee f lactatioko n M UK 66 70 12 SAS 11 Clun Forest ewes M USR 64 293 +31 28 AES 88 Original results based on milk ash analysis

Goat C GFR 74 1900 -H300 ? 1 5 7f lactatioo y 1sda t n C NIG 79 200 +30 10 AAS 1 5 day1- p sp oVO T GFR 74 2100 +900 ? ? 57 14th day of lactation

M 61 80 7 ? 2 Reference source M 68 80 70 - 90 83 Reference source M GFR 74 2000 +600 ? ? 57 f lactatioo 56t y hda n M IN 72 200 5 SAS 103 n = number of determinations M NIG 79 500 +40 10 AAS 1 2-18 weekp sp M USR 64 173 +21 24 AES 88 Original results base mil n o h analysid kas s

Mare M USR 64 30 +2.2 16 AES 88 Original results based on milk ash analysis

Moose M USA 76 10 21 AAS 76 Alaska TABLE 31 Elemental Composition of Milk: Mercury r litrepe = ) * ( g k r pe Unit g u :

Abbreviations colostrum= C : = transitional T , M , mature ND = not detected, pp = post partum

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Human C POL 75 1-10 93 AAS 136 Samples from first 4 days pp, Hg found in all samples C POL 75 5.90 1. 1- 15. 8 101 AAS 136 Samples from first 4 days pp, Hg found in all samples

T YUG 78 1.09 +0.01 2 NAA 3la Pooled samples from 8 mothers, converted from dry weight

M ITA 77 0.5 - 13.0 8 6 NAA 41 M USA 76 0.93* +0.23 32 AAS 239 36 days or more pp, mean + SE M USA 76 3.2* +0.8 5 AAS 80 Eskimo mothes, Yukoma-Kuskokwim interior M USA 76 3.3* +0.5 5 AAS ^ 80 Eskimo mothers, Yukoma-Kuskokwim urban M USA 76 7.6* +2.7 11 AAS * 80 Eskimo mothers, Yukoma-Kuskokwim coastal delta

Market GUI 79 19* ND - 160 49 NAA 49a Both liqui d powderean d d milk samples milk GFR 75 2 1-5 15 ? 22 Pasteurised milk PUR 76 0 8 4- 0 ? NAA 39 Pooled from dairies USA 72 *1 1-9 32 NAA 297 Median value Table 31 continued (Mercury)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Cow M FRA 74 <25 150 AAS 53 M ITA 77 <1 2 NAA 47 to M NET 72 0.15 -0.600 ? NAA 52a Cows from grazing lands alon e Rhinth g e M USA 75 0.8 0.50 - 1.20 155 AAS 282 North Dakota M YUG 78 0.08 +0.01 2 NAA • 3la Converted f rom d r jr weight

Moose M USA 76 < 50 AAS 76 Alaska also some secondaryf o source e g throug us f H o inpu se r th fo ht pharmaceuticals containing this element, and residues from treatment of fodder with Hg-containing chemicals. Studies with HgCl2 203 hav e adde th show f do nHgCl % thas 0 wa 3 associate2t d with cream and the rest with skim milk portions [215].

Some aspecte occurrencth f o s f thio e s elemen n i biologicat l samples and its toxicity have been reviewed by other authors [I98a, 310a], and instances of the toxic manifestations of Hg in breast fed infants whose mothers consumed food, e.g. fish, contaminated with Hg, have been briefly summarised [159].

Molybdenum While Mo has been determined in cow and market milk n severai s l countries, ther ed sourc ol appear e onle b e on yo t s of dat n humao a n mil r thifo k s element, whicg u h 5 reporte2 o t 5 d per kg (Table 32) .

In cow and market milks its concentrations vary from 20 to 50 ug per kg. In colostrum its level is somewhat higher than in mature milk (150, 151]. Among other specie r whicfo s h result e availar s - g k r pe s o beeM ha nf e o reporte ew ableg u e th 5 ,1 o t secretd o t p u e of milk while in buffalo milk its concentration has been shown to g k [218] n I moosr pe . e g u milvars it 2 k4 y d betweean 6 n concentration is low, i.e. less than 10 ug per kg [76].

Mo in milk is mainly associated with the enzyme xanthine oxidase n mil i contene statu o o s i kdependenTh M M f .f e o so tth n o t the diet; feeds grown on soils deficient in this element are assoc- iated with low values of Mo in cow milk [152].

The occurrence of Mo in cow milk [8], its biochemical signif- icance [105 d inter-relationan ] d sulphatsan u betweeC , e Mo havn e been well reviewed by other authors [301, 310a].

Nickel Literature data for Ni are available mainly for human and bovine milks (Table 33).

Excludin r litre e datpe th gg a )u fro3 reportem47 - Ital 9 d (7 y by Cigna et al. [41], the remaining 4 values tend to centralize at r litr pe r matur fo g eu abou 0 e2 thuma milw e nth co k milk n I . reported concentrations vary ove a tenfolr d range t mosbu , t values suggest a narrower range of 10 to 30 ug per kg. Cow colostrum, in particula e firsth r t milking s beeha ,n reporte9 6 o - contait d-t 1 10 n f thio f o g s k y elemenr da u pe gh 7t t e declininth y b g o about u g 0 4 t lactation [150, 151].

It appears that very little is known about the distribution of Ni in milk. Its presence in cow milk does not appear to be influenced by dietary supplementation of the element. One study conducte group3 n o f dlactatino s g dairy cows which received nickel carbonate through the ration to maintain a nickel input of 0.365 to 1.825 mg per cow per day revealed no increase of nickel in milk. In all, less tha e supplementanth 0.1f o s recovere2% wa i N l d froe th m milk in cows receiving the highest Ni supplementation [226].

Niobium Two widely differing values in market milk samples have been obtained for this element (Table 34).

93 TABL 2 3 E Elemental Compositio Milkf o n : Molybdenum

= * Unit( g :k r ppe g per litre)

Abbreviations colostrum= C : , T = transitional, M = mature

Source Status Country Year Mean Range or SD n Me t hod Ref. Remarks

Human M USR 44 5-25 ? AES 25 Quoted by Archibald [9] Market FIN 73 39 +9.396 SAS 8 Market milk from various dairies milk JAP 61 47 47 SAS 121 Converted from ash weight basis UK 69 27 ? SAS 289 UK 7 2 68 - 3 2 25* 3 SAS 291 Replicate analysis UK 72 56* +1 12 MS ' 102 Bottled cow's milk USA 63 36 8 AES 318 USA 70 200 SAS 278 Pasteurised homogenised milk USR 69 44 10 AES 305 Kiev region, samples from districts not endemic in goitre

Buffalo M BUL 6 88 Rang21 meaf o eS nAE value 5 6-43 s fro2 m different areas, country wide study Table 32 continued (Molybdenum)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Cow C GFR 56 68 +48 7 AAS 150 t milkin1s g C GFR 56 38 +38 7 ' AAS 150 6th and 7th milking

M 69 40 - 80 7 7 325 M 70 0 15 5 0- ? 7 198 Reference source M 77 73 18 - 120 ? ? Quoted by Underwood [310a] M BUL 75 3 5 2- 2 320 AES 217 Range of mean values from different areas, country wide study vo M FIN 70 24 0 3 1- 1 39 AAS 7 Samples collected from tanks from various dairies U) M • FIN 73 39 +8.4 39 SAS 8 Raw milk received at dairies M GFR 57 29 +34 18 AAS 151 See also (152, 153] M IN 57 0.02 3 SAS 128 Maharastra region M JAP 61 47* +2 44 SAS 121 Individual raw milk samples M JAP 61 45 +6 36 SAS 121 Composite raw milk samples M USA 75 <100 ? ? 75 Alaska M USR 64 40 - 80 3 AES 79

Ewe M BUL 68 8-15 8 AES 218 M NEZ 65 <10 7 SAS 114

Moose M USA 76 AAS 76 Alaska TABLE 33 Elemental Composition of Milk: Nickel

Unit: pg per kg (* ,= per litre)

Abbreviations: colostrum= C = transitional T , , matur= M e ND = not detected

Source Status Country Year Mean RangD S r eo n Method Ref. Remarks

Human C USR 61 5 10 1 0- 107 ? 164 Women aged 18 years and above

T USR 61 0 15 15- 107 ? 164 Women aged 18 years and above vo a\ M ITA 77 79 - 473 5 NAA 41 M NEZ 77 20 S AA 25 34 Pooled samples M USA 76 20* 25 AAS 33 Pooled samples from 25 mothers M USR 44 20 AES 25 Quoted by Archibald [9J M USR 65 83* +56 30 SAS 193

Market USA 62 ND ? SAS 263 Fresh whole milk milk USA 62 30 ? SAS 263 Evaporated milk

Cow C GFR 56 101 +69 7 AAS 150 1st milking )See also jl5ls i52i 153] C GFR 4 +3 56 42 7 AAS 15 milking0h 7t d 6than ) Table 33 continued (Nickel)

Source Status Count ry Year Mean D RangS r o e n Me t hod Ref. Remarks

Cow M 77 30 - 100 ? ? Quoted by Underwood [3lOa] M BUL 75 8-93 320 AES 217 Rang f meao e n values from different areas, country wide study M GFR 57 26 +15 16 AAS 151 See also [150, 152, 153] M ITA 77 <100 2 NAA 41 M NEZ 77 10 ? AAS 34 Homogenised cow's milk M USA 70 80 5 AAS 226 Basal feed without supplemental nickel M USA 76 11* ±5 7 AAS 33 M USR 63 21 8 SAS 296 Georgian region M USR 64 10 - 60 3 AES 79

Moose M USA 76 < 50 21 AAS 76 Alaska

Rat M GFR 76 1088 +115 22 AAS 155 Control animals: 20 mg Ni per kg of diet TABLE 34 Elemental Composition of Milk: Niobium r litrepe = ) * ( g k r pe Unitg ji :

Abbreviations: C = colostrum, T = transitional, M = mature

co Source Status Country Year Mea n nMetho D RangS dr eo Ref. Remarks

Market UK 72 25* +3 12 MS 102 Bottled cow's Hkilk. 8 Bottle26 S dSA cow' ? s milk 0 42 5 6 A US milk o biologicat N beeye no s s recognized ha t i b l M s roli r fo er no , widely spread in the biosphere as to warrant the high concentrations ) obtaine s S probablekg [268]i SA r t y I pe (42b . dg 0ji , therefore, that this value is erroneous. Nitrogen Some literature datr nitrogefo a n mili n k specimens from a few species are summarised in Table 35. concentratioe Th f totahuman o i lN n mature mil s aboui k t 1600 g [I83a]k t o r n colostruI pe 200. g 0m d transitionaan m l mils it k concentratio o y doublreact nma p hu e tha f maturo t e milkw milCo .k contain . Amonn averagkg a s r g pe f 550o eotheg 0m r speciesN e th , contenw milso kf o tresemble s tha f humao t n milk, while buffald an o goat milks contain levels close to those found in cow milk. Whale milk is reported to contain as much as 21 g of nitrogen per kg because of the high protein content [89]. The protein and nitrogen contents of milks from a number of non-milk animals have been reviewed [63].

In human milk 77 % of the total N is protein bound, of which associates i 3 5% d wit he rescaseith t d witan n h whey proteine Th . distribution in cow milk is quite different; 95 7, of the total N is protein bound, most of which (81 %) is associated with casein [lOOa].

Phosphorous Literature data for this element for a number of different species are summarised in Table 36.

One general feature is that, within a given species, the concentratio n mili k? doef t varo nno sy very much. Wite th h w individualo w exceptiofe a l f valueo n s foun r Nigeriafo d n women s concentration[15]it , n maturi s e human milk range from 0 1J.16 Oo t mg per kg with an average value of -130 mg per kg. Colostrum and transitional milks are slightly richer in this element in comparison with later secretions o e averagt Th .0 90 w mile co s i valu kr fo e 1000 mg per kg, while market milk falls slightly below at about 850 mg per kg. In first milking of cow colostrum a concentration of s beeha ng k reporte r pe 150g m d 0 [150s e mare,wa th 151]t i r , Fo . shown that the P content reached a peak concentration of about 450 mg per kg at 42 hours post gartum, retained somewhat similar levels during the transitional phase and declined to about 200 mg per kg at 4 months of lactation [309]. The sequence of the concentration changes observed for P is also shown in Table 36.

e concentratioTh P decline f o n s slowl t steadilbu y y throughout the lactation period following the onset of mature milk. Usually, n secretioni 2 months1 s o s t contenpas it ,6 t s reducei t ta y b d n comparisoi % leas 5 2 t n with early milke t contenTh no . s i t affecte y dietarb d y status n bovinI . e % e appearmil th 6 3 kn i s organic form whil rese inorganis th ei t c [152].

Potassiu A summarm f literaturo y n mili ekK datr samplefo a s from several different specie presentes i s Tabln i d. 37 e

Result r humafo s n mature mile scatterear k d acros a srang f o e mean values between 329 and 705 mg per kg. For a major element, suc a hwid e dispersio s surprisini f n o s unlikel i e b d o an t gy analytical origin. Nor is it due to the influence of colostrum or transitional milks since these contain only slightly higher amounts of K than mature milk.

99 TABLE 35 Elemental Composition of Milk: Nitrogen r litrepe = ) * ( g k r pe Unit g m :

Abbreviations: C = colostrum, T = transitional, M = mature pp = post partum

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Human C JAP 72 3452 4-485 14 Kj 216 6-10 dayp p s C UK 61 3300 +500 18 Kj , 286

o C+T ETH 76 3140* ? ? I83a Privileged class mothers, 0-15 dayp p s o C+T SWE 76 3050 ? ? I83a 0-15 days pp

T JAP 72 3205 +519 15 Kj 216 6-10 days pp T UK 65 3140 +450 10 Kj 324 5-7 days pp

M 68 1880 •*,Kj 183 Reference source M ETH 76 1770 ? 1 183a Non-privileged class mothers, 1.5-3.5 monthp p s M JAP 72 2126 +267 20 Kj 216 11-60 days pp M JAP 72 1666 +140 22 Kj 216 61-270 days pp M NIG 56 2640 +120 182 Kj 15 M PAK 74 1850 +310 9 Kj 178 Lower socioeconomic group M UK 65 1920 3 Kj 324 4-6 weeks pp M SWE 76 1610* ? ? 183a 1.5-3.5 months pp Table 35 continued (Nitrogen)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Buffalo M 68 5861 ? ? 183 Reference source

Cow M 68 5000 ? ? 324 Reference source M 0 6 USA 520 7598- 3 522 j K 258 From 6 areas of California, range of mean values M 68 5180 ? ? 183 Reference source

Ewe M 68 7103 3 18 ? ? Reference source

Goat M 68 5180 ? ? 183 Reference source

Sow M 68 2800 3 18 ? ? Reference source

Whale M 55 20693 9 8 1 K 3 TABL 6 3 E Elemental Compositio f Milko n : Phosphorus r litrepe = )* ( g k r pe Unitg m :

Abbreviations: C = colostrum, T = transitional, M = mature pp = post partuui

L Source Status Country Year Mean D RangS r o e n MetTicm Ref. Remarks

C Human 49 157 1 25 8 - 5 28 ? 188 Review C 68 140 ? 198 Reference source o to C 74 140* 60 - 250 ? ? 19 Reference source C SOU 70 153 +38.1 37 ? 243 5 days pp s white subjects aged 24+6 yearss converted from dry weight C SOU 70 155 + 123 84 ? 243 5 day, pp s Bantu subject 5 years6. s + age ,4 2 d converted from dry weight C UK 73 169* 26 SAS 42 3 dayp p s C UK 73 90 S SA 6 2 42 5 days pp

T 49 198 97 - 317 46 ? 188 Review T 74 170* 0 32 10 0- ? ? 19 Reference source T UK 65 166 + 31 10 VOL 324 7 day5- p s P Table 36 continued (Phosphorus)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human M 49 141 68 - 268 628 188 Review M 63 140 ? ? 46 Reference source M 68 140 ? ? 83 Reference source M 68 150 198 Reference source M 74 150* 70 - 350 ? ? 19 Reference source M Aui 53 156 130 - 180 7 ? 235 Canberra region month7 2- , f lactatioso n M IN 59 119 111 - 172 191 ? 16 From poor Indian women M NIG 56 95 40 - 177 154 ? 15 Women with babies aged up Co 12 months o M VAN 53 152 120 - 190 51 ? 235 South Pacific islands, 2-24 month f lactatioso n Ul M PNG 65 111 +6.4 24 ? 13 M SOU 54 152 +32 85 ? 319 Bantu population M UK 65 142 3 VOL 324 4-6 weeks pp M UK 77 150 ? ? 47 M USR 71 160 ? ? 165

Market UK 72 871* +110 12 MS 102 Bottled cow's milk milk USA 70 850 ? AES 86 Whole milk from hospital menus USA 72 890 +40 3 1 SAS" 67

Buffalo M 68 1253 183 Reference source Tabl continue6 3 e d (Phosphorus)

Source Status Country Year Mean Range or SD n Me t hod Ref . Remarks

Cow C 68 1330 ? ? 198 Reference source C GFR 56 1430 +810 7 AAS 150 1st milking C GFR 56 1190 +320 7 AAS 15 milkin0h 7t 6td gan h

M 68 880 83 Reference source M 68 1000 1 ? 198 Reference source M 74 960 560 - 1240 1 ? 19 Reference source M GFR 57 960 +250 18 AAS 151 e alsSe o [152, 153J M GFR 62 960 14 ? 43 M GRE 75 967 335 ? 3 Bulk samples from dairy plants M ITA 76 962 916 - 989 204 ? 190 1962 determinations M USA 76 1140 +160 151 SAS 38 Pro differen6 m t breeds

Elephant M APR 70 840 +211 30 SAS I92a Wild elephants, samples collected immediately after shooting

Ewe C NEZ 58 1770 - 2050 12 ' AES 234 0-6 days pp

T+M NEZ 58 1580 - 1610 12 AES 234 7-111 days pp

M 68 1500* 7 ?" 183 Reference source M 68 995 ? ? 83 Reference source M UK. 66 1400 8 SAS 11 Clun Forest ewes Tabl 6 continue3 e d (Phosphorus)

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Goat M 63 1060 1 ? 46 Reference source M 68 1200 7 7 198 Reference source M 68 1030* ? ? 83 Reference source M 74 1060 840 - 1610 19 Reference source M ? 47 960 - 1240 ? ? Quote y {Il4ab d ] M WIN 72 747 +39 16 SAS 54 British Alpine breed, E meaS + n M WIN 72 821 +39 16 SAS 54 Anglo-Nubian breed, mean + SE o Giraffe M 60 1040 ? ? * Quote y [192ab d ] Ul Harp M CAN 71 915 1 SAS 314 6 day1 p p s seal

Mare C USA 66 389 +16 8 VOL % 30 2 97 . t 0 partum A = h as , C USA 66 399 +21 10 VOL 309 12 hours pp, ash = 0. 50 % C USA 66 442 +19 10 VOL % 3 305 9. 0 = 2 4h as hour , pp s C USA 66 457 + 17 9 VOL 309 48 hours pp, ash = 0. 54 %

T USA 66 444 +11 10 VOL 309 5 days pp, ash = 0.54 % T USA 66 441 +10 10 VOL 309 8 days pp, ash = 0. 55 % Table 36 continued (Phosphorus)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Mare M 68 600* ? ? 83 Reference source M USA 66 391 +7 10 VOL 309 3 weeks pp, ash = 0. 50 % M USA 66 325 +13 10 VOL 30 9= 0.4 h 5 weeks3as % , pp - M USA 1 +1 66 285 10 VQL4 309 2 months pp, ash = 0.37 % M 6 US+ A 66 • 3 24 10 VOL 309 3 months pp, ash = 0.32 % M 7 US+ A 66 6 21 10 VOL 309 4 months pp} ash = 0.27 % M USA 47 630 500 - 900 26 ? 114a Sampled from 5 mares

Sow M 61 1600 ? ? Quoted by [192a] M 68 1500 ? ? 183 Reference source o cr\ Rabbit M 59 3400 ? ? Quoted by [l92a]

Red Deer C UK 72 2100* 1 SAS 10 Scotland, up to 3 days pp

T UK 72 2200* 5 SAS 10 Scotland, 3-30 days pp

M UK 72 1800* 5 SAS 10 Scotland, 31-100 dayp p s M UK 72 1900* 5 SAS 10 Scotland 0 dayp 10 p s,

Reindeer M 63 1980 ? ? 46 Reference source

Rhino M 65 400 ? ? Quote y [I92ab d j

Whale M UK 55 1700 - 2100 3 SAS 89 TABL 7 3 E Elemental Compositio f Milko n : Potassium

Unit: mg per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature pp = post parturn

Source Status Country Year Mean Range or SD n Method Ref. Remarks

C Ilum an 74 740 660 - 870 ? ? 19 Reference source C 49 745 658 - 870 11 7 188 Review C 68 710 ? 7 198 Reference source C 0 7 SOU 693 +89 37 7 243 5 dayp p s , white subjects aged 24+6 years, converted froy weighmdr t o -J C 0 7 SOU 665 +113 84 ? 243 day5 p p s , Bantu subjects aged 24 + 6.5 years, converted froy weighmdr t

T 49 636 528 - 769 25 ?' 188 Review T 74 640 530 - 770 7 7 19 Reference source T 5 6 UK 755 +141 10 FES 324 7 day5- s PP T 3 7 YUG 641* +120 23 7 174 5-8 days PP

M 49 512 373 - 635 18 7 188 Review M 63 510 7 7 46 Reference source M 65 545 3 FES 324 6 week4- s pp M 68 540 7 7 198 Reference source M 68 500* ? 83 Reference source M 74 550 270 - 810 7 7 19 Reference source Table 37 continued (Potassium)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Human M DEN 75 5 5875 9 - 0 43 19 FES 233 Samples from right breast M DEN 75 627 458 - 755 19 FES 233 Samples from left breast M PNG 65 329 +24 24 ? 13 M IN 59 347 333 - 373 44 SAS 16 From poor Indian women M UK 61 705* +112 18 ? 286 M UK 77 600 ? ? 47 M USA 65 611 16 ? 294 Colorado Region,, pooled samples M USA 65 336 20 ? 294 Chicago Region, individual samples M USR 71 500 ? ? 165 o CO Market UK 72 1600* +100 12 MS 102 Bottled cow's milk milk USA 70 1450 ? AES 86 Whole milk from hospital menus USA 72 1380 +60 13 FES 67

Buffalo C IN 59 1485 4 ? 242

M IN 58 1599 48 ? 241 IN 75 1210 240 NAA 170

Cow C GFR 56 1300 +730 7 AAS 150 1st milking C GFR 56 1470 +590 7 AA Smilkinh 7t 15d g0an h 6t C IN 59 2021 12 7 242 Tabl 7 continue3 e d (Potassium)

Source Status Country Year Mean RangD S r o e n Method Ref . Rems ark

Cow M 68 1500 ? ? * 198 Reference source M 68 1390* ? ?' 83 Reference source M 74 1380 38 0287- 0 19 Reference source M BUL 75 1398 - 1792 320 AES 217 Rang f meao e n values from different areas, country wide study M FIN 70 1330 - 1360 68 AAS 168 From 5 different breeds M FRA 75 1488 +59 800 AAS 209 National average, mean + SE M GRE 75 1433 335 ? 3 Bulk samples at 6 plants M GFR 57 1580 -1-490 18 AAS _ 151 See also [152, 153] M GFR 62 1737 14 43 M IN 58 1688 148 ? 241 See also [242] M USA 65 1460 10 294 Chicago region M USA 74 1270 1 ? 74 Alaska, quote Franzmany b d n [75]

Elephant M APR 70 1880 +307 30 FES I92a Wild elephants, samples collected immediately after shooting

Ewe C NEZ 58 137 149- 0 0 12 AES 234 0-6 days pp

T+M NEZ 58 121 124- 0 0 12 AES 234 7-111 days pp

M 68 1900 83 Reference source M ? 47 1900 ? ? Quoted by [Il4a] M UK 66 1680 12 ? 11 Clun Forest ewes M UK 72 1595 +72 4 FES 163 Masha d Welsan m h ewes Tabl continue7 3 e d (Potassium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Giraffe M 60 1000 ? ? Quoted by [I92aj

Goat M ' 63 1800 9 ? 46 Reference source M 68 1700 1 ? 198 Reference source M 68 1800* ? ? . 83 Reference source M 74 1810* 106232- 0 0 ? ? 19 Reference source M ? 47 1000 - 2400 1 ? Quoted by [114a] M UK 73 1856 +22 ? ? 232 M WIN 72 1640 +84 16 FES 54 British Alpine breed, mean + SE M WIN 72 1534 +134 16 FES 54 Anglo-Nubian breed, meaE S n+

Harp M CAN 71 492 1 FES 314 16 days pp seal i •

Mare C USA 66 1143 +66 8 FES 309 At partum, ash => 0. 72 % C USA 66 965 +46 10 FES 309 12 hours pp, ash = 0. 50 % C USA 66 841 +41 10 FES 309 24 hours pp, ash = 0. 53 % C USA 66 861 +41 9 FE% S4 5 . 0 30 = 9 h hour8 as 4 , spp

T USA 66 846 +28 10 FES 30 0.5= 9% h 4 as day5 , spp T USA 66 780 +36 10 FES 309 8 days pp, ash = 0. 55 % Tabl continue7 3 e d (Potassium)

Source Status Country Year Mean Range or SD n Method Ref. Rema rks

Mare M 68 700 ? ? 83 Reference source M 68 640 ? ? 183 Reference source M USA 66 606 +15 10 FE% S0 5 . 0 30 9= h weekas 3 , pp s M USA 66 555 +24 10 FES 30 0.4= 9 h 3% as week5 , pp s M USA 66 456 +21 10 FES 309 2 months pp, ash = 0. 37 % M USA 66 405 +15 10 FES 309 3 months pp, ash = 0.32 % M USA 66 370 +15 10 FES 309 4 months pp, ash = 0.27 % M USA 47 640 500 - 990 26 ? H4a Sampled fro mare5 m s

Moose M USA 76 1006 +85 21 AAS 76 Alaska

Rabbit M 59 1600 ? ? Quoted by [I92a)

Rat M ISR 73 1833 +74 26 FES 330 Weizraann Institute strain, control rats (saline injected)

Red Deer C UK 74 1400* 1 FES 10 Scotland, up to 3 days pp

T UK 74 1200* 5 FES 10 Scotland, 3-30 dayp p s

M UK 74 1300* 5 FES 10 Scotland, 31-100 days pp M UK 74 1200* 5 FES 10 Scotland, >100 days pp Tabl continue7 3 e d (Potassium)

Source Status Country Year Mea n nMetho RangD S dr o e Ref. Remarks

Reindeer M 63 1590 'i 1 46 Reference source

Rhino. M 65 900 ? ? Quoted by [192aJ

Whale M UK. 55 800 - 1600 3 ? 89 e concentratio w milTh co kn i fall K sf n o typicall e rangth en i y 1400 to 1600 mg per kg, while that of market milk is slightly less (1300 - 1400 mg per kg). Cow colostrum has almost the same concen- tration or even a little less than that of mature milk. Among other species milks from giraffe, moose and red deer resemble cow milk with respect to K, whereas in elephant, ewe, goat, rabbit, rat and reindeer milks s concentrationit , s range fromr 150pe o 200t 0g m 0 kg. Milks from animals such as seal, mare, and rhinoceros on the other hand, contai r litrea system pe n I K n. f -leso g sm tha0 90 n atic study of the mare designed to follow the variations of K. content up to 4 months post partum, it was found that the K concen- tration fell rather pe g rm sharpl0 40 d reache s an ya w valua dlo s a e h mont4t f lactatioo e h th t a kgn [309] e individuaTh . l values relate differeno t d t stage f lactatioso e alsnar o show Tabln ni . 37 e

Rubidium This element has been rarely investigated in any type of mil s reflecteka paucite th y f datb d o y Tabln i a. 38 e

Results fro a singlm e study reported from Italy sho a sixfolw d variation amon 9 matur2 g e human milk samples [41]w milkco ,n I analyses available from two investigations indicate a rather wide range [41, 109]. Base multipln o d e determinations oveyearo tw rn i s milk g appearsamplek r pe o t ssg u fro cowso contenb 0 R tw m 70 a , f o t be the probable average value for this element in normal cow milk [109] e resultTh , s obtaine marker fo d t milk samples fro 1 citie6 m s A showeUS b n valueR i d s rangin r litr pe o 339gt eg u 00 fro 57 m [212]. The differences observed between the cities were statisti- cally significant. These value e similaar s o resultt r s obtainer fo d 5 samples from Italy which ranged fro g [41]mk r 150,o 1460pe t 0 g 0u and point to a rather confusing situation concerning the variation of this elemenw milkco n ,i t particularly sinc e ris th f eexternao k l contaminatio s unlikeli b o fundamentaR n d ther y an ye b n ar e l analyt- ical problems for this element. It would thus appear that there are true geographic variations for Rb in cow milk.

Scandium Only a single source of data was found for this element for human and bovine milk. It is present at less than 0.01 pg per kg (Table 39).

Selenium Analytical interest in Se is steadily increasing as witnessed by the growing number of results available for human, bovine and market milks. Some of these findings are summarised in Table 40.

e rangTh f meao e n values reporte r thifo ds elemen n maturi t e human milk is quite narrow (10 to 30 ug per kg), and indicates a probabl . Howeverekg averagr pe g ,u e close0 valu2 f o er examination of individual investigations reveals the occurrence of geographical variations. Level g havk er s pe exceedinbee g u n 0 reporte10 g r fo d colostrum and transitional milk in a small number of samples [181, d markean n 182]botI w tco .h milk sample e reporteth s d values vary widely.

Several explanations coul e variatione offereb th d r fo d s seen in Se, especially in cow and market milk samples. Important among these are Se intake, losses from processing and analytical errors.

113 TABLE 38 Elemental Composition of Milk: Rubidium

= Unit* ( :g k r jape g per litre)

Abbreviations colostrum= C : = transitional T , , M = mature pp = post partum

Source Status Country Year Mean RangD S e r o n Me t hod Ref. Remarks

Human C GRE 78 710 420 - 1000 15 NAA 89a 24 hours pp

I-1 T GRE 78 810 600 - 1100 15 NAA 89a day5 p p s t-1 M GRE 78 630 600 - 660 5 NAA 89a day0 3 p sp M ITA 77 600 - 3700* 29 NAA 41

Market cm 79 - 3930 0 *48 11280 49 NAA 49a Both liquid and powdered milk samples milk UK 72 2700* +200 12 MS 102 Bottled cow's milk USA 67 570 - 3390 272 AAS 212 Nation wide study

Cow M GFR 78 680 +150 2 NAA 109 Multiple determinations oveo yeartw r s M ITA 77 1500 - 14600 5 NAA 41 TABLE 39 Elemental Composition of Milk: Scandium g k r pe Unitg ji :

Abbreviations = colostrum C : = transitional T , matur= M , e

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human M ITA 77 0.004-0.17 9 NAA 41

Cow M ITA 77

Unit : ^g per kg (* = per litre)

Abbreviations : = Ccolostrum = transitional T , , M = mature p= pospturr pa nt

———— * — Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

C Human GFR 78 79 - 169 3 NAA 182 C GRE 78 48 33 - 69 15 NAA 89a 24 hourp p s

T GFR 77 128 98 - 155 3 NAA 181 Second week of lactation T GRE 78 16 10 - 20 15 NAA 89a 5 days pp T YUG 78 13.3 +0.5 3 NAA ,3la Pooled samples from 8 mothers^ converted from dry weight

M GFR 78 28- +11 44 NAA 182 Up to 60 days pp M GRE 73 20 12 - 25 24 SFS 99 Athens region,, mothers aged 17-44 years, mean age 27 years, mean days pp = 60 M GRE 78 15 11 - 22 5 NAA 89a 30 days pp M ITA 77 4.7 - 13.9 29 NAA 41 M JAP 76 10 - 83 3 GLC 285 M NEZ 72 13.3* 11.5 - 14.5 30 SFS 200 From differen Zealantw partNe f do s Rang e= rang f meano e s M UK 77 14 47 Tabl continue0 4 e d (Selenium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human M USA 63 21 13 - 62 15 NAA 97 Portland region, mothers aged 17-44 years. Lactation stage 6-12 weeks M USA 73 20 15 - 2k 15 SFS 99 Iowa region, mothers aged 18-31 years, mean age 25 years, mea1 5 n = day p p s M USA 75 18 7 - 33 241 SFS 284 Fro 7 Statem1 s across USA, meae 27.ag n 4 +0.3 years ; evidenc9 ,+ mea3 r 18 fo ne = day p p s geographic variation

Market GFR 77 68 1 NAA 181 Canned evaporated unsweetened milk milk USA 61 49 21 SAS, 98 Samples from 3 counties of Oregon USA 61 67 22 SAS- 98 Samples fro countie3 m Oregof so n USA 61 5 24 SAS 98 Samples fro countie3 m Oregof so n USA 70 480 ? SAS 277 USA 70 12 2 SFS 207 USA 76/77 24 +11 103 AAS 28 California market milk

Cow M 70 5-67 48 Quoted by Franzmann (76] M DEN 70 0 2944 0- 79 NAA 20 y weighBasedr n to d M DEN 70 23 10 NAA 20 M GFR 69 19.5 4. 67.5- 4 161 SAS 148 M GFR 69 0 13 5 0- 60 ? 148 M GFR 75 49 - 67 1 ? 303 2nd - 3rd month of lactation M GFR 77 ill ' 1 NAA 181 1.8 % fat M GFR 77 77 67 - 87 2 NAA 181 3.5 % fat Table 40 continued (Selenium)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Cow M GFR 77 6-16 2 NAA 108 215 determinations over 2 years M GFR 78 24.3 +5.1 45 NAA 182 North western area of Germany M ITA 73 8 +4 3 NAA 24 Araiata area M ITA 77 <1 2 NAA 41 M JAP 76 21 - 27 3 GLC 285 M NEZ 68 3.5 8 ? 87 M NEZ 72 5 4-8 12 SFS 200 Different parts of New Zealand M NEZ 73 7 9. 3. 5- 192 SFS 201 Pasteurised milk from different areas M YUG 78 16.8 4-0.8 2 NAA 3la Converted froy dr m weight

Moose M USA 76 110 9 AAS 76 Alaska

Sow C USA 75 43 26 SFS 189

M USA 75 13 26 SFS 189 e relativelth r fo s yA smaller variation see n humai n n milke th , probable reason appears to be the fact that human diet is generally drawn from several sources and is therefore less dependent on local environmenta e importanlth factorsf o e t On factor. s associated with e intakS w ths deficienci elo e e soilr exampleth Fo .n i yw mil co ,k samples collected from different parts of New Zealand, where soil deficiency for Se is well known, showed rather low values ranging g [200] k e soir Th .pe l g deficiencu 8 o fro t s als4 mwa y o reflected in the lowered blood selenium content of New Zealanders [321], In another investigation it was reported that Se concentrations in milk samples collected from various farms were correlated with the soil conten e s als[20]S ha f o o t t . I bee n shown that ora r subcutano l - eous administration of Se as selenate increased the concentration of milw co kn Si e[87] .

Se is labile upon exposure to heat and the treatment conditions may be expected to inflict varying losses of this element. For example, significant difference e retentioS n i s n have been shown between roller drie d spraan d y dried samples [148].

Analytical difficulties for this element have been briefly discussed along with other elements in section 6 (page 7).

It appears that nothing is known about the form and distrib- s likeli n milki t s proteiI i e utioy.S e thaf S o n ne t th mos f o t associates i boun d an d d wite selenoenzymth h e glutathione peroxidase.

Silicon Although this elemen s veri t y abundane bioth n -i t sphere it is present in milk only at trace levels. Literature data availabl r thJLfo es elemen r hal fo ta dozef n specien markei d tan s mil presentee ar k Tabln i d. 41 e

maturn I e human mil concentrations it k g u s0 var60 o yt fro0 30 m per kg. The levels are high in bovine milk ranging from 1 to 7 mg per kg but the available results are very few and are widely dispersed. Colostrum is rather rich in this element; the concen- e firsth n ti milkin g k r gtrationpe g m y reac 9 ma s1 s higa hs a h after calving [150, 151]. One result available for market milk r litrpe ei S [102]showg m 6 s. Among other species both goad an t e milkew s show, concentration , whilskg exceediner pe mard g an em 3 g buffalo milks resemble human milk with respect to their Si content.

The concentrations of Si in cow milk are not affected by dietary supplementatio d declinan n e slowly throughou e lactatioth t n period [9],

Silver No results were found for this element in human milk. However, both cow and market milks have been analysed for this e resultelemen s reporteth i e e d showt b I ar san t o n Tablt i nd. 42 e present at varying concentrations up to 50 ug per kg. Analytical errors, especiall e uppeth r fo yvalue s canno e ruleb t d out.

Sodium A summary of literature data for Ma in milk samples from several different species is presented in Table 43.

Variations among individual values for mature human milk are unbelievably large [233, 286]. Therefore s rathei t i ,r difficulo t t judge the validity of some of the reported data. The most probable

119 TABL 1 4 E Elemental Compositio f Milko n : Silicon

Unit : ug per kg (* = per litre)

Abbreviations :colostrum= C = transitional T , , M = mature pp = post partum

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

Human T+C USR 68 525 41715- 8 AES 5 1 weep kp

M 64 342 S +5AE 0 0 3 88 Original results based on milk ash analysis M 68 340 198 Reference source M USR 44 200 - 1000 ? AES 25 Quoted by Archibald {9j M USR 68 281 0 98 18- AES 5 1 month pp M USR 68 534 125 - 850 AES 5 2-4 months pp M USR 68 647 522 - 719 AES 5 6-10 months pp H1 0 Ma rke t UK 72 6000* +2000 12 MS 102 Bottled cow's milk milk t

Buffalo M BUL 68 4 35 25 - 6 S AE 35 218

Cow C GFR 56 19000 +5100 7 AAS 150 1st milking C GFR 56 7000 +4000 7 AAS 150 6th and 7th milking

M 68

Ewe M BUL 68 465 8 AES 218 M USR 64 4813 +454 28 AES 88 Original results base mil n h o analysid kas s

Goat M USR 64 3319 +_269 24 AES 88 Original results based on milk ash analysis

Mare M US9 R65 8 4 8 6 Origina S AE l result 6 1 s 4 base+8 mil n analysio h d kas s TABL 2 E4 Elemental Compositio Milkf no : Silver

Unit : ug per kg (* = per lit re)

Abbreviations := colostrum C , T = transitional, = maturM e

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Human M 57 (Qualitative) Quote Archibaly b d ] [9 d

Market UK 72 1.7 12 MS 102 Bottled mils cow' k milk USA 68 47 27 - 54 ? AAS 213 Nation wide study, weighted mean

Cow M 68 7 3 1- 5 ? ? 198 Reference source M BUL 75 6 S AE 0 32 217 M USA 68 47 9 5 3- 7 32 AAS 213 Samples from individual cows TABLE 43 Elemental Composition of Milk: Sodium

Unit: rag per kg (* =• per litre)

Abbreviations: C = colostrum, T = transitional, M mature = pos p p t parCum

1 Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

C Human 49 501 26 - 5136 5 28 ? 188 Review C 68 460 ? 198 Reference source C 74 480* 260 - 1360 ? 19 Reference source C SOU 70 278 +191 37 1 243 5 days pp, white subjects aged 24+6 years, converted froy weighmdr t basis (12.4 mattery %dr ) C SOU 70 305 +216 84 ? 243 day5 , Bantpp s u subject 5 years6. s + age ,4 2 d converted from dry weight basis (12.4% dry matter)

T 49 294 9 53 19 - 2 44 ? 188 Review T 74 290* 0 54 19 - 0 ? 19 Reference source T UK 65 382 +122 10 FES 324 5-7 days pp G YU T 73 635 +285 23 ? 174 8 day5- p p s Tabl 3 continue4 e d (Sodium)

Source Status Country Year Mean Range or SD 1 o nh t e M Ref . Remarks

Human M 49 172 64 - 436 302 ? 188 Review M 63 160 ? ? 46 Reference source M 68 150 ? ? 198 Reference source M 68 170* ? ? 83 Reference source M 74 150* 0 44 2 0- ? ? ' 19 Reference source M DEN 75 234 46 - 782 19 FES 233 Right breast M DEM 75 238 9 52 5 8- 19 FES 233 Left breast M IN 59 221 1 23 21 5- 41 SAS 16 From poor Indian women M PNG 65 67 +4 24 ? 13 M UK 61 406* +172 18 286 M UK 65 136 3 FES 324 4-6 weeks old M UK 77 150 7 ? 47 M USR 71 150 ? ? 165

Market USA 70 500 ? AES 86 Whole milk from hospital menus milk USA 72 550 +30 3 AES 67

Buffalo C IN 59 986 4 ? 242

M IN 477 48 ? 241 M IN 75 380 300 - 500 57 NAA 170 Table 4^ continued (Sodium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Cow C GFR 56 930 +930 7 AAS 150 1st milking C GFR 56 730 +590 7 AAS 150 6th or 7th milking C IN 59 725 12 242

M BUL 75 381 - 470 320 AES 217 Rang f meao e n values from different areas, country wide study M 68 500 198 Reference source to M 68 750* ? ? 83 Reference source M FIN 70 340 - 374 68 AAS 168 From 5 different breeds M FRA 75 4^5 +30 800 AAS 209 National average, mean + SE M GFR 57 430 +170 18 AAS 151 See also [152, 153] M GFR 62 402 14 43 M GRE 75 424 335 3 Bulk samples at 6 dairy plants I M IN 58 553 148 241 See also [242]

Elephant M AFR 70 720 +219 30 FES 192a Wild elephants, samples collected immediately after shooting Tabl continue3 A e d (Sodium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Ewe C NEZ 58 0 3840 0- 12 AES 234 0-6 days pp

T+M NEZ 58 0 3848 0- 12 AES 234 7-111 dayp sp

M 68 300* 1 ? 83 Reference source M UK 72 566 +76 4 FES 163 Ma sham and Welsh ewes M UK 66 460 12 ? 11 Clun Forest ewes to Giraffe M 60 1000 * ? Quote y [I92ab d ] Goat M • 68 340* 1 1 83 Reference source M 73 302 +6 1 1 232 M WIN 72 526 +46 16 FES t 54 British Alpine breeds soean + SE M WIN 72 555 +19 16 FES ' 54 Anglo-Nubian breed, mean + SE

Harp M CAN 71 331 1 FES 314 6 day1 p sp seal

Mare C USA 66 524 +82 8 FES 309 At partum, ash = 0.72 % C USA 66 364 +11 10 % FE 0 S5 . 0 30 = 9 h hour2 as 1 , pp s C USA 66 337 +18 10 .^FES 309 24 hours pp, ash = 0. 53 % C USA 66 296 +9 9 FES 309 48 hours pp, ash = 0.54 % Table 43 continued (Sodium)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Mare T USA 66 265 +10 10 FES 309 5 days pp, ash = Oo 54 % T USA 66 238 +13 10 FES 309 8 days pp, ash = 0. 55 %

M USA 66 185 +6 10 FES 309 3 weeks pp, ash = 0. 50 % M USA 66 188 +8 10 FES 30 0.49- h 3 % weekas 5 s spp M USA 66 203 +15 10 FES ' 309 2 months pp, ash *= 0. 37 % M USA 66 174 +6 10 FES 309 3 months pp, ash = 0.32 % M USA 66 161 +3 10 FES 309 0.2= h month74 % as , pp s H1 °* Moose C USA 76 394 +35 21 AAS 76. Alaska

Rabbit M 59 1200 » 9 Quoted by [I92a] Rat M ISR 73 851 +41 26 FES 330 Ueizmann Institute strain, control rats (saline injected)

Red DeeC r UK 74 460* 1 FES 10 Scotland, up to 3 days pp

T UK 74 350* 5 FES 10 Scotland, 3-30 dayp sp

M UK 74 370* 5 FES 10 Scotland, 31-100 dayp sp M UK 74 350* 5 FES 10 Scotland. >100 days pp Table 43 continued (Sodium)

Source Status Country Year Mea n nMetho RangD S dr eo Ref. Remarks

6 4 Referenc ? e sourc? e 3 6 1570 ^ Reindee M r

Rhino M 65 400 ? ? Quoted by (192aJ

Whale M UK 55 800 - 2300 3 ? 89 TABLE 44 Eiemental Composition of Milk: Strontium r pe Unitg }i : kg (* = per litre)

Abbreviations: colostrum= C = transitional T , , M = mature pp = post partum

Source Status Country Year Mean Range or SD n Me t hod Ref . Remarks

Human T+C USR 68 179 18 - 295 AES 5 1 week pp

M USR 44 20 ? AES 25 Quoted by Archibald [9J M USR 68 182 17 - 290 AES 5 1 month pp M USR 68 102 3 15 4 2- AES 5 2-4 months pp M USR 68 71 9 9 79- AES 5 6-10 monthp sp

Market UK 72 300* +100 12 MS 4 102 Bottled cow's milk milk USA 70 220 ? AES 86 Whole milk from hospital menus USA 72 500 ? AAS 278a Whole milk from dairy

Buffalo M BUL 68 15 - 150S AE 35 218

Cow M BUL 75 22 - 44 320 AES 217 Range of mean values from different areas, country wide study M 68 7.5 - 75 198 Reference source M HUN 75 230 0250- 0 ? FES 295 During 1972 and 1973 M USA 69 860 +230 ? FES 245 From 20 sampling stations

Ewe M BUL 68 0 23 - 0 21 AES 218 average concentration of this element in human milk appears to be somewhere between 120 and 250 mg per kg. Human colostrum contains roughly doubl e amouna founN th e n matur f i do t w mile co milk kn I . Na is present at about 400 to 500 mg per kg. A single result included in Table 43 for market milk shows 500 mg per kg of milk a hospitause n i d l diet [86]. Among other species except reindeer kg)r (157pe ,d giraffg 0m rabbian ) kg et r r (100(120pe pe g g 0m 0m kg), most other animals secrete between 300- and 700 mg of this element per kg of milk (Table 43).

The concentration of Na declines stead'ily throughout lactation. An exampl shows ei mar r nfo e milmilw n Tablco ki k n 3 [309]i 4 e a N . is not affected by the mineral intake [152]»

Strontiu me result th Mos f o ts availabl r thifo es element come froUSSe th m R werd (Tablan e ) obtaine44 e AESy b d .

e probablTh e average concentratio f thio n s elemen n humai t n milk from Russian subjects appears to be about 100 ;ig per kg. Only a few results are recorded for the cow and these vary among them- selves s ratheha g rk widelyr pe r example Fo g .p 4 4 , o whilt 2 2 e been reported for Bulgarian milk [217], over 2 mg per kg has been measure n Hungariai d n samples [295] s concentratioIt . n markei n t . kg r pe g u 0 50 o t 0 mile rang20 th kf o e n appeari e b o st

Some aspects of occurrence of Sr in milk, and seasonal and geographic variations have been reviewed [215].

Sulphur This element occurs in milk as a major constituent and varies widel n concentratioi y n among different species depending upoe proteith n n content. Some literature datr differenfo a c types of mil showe kar Tabln ni . 45 e

The accepted standard value for this element in human milk is 140 mg per litre [188]. Its concentration in cow and market milk is about 300 mg per kg. In market milk from the UK studied by MS, its content has been reported to be 403 +• 80 mg per litre [102]. Among other species, buffalo, ewe, goat and mare milks contain S in the same rang w milk s founco a e n .i d However, animal e scat th suc ,s a h d rabbian w dogtso f ,secretthio 100 o t f sg 0o 0 u elemen50 eg k r pe t milk (Table 45).

Most of the S in milk is bound to protein. Fat globule membranes are rich in this element. The influence of dietary content of S on its concentration in milk is only marginal [152].

Telluriu d Thoriuan m t appearI m s that only market mils ha k been analysed for these two elements. These results are shown in . 47 Tabled an 6 s4

Tin The determination of Sn in biological materials is a difficult task and only a few methods are capable of providing accurate results at the concentrations occurring in milk. This situatio s i reflectee nrathe th y b r d limited analytical data available for this element in milk as shown in Table 48.

n botI h human colostru d maturan m presen. e is mil t t aboui a kt t 4 pg or less per kg of dry milk, according to a Yugoslav study [3la].

129 TABLE 45 Elemental Composition of Milk: Sulphur

Unit: mg per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, = Mmatur e

Source Status Country Year Mean Range or SO n Method Ref. Remarks

Human C 49 230 200 - 260 8 ? 188 Review

T 49 200 8 18 15Revie0 - w? 230 9 1

M 40/45921 0 3 Revie w1 ? M 0 30 4 9- 0 5 140 116 ? 188 Review

Market 2 7 UK 403* 2 10 Bottle S +8dM 0cow' 2 1 s milk milk

Ass M 40/41 1407 30

Buffalo M 6 37 8 6 183 Table 45 continued (Sulphur)

Source Status Country Year Mean Ranged oho rt Se DM n Re f. Remarks

Cow C 6 5 GFR 1180 +730 7 AAS 150 1st milking 6 5 C R GF 310 +220 7 AAS 150 6th and 7th milking

M 40/41 319 30 M 0 744 4 - 0 30024 * ? ? 19 Reference source M GFR 57 290 +13180 alse AASe oS [1521 15 , 153] M GFR 72 860 +90 4 GRV* 322

Cat M 40/41 529 ? SAS 30

Dog M 40/41 752 ? SAS 30

Ewe M 68 310 ? ? 183

Goat M 40/41 406 30 M 68 160* I I 83 Reference source

Mare M 68 323 9 9 183

Sow M 40/41 800 ? ? 30

Rabbit M 40/41 1088 ? SAS 30 TABLE 46 Elemental Composition of Milk: Tellurium

Unit: pg per kg

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mean Range d ono r t Se DM n Ref« Remarks

Market USA 2 Homogenise27 67 S AA 147- d 0 2 mil040 k milk

Ul

TABLE 47 Elemental Composition of Milk: Thorium r litrepe = )* ( g k r pe Unitg p :

Abbreviations = colostrum C : = transitional T , = matur M , e

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Market UK 72 2.5 2 *10 Bottle S M d cow' 2 1 s milk milk TABL 8 4 E Elemental Compositio Milkf n no Ti :

Unit: jig per kg

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Human C YUG 78 0.48 0.45 - 0.51 2 NAA 3la Converted from dry weight

T YUG 78 <"0.4 ? NAA 3la Pooled samples fro mothers8 m , converted froy dr m weight

M USR 44 5 ? AES 25 Quoted by Archibald [9] M YUG 78 <:o.25 3 NAA 31a Converted froy weighdr m t

Market GFR 74 (50-320)3 .10 5 AAS 259 Different sort f condenseso d mil n cani k s milk GFR 74 2000 1 AAS 259 from a can protected by a special typ f lacqueo e r UK 72 7.8 +1.2 12 MS 102 Bottled cow 'mils k USA 64 680 ? SAS 267 Raw milk, bulk quantities in tinned cans

Cow M BUL 75 0 32 0 52 1 0- 7 21 RangAE Sf meao e n values from different areas, country wide study M USA 64 190 SAS 267 Milk from udder directly into PE-container M YUG 78 NAA 3la Converted from dry weight TABL 9 4 E Elemental Compositio f Milkno ? Titanium

Unit : pg per kg

Abbreviations :colostrum= C , T = transitional, M = mature t no = O N detected, pp = post partum

Source Status Country Year Mean Range or SD n Me t hod Ref. Remarks

Human T+C USR 68 305 103 - 915 ? AES 5 1 week pp

20 u> M USR 44 ? AES 25 Quoted by Archibald [9J M USR 64 287 S +5AE 7 0 3 88 Original results base miln analysih o d as k s M USR 68 264 0 54 10 2- AES 5 mont1 p p h M USR 68 182 118 - 291 AES 5 2-4 months pp M USR 68 123 64 - 167 AES 5 6-10 months pp

Market USA 63 ND ? SAS 265 Homogenised milk milk

Cow M BUL 75 0 24 4 0- 320 AES 217 Range of mean values from different areas. country wide study M USR 64 403 +45S AE 24 88 M USR 64 20 - 170 3 AES 79 s concentrationIt milw kco appean i s o vart r y widely from regioo t n region. 320 samples examined in Bulgaria as a part of country-wide study showed a ra.nge of 10 to 520 ug per kg in different areas covered [217] n markeI . t milk als s it concentrationo s have been reported to fluctuate very much, which of course is understandable e becausinfluencth f o ef o contaminatioe n from containersr Fo . example, a concentration of 8 ug per kg was reported for bottled milk in the UK [102] whereas over 500 ug per kg was reported for raw milk samples collecte n canti sn i d [267], Furthermore, such high concentrations as 2 to 320 mg per kg have been reported for different type f o condenses d milk sample n i cans s [259]. There o dangen appear e e b infanr th o evet sr tfo n fron contaminatioti m n of milk since this elemen s i readilt quantitativeld an y y excreten i d e faeceth s [102].

The occurrence and pathways of tin into milk and milk products have recently been briefly reviewed [I98a, 310aj.

Titaniu n mil mi e e fro resulte i ar USSkth T Mos th m f r Ro tfo s and were obtained by AES in multielement analysis (Table 49).

n maturI g u e 0 huma50 o nt mil0 i e occurT rang10 kth f o n ei s per kg. According to results reported from Bulgaria and the USSR it is present in cow milk at about 100 to 400 ug per kg. Studies on market milk are lacking. Among other species, ewe, goat and mare, result r whicfo s e alsar h o reported from USSR o 100,c sho0 g 0^i 10 w of Ti per kg of milk [88].

Uranium Hamilton at al. [101, 102] have investigated this markeelemenK U n ti t milk usin (TablS g M NA d e Aan 50) s concenIt . - tratior kg)pe s beeg .n nha n 0 e rachefoun(1 b o w C dlo r

Vanadium Tabl 1 summarise5 e e availablth s e literature datr fo a n milki V .

This element occurs at very low concentrations in biological materials [127] and the choice of analytical technique has a big influenc e accurac e th results ch n e o resultef o Th y . s obtainey b d AES vary from 0 to 27 ug per kg of human milk [5], Since NAA is one of the best suited methods for the analysis of this element, only the results obtained for milk by this method are worth considering. In a recent study reported from Yugoslavia a concentration of <60 to s beeha ng k reporte r pe r maturV fo d g n e 0 huma14 n milk, while colostrum contained 90 ng per kg [31a]. Market milk samples from Norway, Sweden and the USA have been shown to contain an average of 80 to 110 ng per kg, which falls in the same range as is found for human milk.

Yttriu singlA m e result reporte r thifo d s elemen n Ui tK market milk r litrindicatepe eg ^ (Tabl5 a leves3. f e o l 52).

s beeha nn Z widel , Fe y d an u s i C als e Zins casr th oA fo ce investigated in human, bovine and market milk samples (Table 53).

With only a few exceptions mature human milk from many geo- graphical locations contain f thio g sm s elemen 3 betwee d r an pe t 1 n n f kZ milo g e k Th wit n overal. a h kg r lpe meag f m o arounn 5 1. d content of colostrum is distinctly higher than that of mature milk,

135 Tabl 9 continue4 e d (Titanium)

Source Status Country Year Mean Range or SD n Method Ref, Remarks

Ewe M USR 64 1016 +231 28 AES 88 Original results based on milk ash analysis

Goat M USR 64 290 +35 24 AES 88 Original results base miln h o analysid as k s

Mare M USR 64 481 + 103 16 AES 88 Original results base miln h analysio d as k s

TABL 0 5 E Elemental Compositio Milkf o n : Uranium

Unit: jjg per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M = mature

Source Status Country Year Mean Range or SD n Method Ref. Remarks

______.————————————————————————————————————————————————————Li.______Ma rke t UK 72 0.01 6 NAA 101 milk UK 72 <2.5 2 10 Bottle S M d cow'12 s milk TABLE 51 Elemental Composition of Milk: Vanadium g k r pe Unit g u :

Abbreviations colostrum= C : = transitional T , matur= M , e pp = post partum

Source Status Country Year Mean D RangS r o e n Method Ref . Remarks

c Human C YUG 78 0.09 0.08-0.11 2 NAA 3la Converted from dry weight

T+C USR 68 6 0-10 ? AES 5 1 week pp

T YUG 78 ^0.07 2 NAA 3la Pooled samples from 8 mothers, 2 aliquots, results converted from dry weight

M USR 68 5 0-27 AES 5 mont1 p p h M USR 68 5 0-15 7 AES - 5 2-4 months pp M USR 68 3 0-9 AES 5 6-10 months pp M YUG 78 <0.06- 0.14 4 NAA 3la Converted from dry weight

Market NOR 67 0.08 0.07 -0.092 7 NAA 288 Oslo milk SUE 67 0.11 0.076 -0.15 7 NAA 288 Stockholm USA 63 10 7 SAS 266 Whole milk USA 67 0.084 0.071-0.094 7 NAA 288 Boston USA 67 0.077 0.066-0.088 7 NAA 288 Chicago USA 67 0.074 0.052-0.096 NAA 288 New York Table 51 continued (Vanadium)

Source Status Country Year Mean Range or SD n Method Lief. Remarks

Cow M BUL 75 77 - 132? 320 AES 217 Range of mean values from different areas, country wide study a 3l Converte A NA d fro y 2 weighmdr 8 t7 0.1 G 3YU M

UJ CO TABLE 52 Elemental Composition of Milk; Yttrium

Unit: jig per kg (* = per litre)

Abbreviations: C = colostrum, T = transitional, M - mature

Source Status Country Year Mea n nMetho D RangS r d o e Ref. Remarks

Market UK 72 3.5* +0.4 12 MS 102 Bottled cow's milk milk TABL 3 5 E Elemental Compositio Milkf no : Zinc

Unit: litrer ugpe pe= ) r* ( kg

Abbreviations: C = colostrum, T = transitional, M = mature p= posp t partum

Source Status Country Year Mean Range or SD n Method Ref . Rems ark

HumaC n 74 6200* 70 9800- 0 ? 19 Reference source C GRE 78 5500 2400 - 8700 15 NAA 89a 4 hour2 p p s C ITA 74 8250* +170 55 AAS p p 22 y 0 da 1 C ITA 74 5070 +140 55 AAS 220 5 dayp p s C SOU 70 5258 +1549 37 AAS 243 5 days pp, white subjects aged 24+6 years, converted from dry weight C SOU 70 6051 +2433 84 AAS 243 5 dayBant, spp u subject years5 6. s + age, 4 2 d converted froy weighdr m t C USR 71 590 +90 AES la 2 days pp

T+C USR 68 1359 102 198- 2 4 50 AES 5 1 week pp

T 74 7700* 400 - 11500 ? f 19 Reference source T GRE 78 5200 3600 - 6500 15 NAA 89a day5 p sp T USR 71 740 +90 ? AES 1 9 dayp sp T YUG 78 4935 +136 3 NAA' 3la Pooled samples from 8 mothers, converted from dry we ig ht

T+M IN 78 4760 +260 96 16 <1 month PP Table 53 continued (Zinc)

Source Status Country Year Mean Range or SD n Method Ref. Reraa rks

HumaM n 69 650 ? ? 325 M 70 530 9 9 198 Reference source M 74 5300* 200 - 13800 ? 19 Reference source M FIN 79 500 - 4000 229 AAS 318a 27 Mothers^ 2-31 weeks pp M GFR 75 1960 +580 ? 9 30 monthd 3 3r f d lactatio2nso an d n M GRE 78 1500 1400 - 1700 15 NAA 89a 30 days pp M IN 59 3420 330 0354- 0 22 SAS 16 From poor Indian women M IN 78 1960 +111 64 ? 16 1-3 months ) M IN 78 1350 +67 80 ? 16 4-6 month Fro) s m poor Indian women M IN 78 1040 +69 59 ? 16 7-12 months) M ITA Ik 3105* +652 ? AAS 219 15 days pp M ITA 74 3240* +290 55 AAS 220 15 days pp M ITA 77 53 11000- 0 29 NAA' 41 Milk status unknown M NEZ 77 3200 25 AAS 34 Pooled samples M UK 64 1420 - 6770 70 SAS 37 5-8 weeks pp M UK 77 2950 9 ? 47 M USA 71 1340 +940 22 AAS 214 Collected in glass stoppered bottles M USA 76 3190* 25 AAS 33 Pooled samples from 25 mothers M USA 76 1680 +780 50 AAS 237 Daily samples M USA 76 1590 +840 50 AAS 237 Weekly samples M USA 76 1580 +810 50 AAS 237 Within day samples M USA 77 1600 28 AAS 311 1-3 months pp Tabl continue3 5 e d (Zinc)

Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Human M USA 77 1050 39 AAS 311 4-6 months pp M USA 77 750 23 AAS 311 9 month7- p p s M USA 77 630 13 AAS 311 10-12 months pp M USA 77 690 28 AAS 311 13-18 months pp M USA 77 590 30 AAS 311 ove month9 1 r p sp M USR 64 316 11 SAS 317 Donors aged 22-28 years, milk obtainea y b d single spurt fro e breasmon t M USR 65 1680 +450 8 SAS 249 M USR 68 1630 243- 1000 0 ? AES 5 mont1 p p h M USR 68 1975 1181 - 2985 ? AES 5 4 month2- p sp M USR 69 1230 560 - 2040 23 SAS 248

Market cm 79 3170* 2050 - 5920 49 NAA 49a Both liquid and powdered milk samples milk FIN 73 4100 +159 39 AAS 8 Market milk from various dairies GFR 75 5100 380 8700- 0 64 ? 22 Pasteurised milk UK 72 4400* -flOO 12 MS 102 Bottled cow's milk USA 63 3700 8 AES 318 USA 67 140 - 4500 3 AAS 273 Homogenised whole milk USA 67 4180 ? AAS 273 Raw whole mil cann i k s USA 70 4600 ? AES 86 Whole milk from hospital menus USA 77 3610 +320 ? AAS 28 California market milk Tabl continue3 5 e d (Zinc)

Source Status Country Year Mean RangD S r o e n Method kef* Remarks

Buffalo M BUL 68 1680 - 2750 35 AES 218 M BUL 75 2350 - 3500 320 AES 7 21 Rang f meao e n values from different areas,, country wide study M IN 72 2200 2200 5 SAS 103 n = number of determinations

Cow C FIN 70 4000 3800 - 4200 39 AAS 7 Collected from tanks from various dairies C GFR 56 13507 -1-12360 7 150 t milkin1s g C GFR 56 6007 +3720 7 150 6th and 7th milking C GFR 75 25840 19900-T8300 5 AAS 280 1st milk, 2.5 hours pp C GFR 75 12673 20800-8000 5 AAS 280 2nd~4th milking pp to C GFR 75 7932 9800 - 6100 5 AAS 280 5th-l4th milkinp p g

M 69 3000 - 5000 2 ? 325 M 70 220 - 5000 2 ? 198 Reference source M BUL 76 3960 - 5510 20 AAS 306 M FIN 70 3800 - 4100 68 AAS 168 Fro mdifferen5 t breeds M FIN 73 4000 4-107 39 AAS 8 Raw milk receive t dairiea d s M FRA 74 2620 200 - 5520 150 AAS 53 M FRA 75 4410 +490 800 AAS 209 National average, n = number of determinations M GFR 57 6940 +1870 18 151 See also [152, 153] M GFR 77 4250 +800 2 NAA 108 216 determinations oveyearo tw r s M IN 57 1658 - 1800* 3 SAS 128 Maharastra region M ITA 74 3865 +718 ? AAS 219 Table 53 continued (Zinc)

Source Status Country Year Mean Range or SD n Method Ref . Remarks

Cow M 1TA 77 3200 2 NAA 41 M NET 64 3900 200 0500- 0 1 ? 313 M NEZ 77 4000 1 AAS' 34 Homogenised cow1 s milk M USA 67 3840* 18 SAS* 230 Bulk milk samples M USA 67 4780* 14 SAS 230 Individual milk samples M USA 74 3900 9 74 Alaska, quote Franzmany b d n [76] M USA 75 3438 8 AAS 59 Missouri, summer season M USA 75 2800 8 AAS 59 Missouri, winter season M USA 76 3980* +170 7 AAS 33 M USR 61 2117 1189 - 2642 10 ? 95 M USR 69 3530 120555- 0 0 74 SAS 248 M USR 70 5500 9 SASi 40 M YUG 78 3000 +305 6 NAA» '3la Converted from dry weight

Ewe C+T UK 77 7200, 6 AAS 11 Clun Fores Suffold an t kx Clu n Forest ewest 1s , week of lactation

M BUL 68 930 - 1900 8 AES 218 M UK 77 7500 6 AAS 11 Clun Fores d Suffolan t kx Clu n Forest ewesh 6t , wee f lactatioo k n

Coat C GFR 74 42000 +13000 ? ? 57 1st day of lactation C NIG 79 14110 +450 10 AAS 1 1-5 days pp Tabe continue3 5 l d (Zinc)

Source Status Country Year Mean Range or SD n Method Ref. Remarks

Goat T GFR 74 33000 +15000 ? 7 57f lactatioo y }4tda h n

M GFR Ik 22000 +7000 ? ? 57 f lactatioo 56ty da h n M IN 72 3000 5 SAS 103 = numbe n determinationf o r s M NIG 79 4010 +510 10 AAS 1 2-18 weekp p s <*A. Mare C USA 74 6400 +400 8 AAS 309 15-30 minp sp C USA 74 3600 +400 10 AAS 309 24 hours pp

T USA 74 3500 +100 10 AAS 309 24 hours pp

M USA 74 2400 +200 10 AAS 309 4 months pp

Moose M USA 76 6230 +2340 21 AAS 76 Alaska

Rat C ? 77 16000-18000 ? ? 1 day pp, quoted by Underwood [3lOa]

M ? 77 11000-13000 ? ? 18 days pp, quoted by Underwood |3lOa]

Sow C USA 65 19200 61 SAS 60b < 13 hours pp C USA 65 23000 20 SAS 60 bhour3 1 befor, * pp s pige d suckleth eha s d C USA 65 14300 17 SAS 60b < 13 hours pps after the pigs had suckled

M USA 65 6900 16 SAS 60b Lactation diet containing 49 rag Zn per kg M USA 65 10300 20 SAS 60b Lactation diet supplemented by 100 mg Zn per kg of diet TABLE 54 Elemental Composition of Milk: Zirconium r pe g ji Uni t: = * ( kg per litre)

Abbreviations :colostrum= C , transitional= T , M= matur e

M Ol Source Status Country Year Mean D RangS r o e n Method Ref. Remarks

Market UK 72 1.2* 2 10 Bottle+0. S dM 1cow'22 s milk milk USA 66 960 ? SAS 271 Bulk whole milk

Cow USA 66 800 1 27 Milk S froSA m udder g dependink r pe d range an g gm 8 upons e "preciseo frot ,th 5 m " status of colostrum. In cow milk, except for a few extreme values, the reported mean concentrations fall within a narrow range of 3 to 5 mg e normalisinTh . pekg r g effec f poolino t g milks from various sources is readily reflected in market milk which has an almost n contenZ e f Th o t . kg constanr pe f g abouo m t n 4 tZ leve f o l colostru s criticalli m y dependene timf th milkino e n o t g post partum. As shown by Kirchgessner, colostrum from the first few hours after calving can contain up to 25 mg per kg of this element [150, 151]. However, its concentration declines rapidly during the day 5 d the firso san t n 3 tremain s relatively constant.

Among other species, milk of both mare and moose contain roughl same milw th yco s thaed kgoa a f an amouno whiltn t Z e f ew eo t milks contain somewhat higher levels d goaan *t e Colostruew e th f o m exceedingls i n somi eg k y r n containinZ ricpe n g hi m 0 5 mucs a gs a h samples [57].

The concentration of Zn in milk is related to dietary intake bualss i t o subjec biologicao t t l controle cowth ,n I .experimenta l Zn deficiency causes a significant drop in the concentration of Zn e samth ien t milka tim t e, bu utilizatio f dietar no s increase i n Z y d [203S 221]. With excess dietary Zn supplementation, it has been observed that, afte certaia r nn leve Z increas e f milo ls th ha k n i e occurred, high supplementation of this element ceases to have effect [199, 203, 280]. However, in another investigation involving sows, dietary supplementation of Zn (100 mg per kg) to the lactation diet, which already contained 49 mg per kg, increased the Zn content of milk from 7 (lactation diet), to 10.3 ing per kg [60a]» The influence of supplementa n abovlZ e thit beeno s n die e s levestudiedth ha t n li .

The concentration of Zn in mature milk decreases slowly with the progress of lactation. At 10 to 12 months post partum it is roughly half that of early mature milk. Zn is mainly bound to n caseini protei % d therefor an 8 ) (8 n e varies directly wite th h protein content. Roughly 12 % of Zn appears in che dissolved state and very little of this element is associated with the fat content of milk e [310a]F , unlikd an . u eC

The importance of milk to the newborn animal is a well estab- lished fact [224, 310a]. The biochemical factors contributing to this through species specific zinc binding ligands in milk are discusse section i d 0 (pagn1 e 151).

e occurrenc n milTh i s als ha kn Z o f beeo e n reviewe y otheb d r author 109, [8 s , 152, 215, 310a, 313]. Zirconium Only three results appear to have been reported in the literature for this element in market milk samples (Table 54). Of these, the results reported by Hamilton for UK samples (1.2 ug per litre) appear to be most realistic [102].

9. COMPARISON OF THE ELEMENTAL COMPOSITION PROFILES OF MILK AND BLOOD Comparison f elementao s l concentration w mil co n humai ksd an n wite correspondinth h g concentration n blooi se presente ar d n i d Tables 55 and 56 respectively. The values listed for milk are based 146 n t caseI possiblno . s se dat o th 54 whern wa Tablei a e o t t i e 5 s o providt a probable e average value base n severao d l different data source r whero se availablth e e date inconsistentar a , results froa m few individual investigations which, in the present author's view, seem to be dependable are quoted in Tables 55 and 56.

The following conclusion e drawb n n ca sfro m this comparison.

Human mil s bloov k d Amon e bulth g k element s i highe a C sn i r e sam th n bot i , es whil6 i a factohmil g o y t fluidsM eb k e 4 r Th . remaining elements occu t a higher r concentration n i bloode s Th . factors (blood/milk) are P=3, K=3 to 4, Cl=-5 to 6', Na=10 to 15, S=12 and N=»17. Among the trace elements, Br, Cu, Eu, F, Fe, Hg, Pb, Sb, Se, Si, Sn, V and Zn are more concentrated in blood. The elements Al, Cd and I, are more or less the same in both. Of interest are the elements Cs, Li, Rb, Sr and Ti (?) which are higher in milk and thus confore tendencth r severao mt Fo y. lshowCa elementy b n s such e patterth i N s i nuncleard an o M , , mainlMn , Cr y , becausCo , As e s a e limiteoth f d information available.

Bovine mil s bloo v kn contrasI d o 'tht t e situatio r humafo n n blood r whicfo , h reliable literature date availablar a e froa m review by lyengar et al. [127], no single dependable source could be foun r bovinfo d e blooddate Th a . quote e basea n Tabli ar d n 6 o d5 e few sources mentione e footnoteth n i d .

The concentrations of major elements in bovine milk and blood vary ove a widr e range r example Fo s -concentratei . a C , n mili dy b k a factor exceeding 10, whereas for Mg the factor is about 4. For P, the factor ranges from 2 to 5. On the other hand, Cl, K, Na and S are present at a higher concentration in blood than in milk and, expresse s a ratiod s (blood/milk), they presen e followinth t g picture: Cl=3, K=1.5 (using the value 2250 mg/1 in blood), Na=>5 and . 7 3=o c 4

Among trace element r whicfo s h reliable datr bloofo e a ar d available s i presen n Z t , a abou te samth t e leve n i botl h fluids whereas Cu and Fe are lower in milk by factors of 10 and 1000 respectively. For the remaining trace elements a reliable compar- ison is not possible due to the paucity of the data.

Bovine mil s markev k t e concentrationtnilTh k e bulth kf o s e loweabou% ar 0 n ? markei 2 r t d an tK element, milMg k , thaCa sn i n fresh milk. Of the two values tabulated in this report for Na, one value show a ssimila r decline similaA . r situatio. Cl s i n seer fo n Fo, onle P valur on ys i erecorde d which doet shoy differno san w - ence. These results indicate that there is a certain amount of dilution of market milk either by volume increase or because of the pooling effect. Among the trace elements, no changes in concen- tration are seen for the elements Ag, B, 3a, Cd, Cu, Fe, Hg, Mo, Pb . d anpossiblSi an dHowever n M e y, concentrationth F , , Cr , Br f o s Sb are increased in market milk. Of these it may be mentioned that n easilca r yC d entean botn r M hmarke t mil s a contaminantsk o N . clear pattern is noticeable for As, Co, Ni, Rb, Se and Sn because of lack of sufficient data and analytical problems. Both I and Zn are good example e positivth f o s e effec f poolino t g milk since they have rather constant levels in market milk.

147 TABL 5 5 ECompariso e elementath f o n l concentrations foun n humai d n blood and milk (units: blood Ln mg/L, milk in mg/kg of L)

Element Blood* Milk Remarks

Aluminium 0.2-0.4 0.25-0.50 Russian subjects Antimony 0.001-0.004 0.00008? see dat Tabln i a 6 e Arsenic 0.0025-0.09 0.03 single source of data Barium 0.04-0.09 0.02-0.04 Russian subjects Beryllium 0.10? no data Bismuth 0.009-0.023 no data Boron 0.05-0.25 no data Bromine 4.7 1.52? single source of data Cadmium 0.001-0.007 t0.002 see data in Table 13 'Caesium 0.001-0.0045 0.002-0.032 single source of data Calcium 60(57-70) 250-350 e discussiose , p.3Ca n 5o n Cerium 0.002? no data Chlorine 2880(2600-3300) 500(400-600) Chromium 0.0065-0.05 0.01-0.03 see discussion on Cr, p.47 Cobalt 0.0008-0.05? 0.001? e dat se n Tabli a 9 1 e Copper 1.0(0.64-1.28) 0.3-0.4 Europium 0.004 (0.008-0.04)10~3 single source of data Fluorine 0.20-0.85 0.05 Germanium 0.44? no data Iodine 0.06(0.02-0.07) 0.04-0.08 e discussiose , p.6I n o 1n Iron 450(350-500) 0.30-0.50 see discussion on Fe, p.65 Lead 0.2(0.1-0.4) 0.02-0.03 Lithium 0.003-0.02 0.05? see discussion on Li, p.79 Magnesium 38(30-40) 30-40 Manganese 0.002-0.05 0.020 Mercury 0.005-0.02 0.001-0.003 Molybdenum 0.001-0.015 0.005-0.025? see discussio , p.9Mo n 3o n Nickel 0.005-0.08 0.02 Niobium 0.005? Nitrogen 34300 2000 see discussio9 9 . p , N n no Phosphorous 350(300-400) 130 Potassium 1600(1450-1900) 330-700 see discussio , p.9K n no 9 Rubidium 2(1-3) 0.6-3.7? single sourc f dato e a Scandium 0.0076 (0.004-0.17)10-3 single source of data Selenium 0.17(0.1-0.3) 0.02(0.01-0.03) see discussio , p.11Se n o n3 Silicon 4( 2-8) 0.3-0.6 Silver 0.003-0.01 Sodium 1950(1800-2050) 120-250 see9 discussio11 . p , Na n no Strontium 0.03(0.02-0.04) 0.1 Russian subjects Sulphur 1800 140 Tellurium 0.005 Thorium 0.0005-0.0024 Tin 0.1-0.3 <0.0003-0rOOOS Yugoslav subjects Titanium 0.03-0.1 0.1-0.2 Russian subjects Uranium 0.0001-0.0008 Vanadium 0.014(0.0078-0.06) (<0.06-0.14)10~3 Yugoslav subjects Yttrium 0.005 Zinc 7(5-9) 1.5(1-3) Zirconium 0.006-0.02

* Data from lyengar, Kollmer, Bowen [127] TABLE 56 Compariso e elementath f o n l concentrations founn i d bloo mild an dk (units: mg/kg or L)

Element Blood* Milk Remarks

Aluminium 0.32,0.82 1.0(0.8-2) _ Antimony 0.002 0.1 e alsse o market milk (Tabl) 6 e Arsenic 0.07 0.025-0.05 — Barium 0.24 0.04-0.18 single source of data Beryllium , - 0.0002, market milk Bismuth - - 0.0022, market milk Boron 2.50 0.1-0.3? difficul asseso t t s (see Bromine 4.30 2 Table 11) Cadmium (4-21.6) (0.003-0.025) highly variable e Tabl) se , 13 e Caesium 0.01 0,002-0.004 inconsistent e Tablse ,4 1 e Calcium 44,100 1200(1100-1300) lo n markewi t milk (1000) Cerium - - 0.002, market milk Chlorine 2780,3270 1000 - Chromium 0.07? 0.01-0.02 - Cobalt 0.0004 0.0003-0.0008 - Copper 1.04 0.10 - Europium - — — Fluorine 0.07 0.02-0.05 see discussion on F, p. 57 Germanium - 0.24? - Iodine 0.04 0.014-0.270 see discussion on I, p. 61 Iron 412 0.3-0.4 - Lanthanum - 0.0015 single source of data Lead 0.37,0.4 0.. 025-0. 050 - Lithium - - 0.016, market milk Magnesium 18-28 100-120 lo n markewi t milk (75-100) Manganese 0.06,0.04-0.17 0.03-0.06 high in market milk (0.130) Mercury 0.001 0.001 see discussion on Hg, p. 87 Molybdenum 0.04, 0.87? 0.02-0.05 - Nickel 0.0026( serum) 0.01-0.03 - Niobium - 0.025? - Nitrogen 5500 - Pho sphorous 176,440 900-1000 low in market milk, ca. 850 Potassium 429+342,2250 1500(1400-1600) lo n markewi t milk (1300-1400) Rubidium 4.7 0.7 disputable3 11 . p e se , Scandium 0.05-0.1? 0.00001 single source of data Selenium 0.05,0.08,0.24 0.035-0.068 see discussion on Se, p. 113 Silicon 6.0 2-7 - Silver 0.02 0.05? - Sodium 1930,2590 400-500 - Strontium 0.06 0.02-2.0 see discussion on Sr, p. 129 Sulphur 1210,1240,2150 300 - Tellurium - 0.40-1.47 single source of data Thorium — 0.0025 single source of data Tin 0.009 <0.0003 9 e discussio12 . se p , Sn n no Titanium 0.03 0,1-0.4 - Uranium - - 0 ng/kg1 , market milk Vanadium - (0.07-0.1D10-3 - Yttrium 0.004 - 0.0035, market milk Zinc 2.8,3.2 4(3-5) - Zirconium 0.006 ™ ' 0.0012, market milk

Dat* a pooled from [lla , 26a20 , , 61a310ad an , 108 ,1 83 ] 15 ,(se e text)

149 nitrogen 3er litre non-protein nitrogen

serumalbumin

immunogtobulins

5- lactoferrin

lysozyme

«-lactalbumin

^-lactoglobulin 4- casein

3-

Hvf^-i-vi

Humanized Human breast milk milk substitute

Figure 2 Procein composition, of cow milk., humanized breasc- milk, formula and human milk. Nitrogen components derived from che various proteins and non-procein nitrogen are given as grams nitrogen per litre. (From Hambraeus, L.t Forsum, E. and Lonnerdal, B., Nutritional aspects of breast-milk, versus cow's milk formula n i "Food , Immunology"an d , Hanson, L.Ad an . McFarlane, H. (eds) , Almquist and Wiksel, Stockholm (1977). With permission from Prof . HambraeusL . )

150 10. NUTRITIONAL AND BIOCHEMICAL DIFFERENCES BETWEEN HUMAN AND BOVINE MILK

There exist both qualitative and quantitative differences between huma d bovinan n e milks alreadA . y mentione n i sectiod 4 n (page 3), not only do the protein contents of these two fluids diffe t alse bu relativth ro e amount f o proteis d non-proteian n n bound nitrogen as well as minerals. Also, the composition of individual proteins of these two milks is rather different. For example, casein is the main protein of cow milk which accounts for about 4.4 g of the 5.5 g total nitrogen, compared with only 0.4 g in human milk (see Figure 2). On the other hand, over 70 % of the total protei n humai n n mil f whes o i kmad p yu e protein s comparea s d wit milkw hco .les n i s, Moreover 7 tha0 2 n , ther e furthear e r difference e compositioth n i s f o when y proteins. While beta- lactoglobulin is the dominating component of the whey proteins in cow milk, it is totally lacking in human milk. Both alpha- lactalbumin and lactoferrin (an iron binding protein) are the prominent ones in human milk. It may also be mentioned that alpha- lactalbumin is related to the lactose content of milk of various species, with seal and human milks occupying extreme positions. Depending upoe sourceth n , casein also differs characteristiit n i s c composition of amino acid constituents. Similarly, marked differ- ences havd aminan e obeet fa acin e dshowth compositio n i n f humao n n breast milk and cow milk. These and many other biochemical differ- ences relatee inmunologicath o t d l propertie f humao s n breast milk and hypersensitivity of certain infants to cow milk have been extensively discussed [85a, 96a,n lOOa, 105a, 132, 149].

Tha role of Zn and other trace metals in paediatric nutrition and healt s i hwel l established [99a, 209a]. Recent investigations have provided convincing evidence that absorption of Zn by human infant s i bettes r from breast milk than signife milkfrow On co m. - icant proo n thii f s contexe absencth s f acrodennatitii o te s entero- pathica (AE) in breast fed babies. This is a disease which usually manifests itself shortly after the child has been weaned or received supplemental food. Attempt o explait s e betteth n r absorbabilitf o y Zn boun o humat d n milk protein l a seriechromat ge o s t f havo sd le e- ographic experiments with bot milks w he finding co humaTh d . f an no s these investigations show that most of the Zn in bovine and human milks is characteristically associated with high and low molecular weight fractions respectively. Thus a specie, s specific difference in Zn-binding ligands is responsible for the effectiveness of human milk in curing AE patients [61, 117]. Furthermore, Evans and Johanson have demonstrated that a Zn-prostaglandin complex in human milk, which is absent in cow milk, is the link between the abnormal metabolis f mfatto ye abnorma th acid d an s l metabolis observen Z f mo d in AE patients [63a]. als y mentionee b oma t I n thii d s connection that feeding babies with overstrength cow milk results in excess renal solute load and associated complications. Furthermore, infants fed mainly on cow milk develop early iron deficiencies and may require supplement- ation. Both these abnormalitie e uncommoar s n i babien s subsisting on mother's milk [77]. Ther s i cleae r evidence that iro n breasti n - fed babies is unusually well absorbed, thus confirming the high bioavailabilit f o thiy s element from human milk [255a, 255b]. However, some studies have also indicate e inadequacth d f breaso y t

151 milk, especially for preterm infants. For example, breast milk does not supply sufficient Cu and Zn to pretenn babies, with the result that the body stores of these elements may become inadequate [52].

11. CONCLUSIONS

n examinatioA e literaturth e elementaf o th n n o e l composition of huma d animanan l mil kfollowine leadth o t s g conclusions.

n comparisoI ) (a d markenan witw t co hmilk , human mils ha k been much less extensively investigate severar fo d l elements. (b) In respect of the major elements, market milk appears to be dilute compares a abouy % b d 0 2 td with fresh milk.

(c) Although some farm animals such as the buffalo are major source f milo sn certaii k n countries, very little work appearo t s have been don n establishino e e elementath g l compositio f suco n h milks.

(d) Regarding the variability of the major elements Ca, Cl, K, Mg, N, Na, P and S, for which results are available for several specie d froan sm several countries w milco ,k show e smallesth s t fluctuations. This tendency generally indicates that the samples analysed in different countries were "comparable" with each other. In human samples, with the exception of Mg and P, all other elements appear to vary ,in concentration at least by a factor 2, which is surprisin f truei g .

(e) Of the trace elements, Cu, Fe and Zn have been a-nalysed most extensively. Results are available for human and cow milk samples from several countries which show considerable variations among different geographical areas.

e availablar e S d e an e elementfro b th ) P m Dat (f r , fo aMn s several countrie w milt onlco bu k yr w countrie fo sfe fro a mr fo s human milk. Surprisingly, the results reported for Se and Pb in human milk fall within narrow limits.

(g) Relatively more data are available for Cd, Hg and I in cow milk tha n humai n n milk. More investigation e necessarar s r fo y these elements in human milk.

, Bi largA , ) Be e (h , numbeBa , f elementB o r , An , s As (Ag , Al , , Si , Sc , Sb , Rb , Pt , Mi , Nb , Mo , Li , In , Ge , Ga , F , Cs , Cr , Co , Br ) havZr ed beean nW , scarcelU , Tl y, Ti investigate , Th , Te Sn, d,Sr in any type of milk. Data are urgently needed for the biologically important elements such as As, Co, Cr, F, Mo, Ni, Si and Sn at least d humaan e nw remainin th ico nmilk f O .g elements analysis i s desirabl , becaus s affinite mammarGa it th r f r fo eo e yfo y glandd an , n accouns o suspecte it , Li f o tr dfo toxicit e infantth o C y.

f therI s larg i e) (i e biological variability between different individual samples e effectch , s shoul e reduceb d y poolinb d e th g samples as in the production of market milk. If such pooled material still shows significant differences between different locations, then these difference e regardeb y sma s evidenc a d f truo e e

152 geographic variability (e.g. for I and Rb). If the individual biological variability is small, as for Mg, the pooled material should f course,o , naturally retaiw variabilitylo na othee th rn O . hand ,wida e dispersio f valueno s arisin poolen i g d mil n contrasi k t to individual sources indicates problems with processing and the possible occurrenc f externao e l contamination during collection, storage and delivery, as observed with Mn. Large deviations from these generalisations probably indicate methodological errors.

(j) Much of the apparent variability in the reported results for trace element n huma i sd anima an n l mil s almosi k t certainly caused by the use of different sampling procedures and by different definition f whao s t constitute a s"vali d sample". Man f theso y e difficulties coul e reduceb d r avoidee analyso d th f i dt himself were more closely involved in the procurement of the sample.

ACKNOWLEDGEMENTS

It is a pleasure to thank the staff members of the libraries at the Nuclear Research Centre, Julich, Federal Republi f Germanyo c , and the Swedish University of Agricultural Sciences, Uppsala, where some of this work was done, who were of immense help in obtaining the literature. Further e authoth , s thankfui r o Carmet l n Uhr, Departmen f Radiobiologyo t e SwedisTh , h Universit f Agriculturao y l Sciences, Uppsala, for secretarial help.

153 REFERENCES

1. Akinsoyinu Tewe, ,0. , 0.0 Mbad .an , A.U. Concentratio f tracno e element miln I s Wes f ko t African dwarf affecte y statb d f lactatioo e n J. Dairy Sci (19792 .6 1 )92

lac Akunts, N.S. Zinc, copper, magnesium and manganese in human milk. Vopr. Okhr. Materin. Det. Moscow 6 (19711 , 9 7 )

. 2 Albritton, E.G. Standard values in nutrition and metabolism Saunders Co., Philadelphia (1961)

3. Alichandis, E»S. and Vafopoulou, A. Major elements of cow's milk Milchwiss 0 (19753 .3 76 )

. 4 Atoms man, C.B. Recent developments in cobalt and copper in ruminant nutrition J. Dairy Sci. 53 (1970) 1097 5. Angelieva d Syarovaan . ,R . ,D e minera A studth f o y l conten f humao t n mil* k Khig. Zdraveopuzvane 11 (1968) 376 f

6. Anke, M. , Gru'n, M., Groppel, B. and Partschef eld, M. Supply of trace elements to ruminants in the GDR (3): Suppl f zino y c Arch. Tierernah. 25 (1975) 379

7. Antila, P. and Antita, V. Trace element Finnisn si h milk Proc. XVIII Int. Nat. Dairy Congress (1970) 94

8. Antila. ,P Occurrenc certaif o e n trace element cown si 1s milk Finn. J. Dairy Sci. 32 (1973) 8

. 9 Archibald, J.G. Trace element mi'lkn i s revieA : I I w- d Part an I s Dairy Sci. Abst. 20 (1958) 713, 800 (See also J. Dairy Sci. 40 (1957) 703)

. 10 Arman , KayP. , , L.M.B., Goodall, E.D d Sharman.an , G.A.M. The composition and yield of milk from captive red deer (Cervus Elaphu) L s . J Reprod. Pert (19747 3 . 7 6 )

11. Ashton, W.M., Williams, M. and Ingleton, J. Studies on ewe's milk: The content of some trace elements J. Agri. Sci. 88 (1977) 529 (See also J. Agri. Sci. 67 (1966) 77)

154 lla. Ball, D.F., Barber, M. and Vossen, P.G.T. The analysis of ashed mammalian blood by high resolution spark source mass spectrometry Bio. Ned. Mass. Spectr. 1 (1974) 365

lib. Backer, D.O., Jongeling-Eijndhoven, J.M.P.A., Flissebaalje, T.D. and Gedalia, I. Tota fred an el ionic fluorid n humai ecow'd an n s mils ka determined by gas-liquid chromatography and the fluoride electrode Caries Res. 8 (1974) 181 - 186

12. Bahadur, R., Bagchi, K.N. and Ganguly, H.D. Indian Med. Gez. 72 (1937) 477 (Quoted by Archibald, 1958 [9])

13. Bailey, K.V. Quantity and composition of breast milk in some New Guinean populations J. Trop. Pediat. 11 (1965) 35 14. Barsivala, V.M., Virkar, K.D. e effecTh f orao t l contraceptive concentrationn so f so various components of human milk Contraceptio (19737 n 7 )30 * * * 15. Bassir, 0. Nutritional studie breasn so t mil Nigeriaf ko n women J. Trop. Med. 59 (1956) 139

16. Belavady, B. Lipid and trace element composition of human milk Acta Pediat. Scand (19787 6 . (Se6 )56 e also India. nJ Med. Res. 47 (1959) 234)

Shauln Be , . D.M17 . e compositioTh mile f th wilko f dno animals Int. Nat. Zoo Year Book, 4 (1962) 333

18. Bergmann, K.E. and Fomon, S.J. Trace mineral n infani s t nutrition Famon, S.J. (ed), W.B. Saunders Company, Philadelphia (1974)

19. Biology Data Book, Vol. Ill Altman, P.L Dittmerd .an , D.S. (ads) Fed. Amer. Soc. Expt. Biol., Bethesda, Maryland (1974)

20. Bisbjerg, B. , Jochumsen, P. and Rasbech, N.O. Se content in organs, milk and fodder of the cow Nord. Vet. Med. (Copenhagen) 22 (1970) 532

. 21 Blaxter, K.L. a nutritionaLea s a d l hazar o fart d m J. Comp. Pathol (19500 6 . 0 )14

155 . 22 Bluthgen, A,., Heeschen Tollsd an . . ,W A Biozide und Umweltchemikalien in der Milch (2) Tierarztl. Prax. 3 (1975) 277

. 23 d ZivBoginan . . ,G E , Enzymes and minerals in normal and raastitic milk Cornell Vet. 63 (1973) 666

24. Botabace, M.A. , Cigna, L.R,. and Clemente, G.F. Se content of some foodstuffs and environmental samples aren a f Ital o an i y ric mineraln hi s Proc. FAO/IAEA/WHO Symp. on Comparative Studies of Food and Environmental Contamination, Otaniemi, IAEA, Vienna (19731 34 )

25. Borovik, S.A. and Kalinin, S.K. Trav. Lab. Biogeochim. Acad. Sci. N.S.S.R. 7 (1944) 114 (Quoted by Archibald, 1958 [9])

26. Bouchard, R. and Conrad, H.R. Sulfur requirement of lactating dairy cows. 1. Sulfur balanc dietard an e y supplementation J. Dairy Sci (19736 5 . ) 1276 26a. Bowen, H.J.M. (Private communication) (1979)

. 27 Broadhead, B.D., Pearson Wilsond an . ,B , G.M. Seasonal changes in iodine metabolism 1. Iodine content of cow' s milk Brit. Mad. J. i (1965) 343

. 28 Bruhn, J.C Franked .an . A . ,A n Calii d fC ornia d Pmilw an b ra nk Dair. J y Sci .(19769 5 ) 1711 (See als Foo. J o d Protection 40 (1977) 170)

. 29 Bunge. ,G Lehrbuc r Physiologischede h n Chemie 4th ed., Leipzig (1898)

. 30 Burniana d Nicolaean . L . , L , Researc e proportioth n ho f sulphuo n n mili r f variouo k s Dairy Sci. Abst (1940/412 . 0 )32

31. Byrne, A.R. and Kosta, L. Vanadiu human i foodn i md n san bod y fluid d tissuesan s SciencTotae th lf o eEnvironmen 0 (19781 t 7 )1

31a. Byrne, A.R. , Kosta, L. , Ravnik, V., Stupar, J. and Hudnik. ,V A stud f certaio y n crace element miln i s k Proc. Nuclear Activation Technique Life th e n Sciencesi s 1978, IAEA, Vienna (19795 )25

156 . 32 Carter, J.P., Kattab Abid, Davisd ,A. , Hadian ,L. , ,,K. Chromiuo J.T m (III )hypoglycemin i imp-airen i d aan d glucose utilization in kwashiorkor. Amer. J. Clin. Nutr. 21 (1968) 195

33« Casey, C.E. Concentrations of some trace elements in human and cow 'mils k Proc. Univ. Otago Medical School (19764 5 . )7 . 34 Casey, C.E. The content of some trace elements in infant milk foods and supplements available in New Zealand S.Z. Med, J. 85 (1977) 275

. 35 Casini. ,A Bromine in cow's milk Annali. Chim. Appl. Rome. 36 (1946) 219

36. Catz, C.S. and Giacoia, G.P. Drugs and breast milk Pediat. Clin. of North America, No. 1. 19 (1972) 151

37. Cavell, P.A. and Widdowson, E.M. Intakes and excretions of iron, copper and zinc in che neonatal period Arch. Dis. Childh (19649 3 . 6 )49

. 38 Cerwulis d Farrelan . T ,, H.M. Compositio e milkth f dairf o so n y cattl. II e Ash, calcium, magnesiu d phosphorouman s J. Dairy Sci. 59 (1976) 589

39. Chellapan, S., Pedensen, K.B. and Plaza, H. Mercury and cadmium concentrations in milk in Puerto Rico J. Radioanal. Chem. 32 (1976) 173

. 40 Chrisanfova, L.P. Mineral content of cow's milk under conditions of dietary supplementation of copper and cobalt salts Dolkady Tscha, Ser. Zootech. Moscow (1970) 121

41. Cigna, L.R., Clemente, G.F., Mastinu, G., Petri, F. and Santaroni, G.P. Trace elements in the feeding of infants in Icaly Proc: 3rd Int. Conf. on~ Nuclear Methods in Environmental and Energy Research, University of Missouri, Columbia, Oct. 10-13 (1977) 619

42. Cockburn, F., Brown, T.K., Belton, N.R. and Forfar, T.O. Neonatal convulsions associated with primary disturbance of Ca, P and Mg metabolism Arch. Dis. Child. 48 (1973) 99

157 43. Comberg, G. and Mayer, H. A contribution co the question of the mineral content in the milk of German black pied lowland cows Zuchtungskund (19624 e3 3 )24

. 44 Committe Nutrition eo n Composition of milk Pediat. 26 (i960) 1039

. 45 Committe Nutrition eo n Iron supplementation for infants Pediat. 58 (1976) 765 . 46 Compositio Foodf no s Agricultural Handbook No. 8, Watt, B.K. et al. (eds) US Departmen Agriculturef to , Washington D.C. (1963)

. 47 Compositio Maturf no e Human Milk Repor Healtn o t Sociad han l Security2 ,1 Dept. of Health and Social Security. Her Majesty1s Stationery Office, London (1977)

. 48 Cook H.W., Rausch Baker,d R.Aan . , B.E. Moose (alces alces) milk, gross composition, fatty acid and mineral composition Zool. CanJ .(19708 .4 3 )21 49. Cornell, D.G., and Pallansch, M.J. Cadmium analysi f drieso d mil pulsy b k e polarographic techniques J. Dairy (19736 Sci5 . ) 1479

49a. Cortes, E., Cassorla, V., Lopez, J. and Tapia, R. Instrumental neutron activation analysi Chileaf so n market milk Trans. Amer. Nucl. Soc. 32 (1979) 154

50. Crecelius, E.A. Determination of total iodine in milk by X-ray fluorescence spectrometr iodide-electrodd an y e Anal. Chem. 47 (1975) 2034

51. Cuthbertson, D.P. Minera d tracan l e element requirement r normafo s l growth and development Bibl. Nutr. Diet 8 (19731 . 5 6 )

51a. Das n Raaphorst, va H.A., , J.H., Mengerd , an J.W. Galesloot, Th.E. Manganese determination at the ppfa level in dairy products Proc. Nuclear Activation in the Life Sciences 1967, IAEA, Vienna (1967) 379

158 . 52 Dauncey, M.J ., Shaw, J.G.L Urmand an . . J , The absorptio d retentionan f magnesiumno , zind an c birtw coppelo hy b rweigh t infant d witfe s h pasteurized human breast milk Pediat. Res. 11 (1977) 991

52a. De Goeij, J.J.M., Houtmann, J.P.W., Tjioe, P.S. and Koeman, J.E. Mercury distribution levels observed in various ecosystem s determinea s y NAb d A Proc. Nuclear Activation Technique e Lifth e n i sSciences , IAEA, Vienna (1972) 295

53. Dequidt, J. Erb, F., Brice, A. and Gromez-Potencier, J. Determination of trace elements in milk Ann. Falsification t e L'Expertiss e Ghim 7 (19746 7 . 56 )

54. Devendra, C. The composition of milk of British Alpine and Anglo-Nubian goats imported into Trinidad J. Dairy Res. 39 (1972) 381

55. Dillon, H.K., Wilson, D.T. and Schaffner, W. Pb concentration human si n milk Amer. J. Dis. Child. 128 (197^ 491

56. Dinevich, L.S. Aluminium in human milk Vopr. Pitan. Moscow 19 (1960) 76

57. Dittrich, G. Ph.D. Thesis, Karl-Marx-University Leipzig (1974)

. 58 Dlouha , ErodosovaH. , , d SkopkovaKransR. an , . M , . J , The effect of sodium intake on maternal milk electrolytes and aldosterone corticosterone and 18-hydroxydeoxy-corticosterone productioe th n i n offsprin f rato g s Biol. Neonat 2 (19732 e 8 3 )

59. Dorn, C.R., Pierce, T.P., Chase, G.R. and Phillips, P.E. w ne Environmenta a n i u C d an l n contaminatioZ , Cd , Pb y b n Pb producing area Environ. Res. 9 (1975) 159

. 60 Dreba. ,W Spectrum analysis for trace elements in the ashes of human milw ,co k goad an t J. Sutr. 16 (1938) 325

60a. Dybczynski, R., Veglia, A. and Suschny, 0. Intercomparison run A-ll for the determination of inorganic constituent miln si k powder Report IAEA/RL/68, IAEA, Vienna (1980)

159 60bo Earle, I.P Stevensond .an . J.W , Relation of dietary Zn to composition of sow colostrum and milk J« Anim. Sci (19654 .2 5 32 )

6l« Eckhert, C.D., Sloans M.V. s Duncan, J«R» arid Hurley, L.S. Zinc binding: A difference between human and bovine milk Science 195 (1977) 789

. Ekman61a . ,L Variation of some blood biochemical characteristics in cattle, horse d dogs d causesan an s f sucso h variations Rech. Ann . Veter (19767 . 5 )12

62. Ericsson, Y. Fluoride secretio n humani n saliv mild an ak Caries Res. 3 (1969) 159. (See also Caries Res. 5 (1971) 78)

62a. Esala, S., Vuori, E., Niinisto, L. and Helle, A. Determinatio f fluorino n n breasi e t milk a pape, r presented at the 8th International Microchemical Symposium, Graz, Austria, August 25-30 (1980)

63. Evans, D.E. Milk composition of mammals whose milk is not normally use r human"consumptiofo d n Dairy Sci. Abstracts 21 (1959) 277 d . Johansonan Evans . 63a . G.W ,P.E , The Zinc-binding ligan n humai d n breast milk Amer. J. Clin. Nutr. 30 (1977) 61 (See also Lancet i i (1976) 1310)

. 64 Everett. M.L , Medical Biochemistry P.B. Hoebner, Inc. dew York (1948) 605

. 65 Familusi, J.B. ,d Antia Fomufod. an . A.U , K.A , Response of premature infants to human milk and two types of cow's milk formulae Afr. J. Med. Sci. 4 (1973) 41

66. Fateeva, E.M. and Barshneva, S.M. A complex study int e effectivenesth o f feedino s g prematur borw ne ne babie d sucklingan s s witmilw ne hk mixtures "Malyukta" and "Malysh" Vopr. Pitan 0 (19713 . 3 3 )

67. Feely, R.M., Criner, P.E., Murphy, E.W. and Toepfer, E.W. Major mineral elements in dairy products . J Amer. Diet. Assoc 1 (19726 5 . 50 )

68. Fenner, H. and Archibald, J.G. Boron in cow's milk J. Dairy Sci. 41 (1958) 803

160 . Feuillan69 , Y.M Plumierd .an . ,M Iron metabolis infantn i m s Acta Pediat. 41 (1952) 138

70. Filer, L.J. Maternal nutritio n lactationi n Clinic n Perinatologi s (19752 y 3 35 )

71. Fluorides and human health WHO Chronicle, Geneva 24 (1970) 271

72. Ford, J.E , Law. , B.A., Reiterd Marshallan . B , , M.E. Influenc e heath f t o etreatmen f humao t n milk n somo ,f o e its protective constituents J. Pediat. 90 (1977) 29

73. Ford, W.P., Kent-Jones, D.W., Maiden, A.M. and Spalding, R.C. e micrTh o determinatio f brominno foodstuffn i e s J. Soc. Ind. 59 (1940) 177

73a. ForsumLoennerdald an . ,E . B , Effec proteif o t n intak protein eo n quantitd an y composition of breast milk Abstract 176: XI International Congress of Nutrition, August 27 to September 1 (1978) Rio De Janeiro, Brazil

73b. Forsum, E. and Loennerdal, B. Variation in the contents of nutrients of breast milk during one feeding Nutr. Rep. Int. 19 (1979) 815

73c. Fransson, G.-B. and Loennerdal, B. Iron distribution in human milk, Abstract 197, Ref. 73a.

. 74 Franzmann, A.W., Flyn Arneson, nA. , P.D Oldmeyerd .an , J.L. Monitoring moose mineral metabolism via hair element analysis Prox. 10th N. Amer. Moose Workshop Duluth, MN (1974) (quoted by Franzmann 1976 [76])

75. Franzmann, A.W., Flynn, A. and Arneson, P.D. Level f somo s e mineral element Alaskan si n moose hair T. Wildlife Manage. 39 (1975) 374

76. Franzmann, A.W. Flynn, A. and Arneson, P.D. Moose mil d haikan r element level d relationshipsan s J. Wildlife Dis 2 (1976.1 2 )20

77. Fresh cow's milk and iron deficiency in infants: Editorial Nutr. Reviews, New York 31 (1973) 318

78. Friedman, S. and Goldfien, A. Breast secretions in normal women Amer. J. Obst. and Gynec. 104 (1969) 846

161 79. Gabovich, R.D. and Kulsyaya, O.A. The level of some Grace elements in the dietary of the population from central area Ukrainf so e Vopr. Pi tan. 23 (1964) 60 80* Galseer, W.A. Mercury in Maskan Eskimo mothers and infants Environc Health Perspec (19765 .1 5 )13 . 81 Gehrke, C.W., Runyon, G.V Pickettd an . , E.E. A quantitative spectrographic method for the determination of tin, copper, iron, and lead in milk and milk products e effecTh . f storage o t th n eo concentratio f thesno e metal evaporaten i s d milk J. Dairy Sci (19547 3 . ) 1401 82. Gehrke, G.W., Baker, J.M., Affsprung, H.E. and Pickett, E.E. A semi quantitative spectrographic analysis of the trace element wholn si e milk J. Dairy. Sci (19547 3 . 3 )64 . 83 Geigy Scientific Tables Editioh 7t , n J.R. Geigy, Basel (1968) 507

. Getzendaner84 , M.E. Food d feedsan s Associatio. J Officiae th f no l Agricultural Chemist (19758 5 s 1 )71

. 85 Ghelberg, N.tf Ruckert, . d Stransan . ,I . ,H The Pb content of milk in an area with non-ferrous metallurgical industry Igena, Hygiene, Buchares (19721 2 t 7 )1

85a. Goldman. S . ,A milw Co k sensitivity :A revie n food immunologwi an d y Proc. of a Symposium, Hambreaus, L., Hanson, L.A. and McFarlane, H. (eds), Almquist & Wiksel Stockholm (1977) 86. Gormican, A. Inorganic element foodn si s use hospitan i d l menus J. Amer. Diet. Assoc. 56 (1970) 397

87. Grant, A.B. and Wilson, G.F. e contenS milf o t k from cows given sodium selenate N.Z.J. Agric. Res. 1 (1968) 733 88. Grebennikov, E.P., Soroka, V.R. and Sabadash, E.V. Trace element human i sd anima nan l milk Fed. Proc. 23 (1964) T 461

. 89 Gregory, M.E., Kon, S.K., Rowland, S.J Thompsond .an , S.Y. The composition of the milk of the blue whale J. Dairy Res (1955.2 2 8 )10

162 89a. Grimanls, A.P., Vassilaki-Grimani, M., Alexiou, D. and Papadatos. C , Determinatio crac7 f no e element n humai s n milk, powdered cow's mil d infankan t food neutroy b s n activation analysis Proc. Nuclear Activation Techniques in the Life Sciences 1978, IAEA, Vienna (1979) 241 90. Groppel, B. and Henning, A. Zinc deficienc ruminantn yi s Arch. Exp. Vet. Med (19715 .2 7 )81

.91. Gross, S., Vergis, M. and Good, A. e relationshiTh p between milk protei d ironan n contenn o t hematologic values in infancy J. Pediat (19683 7 . 1 )52 . 92 Gross, B.S Parkinsond .an , E.S. Analyses of metals in human tissues using base (TMAH) digests and graphite furnace AAS Interface 3 (1974) 10

93. Gueguen, L. minerae Th l compositio adaptatios it mile d th k an f no o t n the mineral needs of the infants Ann. Nutr. Alim (19715 5 2 . 33 )A

94. Gunther, M., Hawkins, D.F. and Whyley, G.A. Some observations on the sodium and potassium content of human milk Obstet. J . BritisGynece th f .o h Commonwealt (19652 7 h 9 )6

95. Gurevich, G.P. Natural copper and zinc content in food products originating from Primorie territory Vopr. Pitan. 20 (1961) 38

. Guthrie96 , B.E. contend w C Zealan Ne d f an o t d n Z food, Cu s Cr, ,Mn N.Z. (19752 Med8 . 8 .J )41

96a. Gyorgy, P. Biochemical aspects Amer. J. Clin. Nutr. 24 (1971) 970

97. Hadjimarkos, D.M. Se conten f humao t n milk: Possible effec dentan o t l caries J. Pediat (19633 6 . 3 )27

. 98 Hadjimarkos, D.M Bonhorstd .an , C.W. The Se content of eggs, milk and water in relation to dental caries in children J. Pediat (19619 5 . 6 )25

. 99 Hadjimarkos, D.M d Shearer.an , T.R.. Selenium conten maturf o t e human milk Amer. J. Clin. Nutr. 26 (1973) 583

163 99a. Hambidge, K.M. The role of Zn and other trace metals in pediatric nutritio healtd nan h Pediatric Clinic f Nortso h Americ (19774 2 a 5 9 )

100. Hambidge, K.M. Chromium nutrition in the mother and child Chapte Newen i 9 rr Trace Element Nutrition i s n Hertz, W. and Cornatzer, W.E. (eds) Marcel Dekker, New York (1971) 169 lOOa. Hambraeus. ,L Proprietary milk versus human breast mil infann ki t feeding A critical appraisal fronutritionae th m l poin f vieo t w Pediatric Clinics of North America 24 (1977) 17

101. Hamilton, E.I. The concentration of U in man and his diet Health Phys (19722 .2 9 )14 102. Hamilton, E.I., Minsk!, M.T., Cleary, T.Td .an Halsey, V.S. Comments upon the chemical elements present in evaporated mil consumptior kfo babiey b n s Sci. Total Environ (19721 . 5 )20

103. Handa, A..C. d Johrian . , KoN. Ring colorimetric determinacio f cracno e metal miln i s k Anal. Chim. Acta (19729 5 . 6 )15

104. Hankison, D.J. Potential sources of copper contamination of farm milk supplies measured by atomic absorption spectrophotometry J. Dairy Sci. 58 (1975) 326

105. Hart, L.I., Owen, ProudfootE.Gd an . . ,R e influencTh xanthine th dietarf o en o eo M yoxidas e activit mile th f ruminantko f o y s Brit Nutr. J . 1 (19672 . 7 )61

105a. Harfouche, J.K. e importancTh f breaso e t feeding J. Trop. Pediat. 16 (1970) 135

106. DunkleyHassed an . ,G , W.L. Coppes rol catalyzinn it i emil n i d r kan developmene th g t of oxidized flavours Milchwiss. 25 (1970) 656

107. Hawkins, D.F. and Whyley, G.A. Some observations on the sodium and potassium content of human milk J. Obst BritisGynecd e .an th f .o h Commonwealt2 h7 (1976) 69

164 108. Heine Weichen, ,K. Fingerd an . ,. A ,H n Z d an e S , Fe e occurrenc, Th Cr element e , th Co f e, o sCa in milk and blood of cows Kieler MiIchwirtschat cliche Forschungsberichte. 29 (19773 21 )

109. d WeichenHeinean . K . , A , Determination of concentration factors of elements- in the food chain soil-plant-milk Milchwiss (19783 3 .0 (Se23 ) e also Naturwiss (19774 6 . ) 531)

110. Hemken, R.W., Van der Sail, T.H., Oskarsson, M.A. and Frymann, L.R. Iodine intake relate o milt d k iodin performancd an e f o e dairy cattle . J Dairy Sci (19725 5 .1 93 )

111. Hess, A.F. and Benjamin, H.R. Comparative analysis of forms of calcium and inorganic phosphorus in human and cow's milk Proc. Soc. Exp. Bio. Med. 30 (1933) 1358

112. Hickey, F. Selenium deficienc n mili y k suggeste s causa d f suddeo e n infant deaths -Dairy Sci. Abstr 3 (19-713 . ) -941

113. Hoffer , Huberty Hossand B. , an . J , K.3. The associatio f Ga-6no d lactoferrian 7 n J. Nucl. Med. 18 (1977) 713

114. Hogan, K.G. and Hutchinson, A.J. Molybdenum and sulphate in the diet and the effect on the molybdenum content of the milk of grazing N.Z.J. Agr. Res. 8 (1965) 625

114a. Holmes, A.D., Spelman, A.F., Smith, T.Cd Kuzmeskian . , J.tf. Composition of mare's milk as compared with that of other species . J Dairy Sci (19470 3 .5 38 )

115. Hove , Elvehjem. E , , C.A d Hartan . , E.8. Arsenic in the nutrition of the rat Amer. J. Physiol. 124 (1938) 205

116. Hove , ElvehjemE. , , C.A d Hartan . , E.B. Boro n animai n l nutrition Amer. J. Physiol. 127 (1939) 689

117. Hurley, L.S., Duncan, J.R., Eckhert, C.D. and Sloan, M.V. Zinc binding ligand n mili cheid s an k r relationshin i p neonatal nutrition Proc. Trace Element Metabolis n Mami Animald nan , 3 - s Kirchgessner . (ed)M , , Freising-Weihenstephan, Technical University, Munich (1977)

165 118. Hytten, F.E. Clinical and chemical studies in human lactation I« Collectio f milno k samples Brit. Med. J. i (1954) 175 II» Variatio majon ni r constituents durin feedina g g Ibid. 176

III. Trends in milk composition during course of lactation Ibid. 179

Trend. IV miln si k composition during cours f lactatioo e n Ibid. 249

V. Individual differences in composition of milk Ibid3 .25

VI. The functional capacity of the breast Ibid. 917

e effecVIITh . f differenceo t yieln i sd compositio an d n o fe infant' milth n ko s weigh tduratioe gaineth d an df no breast feeding Ibid. 1410

VIII. Relationship of age, physique and nutritional status of mother to yield and composition of milk Brit. (1954Medi i . 4 J .)84

119. IAEA Technical Report 7 Serie19 . sNo Elemental Analysis of Biological Materials: Current Problem d Methodsan s with Special Referenc Traco t e e Elements, IAEA, Vienna (1980)

120. Illingworth, R..S Kilpatrickd .an . ,B Lactatio d fluinan d intake Lance (19535 26 t ) 1175

121. Imamura, T., Kataoka, K. and Iwado, K. Studies on minerals of milk and milk products: Iron, coppe d molybdenuan r m content miln i d milf so kan h kas milk products Jap Zootechnol. J . . Sci (19612 3 . 1 )3

122. Infant nutrition S.J. Fomon (ed) 2nd edition, tf.B. Saunders Co., Philadelphia (1974)

123. Iodine conten f foodo t s Chilean Iodine Educational Bureau Stone House, London (1952)

124. Iwarsson. K , Iodine in Swedish milk during 1971 and 1972 Nord. Vet. Med 6 (1974.2 9 3 )

166 125. Iwarsson , BengtssonK. , d Ekmanan . . L G ,, Iodine content in colostrum and milk of cows and sows Acta Vet. Scand 4 (19731 . 4 25 )

126. Iwarsson, K., Nybergoch, J.A. and Ekman, L. Correlation between iodine supplementation and iodine concentration in milk from dairy cows Nord. Vet. Med 4 (19722 . 9 55 )

127. lyengar, G.V., Kollmer, W.E. and Bowen, H.J.M. Elemental compositio f humao n n tissue d bodan sy fluids Verlag Chemie, F.R.. Germany (1978) 128. lyer, J.G. Trace element conten milf o t f Indiako n cattle Naturwiss. 44 (1957) 635

129. Jacobson, D.R., Hemken, R.W., Button, F.S. and Hatton, R.H. Mineral nutrition, calcium, phosphorus, magnesiud an m potassium interrelationships J. Dairy Sci. 55 (1972) 935

130. Janz, A.J., DeMaeyer, E.M Closed .an . ,J Nutrition and lactation in women Ann. Nutr. Alimentation XI (1957) 3

131. Jelliffe, D.B. The protein content of the breast milk of African women Brit. Med. J. ii (1952) 1131

132. Jelliffe, D.B Jelliffed .an , E.F.P. Huma Moderne th Mil n nki World Oxford Medical Publications, Oxford Press (1978)

133. Jenness, R. Biosynthesi d compositiosan milf no k J. Invest. Dermatol. 63 (1974) 109 (See also Chapter 1, in Lactation, Larson, B.L. and Smith, V.R. (eds), Academic Press, New York, 1974)

134. Jennes, R« and Sloan, R.E. The composition of milk of various species: A review Dairy Sci. Abst. 32 (1970) 599

135. Jonsson. ,H Determination of Pb and Cd in milk with modern analytical methods Z. Lebensm. Unters. Forsch. 160 '1976) 1 I35a. Jonsson. ,H Determinatio f copperno , irod manganesnan miln i e k with flameless AAS and survey of che contents of these metals in Swedish market milk Milchwiss. 31 (1976) 210

167 136. Juszkiewiez, T., Szprengier, T. and Rodumanszi, T. Mercury conten f humato n milk Pol. Tyg. Lek. (Poland (19750 )3 5 )36 137. Kagan, B.M., Stanincova Felix, V. ,Eodgmen, ,d N. an . ,J Kalman. ,D Body composition of premature infants in relation to nutrition Amer. J. Clln. Nutr. 25 (1972) 1153

138. Kahl, S. and Klewska, A. Fluorine content of the milk from cows in the region of aluminium plants Roezniki: PZH, Warsaw (19745 2 , 7 )9

139. Kalinina, N.N. Nitrogen balance in infants of the first /ear of- life fed milw ne k n producto s "Malyutka d "Malysh"an " Vopr tan(19710 i 3 P .. 1 )4

140. Kasanen, A., Ekman, E.M. and Peltonen, T. fiber den Eisengehalt in der Milchnahrung der Sauglinge Ann. Paediat. Fennia (19551 e 7 )27

141. Kehoe, R.A., Cholak, J. and Story, R.V. A spectrochemical study of the normal ranges of concentration of certain trace metals rn biological materials J. Nutr. 19 (1940) 579

142. Kerin, D. and Kerin, Z. Lead contamination of milk and honey from industrial research aerosols Protectio. Vicae 16 (1971) 6

143. Khalkhali, Z., Parsa, B. and Parsa, B. Measurement by non-destructive NAA of bromine concentratio e secretionth n ni f nursinso g mothers Proc. Nuclear Activation Technique e lifth e n Sciencessi , Bled, IAEA, Vienna (1972) 461

144. Khamidullin, R.S. Natural content of boron in foodstuffs produced in che Tatar and Maryisk autonomous Soviet Republic Vopr tan9 (1960i 1 P .. 1 )8

145. Kiermeier, F. and Winkelmann, H. Bestimmun d Vorkommeun g Kobalcs nde Kuhmilcn i s h . LebensmitteZ l Unters. Forsch 5 (196111 . 9 )30

146. Kiermeier, F. and Johannsmann, H. Uber den Mangangehalt der Kuhmilch Z. Lebensmitt. Qnters. Forsch. 118 (1962) 304

147. Kiermeier Stegerd an . ,F . H , Contributio coppee ch o rt n contenw milco kf o t Lebensm. Z . Unters. Forsch (19611 . 0 )41

168 148. Kiermeier Wigandd an . F . ,,W Selenium content in milk and milk powder Z. Sch. Lebensm. Untersuch. Forsch. 139 (1969) 205

149. Kingston, M.E. Biochemical disturbance n breasi s d infantfe t s with gastroenteritis and dehydration J. Pediatr. 82 (1973) 1073

149a. King, R.L., Luick, J.B., Litman, 1.1., Jennings, W.Gd an . Dunkley, W.L. Distributio f naturano added an l d coppe d iro an n milri n k J. Dairy Sci. 42 (1959) 780

150. Kirchgessner. M , Mineral and trace element investigations of cow's milk and blood Schriftenr. liber Mangelkrankh. 6 (1956) 49 151. Kirchgessner. ,M The bulk and trace elements in cow's blood Tierernahr. Z Futtermittelkund. .u (19572 1 e 6 )15

152. 'Kirchgessner, M-., Firesecke d Kochan . . G ,,H Nutrition and composition of milk Crosby Lockwood, London (1967) 153. Kirchgessner, M. Relationshi changee th n f i tracpo s e element n food i s an d animal substances as dependence of individual elements during retention Sch. Z . Tierphysiol. Tierernah. Futtermittelk4 1 . (19590 )27

154. Kirchgessner Spoerld an . ,. M ,R Copper concentratio mile th f ratko n si n receiving diets with varying Gu content Arch.-Tierernah. 25 (1975) 505

155. Kirchgessner, M. and Schnegg, A. i contenN f milo t k from lactating ratd varyinfe s i N g levels Arch. Tierernah. 26 (1976) 773

156. Kirchmann, R. (Personal communication) (See also Bruwaenen Va d Kirchmannan . ,R. . ,R Transfe d distributioran milkn i d ,C presentef no e th t a d IXth Annual Meeting of the European Society of Nuclear Method Agriculturen i s , Brno Sept8 3- , . (1978))

157. KiszaKzaimierd an . ,J z Batura Variations in the content of some trace elements in the • mil uddef o k r diseased cows Milchwiss. 24 (1969) 281

169 158. Kobayashi, A,, Kawai, S., Ohbe, Y,. and Nagashina, Y. Effect of dietary lactose and a lactose preparation, on the intestinal absorptio calciuf no d magnesiuman n mi normal infants Amer Clin. .J . Nutr (19758 2 . ) 6.81 159. Knowles, J.A. Breast milk ;A sourc morf eo e than nutritioe th r nfo neonate Clin. Toxicol (1974.7 9 )6

160. Kon9 S.K. and Cowie, A.T. Milk mammare :th secretios y it glan d an d n Academic press, New York (1961) 161. Kon, S.K. Milk and milk products in human nutrition FAO Nutritional Rom, Studie27 e . (1972sNo )

162. Kon, S.K. and Mawson, E.H. Human milk: Wartime studies of certain vitamins and other constituents Med. Res. Council. Special Report 269 s Majesty'Hi , s Stationery Office, London (1950)

163. Konar, A., Thomas, P.C. and Towers, K.G. The compositio f ovino n e mammary cells Comp. Biochem. Physiol 1 (19724 .5 19 )

164. Kopytkova, O.G. Co and Ni content of the colostrum, transitional milk and normal human milk in individual months of lactation Dairy Sci. Abstracts. 23 (1961) No. 3316

165. Korobkina, G.S., Kalinina, N.N., Tsurkova, K.Kd .an Davyadova, N.A. New baby milk mixtures "Malyutka" and "Malysh" Vopr. Pitan. 30 (1971) 27

166. Kotaljanskaja, L.I. Cobalt content in diverse foodstuffs of Dnepropetrovsk!.! Region Vopr. Pitan (19621 2 . 5 )8

167. Kovalsky, V.V., Vorotnitskaya, I.E. and Tsoi, G.G. Adaptive changes of the milk xanthine oxidase and its isoenzymes during molybdenum and copper action Proc. Trace Element Metabolism in Animals - 2 Hoekstra W.G. (ed), University Park Press, Baltimore (19731 )16

168. Kreula, M. and Heikonen, M. Mineral salts and trace elements in Finnish milk Proc. 18th Int. Nat. Dairy Congress (19703 )9

170 169. Kubota LazerLosee, d ,J. an . . ,E A Copper, zinc, cadmiu d lea human man i d n blood fro9 1 m location Unitee th n dsi States Arch. Environ. Healt (19686 h1 8 )78 169a. Kumpulainen, J., Vuori, E., Ma'kinen, S. and Kava, R. Dietary chromium intak lactatingf eo - Finnish mothers: effect on the Gr content of their breast milk Brit. J. Hutr. 44 (1980) 257

170. Lalit, B.Y., Shukla, V.K. and Ramachandra, T.V. a contenS Indiaf o t n buffalo milk Radiochem. Radioanal, Letter (19752 s2 5 )38

171. Lamm , ColeS. ,, Ullmannd GlynnB. an , . . K , W , Pb conten o infant t f mil o d t fe k - s1971-197 2 New Eng. J. Med. 289 (1973) 574

172. Lamm, S.E Rosend .an , J.F. Lead contamination in milks fed to infants 1972-73 Pediatr (19743 5 .7 13 )

173. Larson, S.M., Schall, G.L. Galliu , Concentratiom67 n humani n breast milk J. Amer. Med. Assoc. 218 (1971) 257 .5 •« * 174.. LavricDolard an . . J ,M , contenK Lactose d f an breas o ta N , t secretio n normani l parturient Ofastet. Gynecol. 42 (1973) 107

175. Lener, J. and Bibr, B. Determinatio n biologicai f tracend o C f o s l materialy b s AAS J. Agri. Food Chem (19719 1 . ) 1011

176. Leskova, R. and Weiser, M. I content of cow's milk in Austria Wien. Tierarztl. Msch. 56 (1969) 89

177. Lewis, R.C. and Ralston, N.P. Changee plasmth n i as leve f protein-bouno l d iodinn i e e younth g calf . J Dairy Sci (19516 .3 3 36 )

178. Lindblad, B.S Rahimtoolad .an , R.J. A pilot study of the quality of human milk in a lower socio-economic grou n Karachii p , Pakistan Acta Paediat. Scand . (197463 .5 12 )

179. Loh, T.T. and Sinnathuray, T.A. Haematological datmild an ak iro Malaysian i n n women Aust. N.Z.J. Obstet. Gynaec (19711 .1 4 )25

171 180. Loh, T.T Kaldord .an . ,I miln F i emild kan k fraction f lactatingso - racs, rabbits and quokkas Comp. Biochem. Physio-1. 44 B (1973) 337

181. Lombeck, I., Kasperek, K., Harbisch, H.D., Feinendegen, L«Ec and Brennners H.J. The statS e f healtheo y children. Europ J. Pediat. (1977125 . 81 )

182. Lombeck , I. Kasperek, , BonnermannK. , , . B , Feinendegen, L.E. and Bremmers H.J. The contenS e f humao t n milk, cow1s mil d milkan k formula . J PediatEur . (19789 9 12 . 13 )

183. Long, C. e chemicaTh l compositio milf no k colostru mammard man y gland Biochemists Hand Book, Spon, London (1968)

183a. Lo'nnerdal, B., Forsum, E. , Gebre-Medhin, M.-and Hambraeus, L. Breast milk composition in Ethiopian and Swedish mothers . LactoseII , nitroge proteid nan n contents Amer. J. Glin. Nutr. 29 (1976) 1134 •* * 184. Lucis, O.J., LucisShaikhd an . ,R , Z.A. Gd and Zn in pregnancy and lactation Arch. Environ. Health 25 (1972) 14

185. Lynch, G.P., Cornell, D.G. and Smith D.F. intb P oExcretiod milan d kC f no Proc. Trace Element Metabolism in Man and Animals - 2 Hoekstra W.G. (ed), University Park Press, Baltimore (19730 )47

186. Lynn, G.E. , Strader, S.A., Hammer,. O.H. and Lassiter, G.A. Occurrence of bromides in the milk of cows fed NaBr and grain fumigated with methyl bromide J. Agri. Food. Chem. 11 (1963) 87

187. Macy, J.G.., Kelly, H.J Sloand an . , R.E. e compositioTh milksf no .A compilatio e th f no comparative compositio d propertienan d f humanso an w ,co goat milk colostrum and transitional milk National Academy of Sciences, National Research Council Washington, D.C. Publication 254 (1953)

188. Macy, I.G. Composition of human colostrum and milk Amer. J. Dis. Child. 78 (1949) 589

189. Mahan, D.C., Moxon, A.L Cined .an , J.H. Efficac f supplementao y n reproductivi e lS ew dietso n o s and progeny seru d tissuan m e valueS e s J. Anim. Sci , (197540 .4 )62

172 190. Marlani, P. Calciu phosphoroud man n cow'i s e Italians ch mil f ko , Friesian, Italian Brown Regio Modend an n a breeds Revist i Zootechd a e Veterinari. (19761 a 3 2 )

191. Marshall, S.P. Effects of feeding As and Pb upon their secretion in milk J. Dairy Sci. 46 (1963) 580 I91a. McKenzie, H.A. Milk proteins: Chemistry and Molecular Biology Vol. 1, Academic Press, New York (1970)

192. McLeod, B.E. and Robinson, M.F. Dietary intake of Mn by New Zealand infants during the firs x monthsi t f lifo s e Brit. J. Nutr. 27 (1972) 229

I92a. McCullagh, K.G d Widdowsonan . , E.M. The milk of the African elephant Brit. J. Nutr. 24 (1970) 109

193. Medvedeva, V.I. Ni conten borw n blooi ne n venouti f babd o d an yan s retroplacental bloo mild an f dmotheko r Vestsi. Akad. Nauk. BSS&X1965)4 11 -

194. Medvedeva, V.I. Chromiu w bor mmothere ne ncontenth e babd th 'an n ys i t venous and retroplacental blood and milk Dokl. Akad. BSSR, 10 (1966) 98

195. Meehan, W.R Smythed .an , L.E. Occurrence of Be as a trace element in environmental materials Environ. Sci. Tech. 1 (1967) 839

196. Mehta, J.B Kalad an . . N , Composition of mother's milk at 3 different stages of lactation Proc. 13th Int. Nat. Congres Pediatrn so . (19715 )22

197. Menger, J.W. contenn M e milkf Th o t :A discussio s relatioit n no o nt e bacteriologicath l compositio f startero n s containing leuconostoc (Betacoccus) cremoris Neth. Milk Dairy J. 21 (1967) 67

198. Metabolism: Composition of milk P.L. Altma D.Sd nan . Dittmar (eds) Fed. Amer. Soc. Expt. Biol., Bethesda (1970)5

I98a. Metal contaminants in milk and milk products Bulleti e Internationath f no l Dairy Foundation Document 105, Brussels (1978)

173 199. Miller, J., Clifton, C.M. and Fowler, P.R. Influenc f higo e h level f dietaro s y zin Zn-in o c n milk performance and biochemistry of lacting cows J. Dairy Sci* 48 (1965) 450

200. Millar, K.R. and Sheppard, A.D. Alpha-tocopherol and Se levels in human and cow1 s milk, NoZ.J. Agric. Sci. 15 (1972) 3

201. Millar, K.R. Dawed , Craig. an L ,. J , Alpha-tocophero e levelS d n pasteurisei san l d cow's milk from different areas of New Zealand N.Z.J. Agric. Res. 16 (1973) 301

202. Miller, W.J. Zn nutrition of cattle: A review J. Dairy Sci. 53 (1970) 1123 (See also J. Dairy Sci. 50 (1967) 1404)

'203. Miller, W.J. Dynamic absorptiof so n rates, endogenous excretion, tissue turnove d homeostatiran c control mechanism, Zn f so Cd, Mn and Ni in ruminants Fed. Proc. 32 (1973) 1916

204. Mitchell, D.G. and Aldous, K.M. Pb content of foodstuffs Environ. Health. Perspect (19747 . 9 )5

205. Mitchell, D.G. Increase absorptionb P d e onlth y :t problePainno s i t m Pediat (19743 5 .2 14 )

206. Money, D.F.L. Vitamin E and Se deficiencies, and their possible aetiologica e suddel th rol n i ne deat n infanthi s syndrome N.Z. 1 (1970Med7 2 . J 3 .)

207. Morris, V.C. and Levander, O.A. Se conten f foodo t s . J Nutr (19700 10 . ) 1383

208. Morrison, S.D. Human milk: yield proximate principle d inorganisan c constituents Commonwealth Agricultural Bureau, England (1952)

209. Mouillet Luquet, ,L. , F.M. Casalis. ,J Contributio na 1'etud s variationde e l a teneul se e sd n e r mineraux de lait de vache dans differents regions francaises Lait. France 55 (1975) 683

209a. Moynahan, E.J. Acrodermatitis enteropathica :A letha l inherited human nZ deficiency disorder Lancet ii (1974) 399

174 210. Mulder , Meijers d MengerH. , an . P ,, J.W. Th e contenF e f cow'o t s milk Neth. Milk Dairy J. 18 (1964) 93

211. Mulder, H. , Menger, J.W. and Meijers, P. The Cu content of cow's milk Neth. Milk (19648 Dair1 2 . J y5 )

211a. Muellen, A.L., Bretthauer, E.W Stanleyd .an , R.E. Absorption, distribution and milk secretion of radionuclides by the dairy cow - V: Radio-tungsten Health Phys 1 (19763 .7 41 )

212. Murthy, G.K., Rhea, U. and Peeler, J.T. Rb and Pb content of market milk J. Dairy Sci. 50 (1967) 651

213. Murthy, G.K d Rhea.an . U , Cd and Ag content of market milk . J Dairy Sci (19681 5 .0 61 )

214. Murthy, G.K. and Rhea, U. Cd, Cu, Fe, Pb, Mn and Zn in evaporated milk, infant product d humaan s n milk J. Dairy Sci. 54 (1971) 1001 215. Murthy, G.K. Trace element miln i s k CRC Critical Reviews in Environmental Control, CRC Press, Cleveland (1974)1

216. Nagasawa, T., Kiyosawa, I. and Kuwahara, K. Amounts of lactoferrin in human colostrum and milk J. Dairy Sci. 55 (1972) 1651

217. Napalatarova, M. minerae th n O l conten Bulgariaf o t n milk Hig. Zdraveopzvane. 18 (1975) 68

218. Naplatarova, M., Sapkova, M. and Radenkov, S. Content of some microelements in milk Ser Zootech., Sofi (19689 1 a 7 )28

219. Nassi, L., Poggini, G., Nassi, P.A. and Galvan, P.A. differenn i n Z t protein fraction f humaso n milk Boll Soc. It. Biol. Sper. 50 (1974) 907

220. Nassi, L., Poggini, G., Vecchi, C. and Galvon, P. e contenF d an f huma o tu C n , colostruZn e Noteth d n an smo milk Minerva Pediat. Torino 26 (1974) 832

221. Neatherly, M.W., Miller, W.J., Blackmon, D,M. and Gentry, R.P. Performance and milk zinc from low zinc intake Ln Holstein cows J. Dairy Sci. 56 (1973) 212

175 222. Heesheim, R.O. Nutrient change n fooi s d processing currenA : t review Fed. Proc. 33 (1974) 2267

223. Nickerson, T.A. Chemical compositio milf no k J. Dairy Scl. 43 (1960) 598

224. Nishimura, H. Zinc deficienc sucklinn i y g mice deprive colostruf o d m J. Nutr 9 (1953.4 9 )7

225. Oberleas Prasadd an . ,D , A.S. Adequacy of trace minerals in bovine milk for human consumption Amer. J. Clin. Nutr. 22 (1969) 196

•226. O'Dell, G.D. Miller, W.J., King, W.A. Ellers, J.Cd .an Jureck, H. Effeci supplementatioN f o t n productiono d nan compositio milf no k J. Dairy Sci. 53 (1970) 1545

227. Oelschlager, W. Fluoride in food Fluorid (19713 e )6

228. Owen, E.G. The excretio f e boratdairno th w y yco b e . J Dairy Res , (194413 . 3 24 )

229. Ozol, A,A. contenn CobalM d n humai tan t n mammare th yn i mil d an k placenta Voprosy Biochmii Belkovo-vitaminnogo Pitanija, II Trud, Inst. XXII, Riga (1960) 129

230. Parkash d Jennessan . S . , R , Status of cow' s milk in. Zn J. Dairy Sci. 50 (1967) 127

231. Parr, R.M. Future aspect f tracso e element analysi Proc: in s . Trace Element MetabolisAnimald an Kirchgessner, 3 n - sMa n i m , . (ed)M , Freisling-Weihenstephan, Technical University, Munich (1977) (See also J. Radioanal. Chem. 39 (1977) 421)

232. Peaker, M. and Linzell, J.L. The lack of effect of aldosterone on milk secretion in the goat J. Endocrinolog 8 (19735 y 9 (Se)13 e als. J o Endocrinolog (19739 5 y ) 157)

176 233. Peiterson, B., Bohn, L. and Andersen, H. Quantitative determinatio f immunoglobulinno s lysozyme and certain electrolytes breast milk durin entire th g e perio f lactationo d , durin 4 hou2 ra g periodmiln i kd ,an froindividuae th m l mammary gland Acta Paediatr. Scand (19754 6 . 9 )70

234. Perrin, D.R. e chemicaTh l compositio colostrue th f e no d milth man f ko ewe J. Dairy Sci. 25 (1958) 70

235. Peters, F.E. Chemical compositio Hebrideaw Ne f no n human milk Brit Nutr. J . (19537 . 8 )20

236. Physiology of lactation WHO Technical Report series No. 305, WHO, Geneva (1966) 236a. Picciano, M.F. Mineral conten f humao t n milk durin a gsingl e nursing Nutr. Rep. Int (19788 .1 )5

237. Picciano, M.F. and Guthrie, H.A. Cu, Fe and Zn contents of mature human milk Amer . ClinJ . . Nutr 9 (197.62 . 2 )24

238. Pilson, M.E.Q Kellyd .an , A.L. Compositio mile th k f no fro m zalophus californianuse th , Californian sea lion Science 135 (1962) 104

239. Pitkin, R.M., Bahns, J.A., Filer, L.J Reynoldsd .an , W.A. human Hi g n materna d corlan d blood, placent mild an a k Proc. Soc. Expt. Biol. Med. 151 (1976) 565

240. Ponzone, N.P. and Baratono, S. The Fe binding capacity of the proteins of the human milk Nutr. Abstr. Rev 2 .(19655 3 22 . )No

241. Praphulla, H.B. and Ananthakrishnan, C.P. Composition of milk: Part I Ind. J. Dairy Sci. 11 (1958) 48

242. Praphulla, H.B. and Ananthakrishnan, C.P. Compositio milkf o n : ParI I t Ind. J. Dairy Sci. 12 (1959) 33

243. Princeloo, J.G., Wittmann Strydom, ,W. , E.S.P., e VillersD , D.G., Wehmeyer, A.S., Laubschner, N.F.d ,an Botha, M.A. Composition of breast milk from Bantu and vhite women on postpartuh th5t e y mda S.A. Med. J. 44 (1970) 738

177 243a Ramdan, M.A., Salah, M.M., Eid, S.Z Sammourd .an , M.B. The effect of oral contraceptive ovosiston on the composition of human milk J. Reprod. Med. Obstet. Gynec (19729 . 1 )8

244. Raut, S.J. and Viswanathan, R. Distribution of Mg in body fluids Indian J. Med. Res« 60 (1972) 1272 245. Rehnberg, G.L., Strong, A«B., Porter, C.R Carterd .an , M.W. Level totae th f stablmiln so li d diekr an S e t Environ. Sci. Technol. 3 (1969) 171

246. Reschetkina, L.P. Fe content in baby foods and alimentary adequacy of Fe in i nfant s Pediatriya, Mosco (19687 w4 4 )6

247. Reschetkina, L.P. Cu content in products for infant feeding and the alimentary retentioinfantn i u C f varyinso f n o g ages Vopr. Oktr. Materin. Dec (19694 1 . 6 )8

248. Reschetkina, L.P. Zn content of baby food and its alimentary allowances for young children Vopr. Pitan. Mosco (19698 2 w 2 )6

249-. Reshetkina, L.P. On the content of Zn, Fe, Cu and Co produces entering the children's diet in Prikarpatie ' ' Vopr. Pitan. 24/5 (1965) 68 250. Rogers, W.P. and Pont, E.G. Cu contaminatio miln ni k productio d buttenan r manufacture Aust Dair. .J y Tech (19650 .2 0 )20

.251 Roh, J.K., Bradely, R.L., Richardson, T. and Weckel, K.G. Distribution and removal of added mercury in milk J. Dairy Sci. 58 (1975) 1782 (See also J. Dairy Sci. 59 (1976) 376)

252. Rook, J.A.F. Variations in the chemical composition of the milk of the co Parw- I t Dairy Sci. Abstr (19613 2 . 1 )25

253. Rowland, S.J., Roy, J.H.B., Sears, H.J Thompsond .an , S.Y. e effecTh f preparatuo t m milkincompositioe th n o g f no the preparatu d postpartuan m m secretionw co e th f so J. Dairy Sci. 20 (1953) 16

254. Samuelsson, E.G. contenu C distributioe e th miln Th o i td t k an u C f no various phases of milk Milchwiss. 21 (1966) 335

178 255. Sapetti, C., Arduino, E. and Durio, P. Pb pollution concenb :P miln i c k fromn o cowd fe s contaminated forages Folia Vaterinaria Latina (Milano )(1973')3 4 7

255a. Saarinen, U.M., Siimes, M.A. and Dallman, P.R. Iron absorption in infants: High bioavailability of breast milk iro indicates na extrinsie th y b dmethog ta c d of iron absorptio they b -d -concentrationan f seruno m ferritin . J Pediat (19771 9 . 6 3 )

255b. Saarinen, U.M. Need for iron supplementation in infants on prolonged breast feeding J. Pediat. 93 (1978) 177

256. Satprakash and Robert Jenness Status of Zn in cows milk J. Dairy Sci. 50 (1967) 127

257. Schafer, K.H .Bceyer, , A.M Karted .an . ,H The trace element Fe in milk and milk mixtures Z. Kinderheilk. 75 (1955) 501

258. Schellner, G., Anke, M., Liidke, H. and Henning, A. Dependence of'.milk yield and composition on che dietary sodium supply Arch. Exper. Vet. Med (1971.5 2 3 )82

259. Schmidt Sansonid an . ,W . ,B Direct determinatio f severano l heavy metal n solutioni s s of high total salt concentrations by means of AAS, using a water cooled burner Klin. Z . Chem. Klin, Biochem (19742 .1 7 )21

260. Schou, M. and Amdisen, A. Lithiu pregnancd man III- y . Lithium ingestioy b n children breast-fed by women on lithium treatment Brit. Med. J. ii (1973) 138

261. Schroeder, H.A Balassad .an , J.J. Abnormal trace metals in man: Cd J. Chron. Dis .(19614 1 6 )23

262. Schroeder, H.A Balassad .an , J.J. Abnormal trace metal mann i s :b P J. Chron. Dis (19614 .1 8 )40

263. Schroeder, H.A., Balassa, J.J Tiptond .an , I.H. Abnormal trace metals in man: Ni J. Chron. Dis .(19625 1 1 )5

264. Schroeder, H.A., Balassa, J.J Tiptond .an , I.H. Abnormal trace metals in man: Cr J. Chron. Dis .(19625 1 1 )94

179 265. Schroeder, H.A., Balassa, Tiptond J.Jan . , I.E. Abnormal crace metal mann i si T : J. Chron. Dls6 (19631 . 5 )5

266. Schroeder, H.A., Balassa, Tipcond J.Jan . , I.E. Abnormal crace metal mann si V : J. Chron. Dis. 16 (1963) 1047 267. Schroeder, B.A., Balassa, Tiptond J.Jan . , I.E. Abnormal trace metal mann n si S : J. Chron. Dis. 17 (1964) 483 268. Schroeder, H.A. and Balassa, J.J. Abnormal trace metal mann b si N : J. Chron. Dis(19658 1 . 9 )22

269. Schroeder, Balassad H.Aan . , J.J. Abnormal trace metals in man: As J. Chron. Dis. 19 (1966) 85

270. Schroedec, H.A., Balassa, J.J. and Tipton, I.E. Essential trace metals in man: Mn J. Chron. Dis. 19 (1966) 545

271. Schroeder, H.A. and Balassa, J.J. Abnormal crace metal mann r si Z : .J. Chron. Dis9 (19661 . 3 )57

272. Schroeder, H.A., Buckmann Balassad an . ,J , J.J. Abnormal trace element mann e i sT : J. Chron. Dis(19670 2 . 7 )14

273. Schroeder, H.A., Nason, A.P., Tipton, Balassad I.Ean . , J.J. Essential trace metal mann n i sZ : J. Chron. Dis. 20 (1967) 179

274. Schroeder, H.A. and Balassa, J.J. Abnormal trace metal mann e si G : J. Chron. Dis(19670 2 . 1 )21

275. Schroeder, H.A., Nason, A.P. and Tipton, I.E. Essential crace metals in man: Co J. Chron. Dis(19670 2 . 9 )86

276. Schroeder, H.A., Nason, Tiptond A.Pan . , I.E. Essential metals in man: Mg J. Chron. Dis(19691 2 . 5 )81

277. Schroeder, H.A., Frost, Balassd D.Van . a J.J. Essencial trace metals in man: Se J. Chron. Dis(19703 2 . 7 )22

278. Schroeder, H.A., Balassa, Tiptond J.Jan . , I.E. Essential trace metal mann o i sM : J. Chron. Dis. 23 (1970) 481

180 278a. Schroeder, H.A., Tipton, I«H Nasond .an , A.P. Trace metals in man: Sr and B J. Chron. Dis (19725 2 . 1 )49 279. Schwarz, F.J Kirchgessnerd .an . ,M Kupfer- und Zinkgehalte in der Milch und im Plasma von Ku'hen nach hoher nutriciver Kupferdosierung Lebensm. Z . Unters. Forsch (19786 .16 )5 280. Schwarz, W.A. and Kirchgessner, M. Changes in the Zn. content of cow milk with varying Zn supply Z. Tierphysiol. Tierernahr. Futtermittelk. 35 (1975) 1

281. Schwarz, W.A Kirchgessnerd .an . ,M excretion Z lactatinf no g cows receiving varying levels of Zn Arch. Tierernahr. 25 (1975) 597

282. Sell, J.L., Deitz, F.D Buchanand .an , M.L. Concentration of Hg in animal products and soils of North Dakota Arch. Environ. Cont. Toxicol 3 (1975. 8 27 )

283. Shea, K.P. Canned milk Environ. 15 (1973), 6

Shearer, T.R d Hadjimarkosan . , D.M. Geographic distribution of Se in human milk Arch. Environ. Health 30 (1975) 230

285. Shimoishi. Y , The gas chromatographic determination of Se (VI) and n totamilki e S l, milk product albumid an s n with 1,2-diamino-4-nitrobenzene Analys 1 (197610 8 t 29 )

285a. Shuvalov, Yu.N. Excretio f arsenino e mil th f cow ko n i cs treated with sodium arsenite Dairy Sci. Abstracts 32 (1970) 192 (Abstract 1302)

285b. Siimes, M.A., d KuitunenVuorian . E , . P , Breast milk declininiroA n- g concentration durine th g course of lactation Acta Paediat. Scand. 68 (1979) 29

286. Slater, J.E. Retention of nitrogen and minerals by babies 1 week old J. Nutr. 15 (1961) 83

287. Snodgrass, G.J.A.I., Stimmler, L., Went, J. Abrams, M.E. and Will, E.J. Interrelations of plasma calcium, inorganic phosphate, magnesium, and protein over the first week of life Arch. Dis. Childhood 48 (1973) 279

181 288. So'remark. R , Vanadium in some biological specimens . J Hutr (19672 9 3 . 18 )

289. Ssekaalo, H. and Johnson, S..M. Determination of molybdenum in biological materials with 2-amino-4-ehlorobenzenthiol J. Sci. Food Agrie. 20 (1969) 581

290. Stanley, R.E., Mullen, A.A d Bretthaueran . , S.W. Transfe o milt rf ingesteko d radiolead Health Phys. 21 (1971) 211

291. Stanton, R.E. and Hardwick, A.J. The determination of Mo in milk with Zn-dithiol Analyst 93 (1968) 193

292. Stelte. ,W Pb content in milk and milk powder Lebensm. Z . Untersuch. Forsch (19716 .14 8 )25

292a. Scolley, H., Droese, W. and Rewerts, I. Some trace elements in infant nutrition In 'Spurenelemente in der Entwicklung von Mensch und Tier' Bethke Bindlingmaierd an . ,K (eds. ,F ) * Ufban & Schwarzenberg, Munich (1975) 113

293. Strain,'W.H., ;,ascari, A. and Pories, tf.J. n deficiencZ babien y'i s h Int.7t e ,Procth Congresf .o Nutr.n so , Hamburg 5 (1966) 759

294. Starub, C.P. and Murthy, G.K. Stable element d radionuclidesan human si n milk Radiol. Hlth. Data 6 (1965) 230

295. Szabo, A. and Bende, E. Dat n strontiuao d cesiuan m m conten milf o t k Tejipar, Hungary 24 (1975) 58

296. Taktakisvili, S.D. d nickeCan o l conten n somi t e foodstuff Georgin i s a region Vopr. Pitan (19632 2 . 3 )7

297. Tanner,' J.T., Friedman, M.H Lincolmd .an , D.N. Hg content of common foods determined by NAA Scienc (19727 17 e ) 1102

298. Tarvydas , Jordan,H. , S.M Morgand an . , E.H. Fe metabolism during lactatio e rabbith n ti n Brit Nutr. .J (19682 2 . 5 )56

Hormonese 299Th . : Physiology, Chemistr Applicatiod an y n Pinus G., Thimann, K.V. (eds) Academic Press Inc. New York (1950)

182 300. Trace element metabolism in man and animals - IV, Perth, May 11 - 15 (1981) (See abstracts 27, 118 (Fe), and 57 (Cu, Mn, Zn))

301. Trace elements in infant nutrition Committee on nutrition Pediat. 26 (1960) 715 302. Trace elements in human nutrition ExperO WH Repor a tf o tCommitte e WHO. Tech. Rep. Ser 532. .No , WHO, Geneva (19754 )5

303. Trace element developmene animald th an n sn i sma f o t (With special reference to neglected elements in infant nutrition) Bethke, K. and Bindlingmaier, F. (eds) Urban & Schwarzenberg, Munich (1975) 113 304. Traeger, A. Excretion of the drugs in human milk Z. Sch. Arzt. Fortbildung 64 (1970) 724

305. Tsvetkova, I.N. o contentM d C an u Kiee f foodso th vn si regio n i n relatio endemio nt c goitre Gig. Sanit. 34 (1969) 9 306. Tsvetkova, T.S., Sergeeva Keend an . ,E . , D Determination of Cu, Pb, Cd and Zn contents of milk by AAS Vet. Med. Nauk (19763 1 i 8 )2

307. Tunnessen, W.W Hertzd .an , C.C. Toxic effect of lithium in newborn infants J. Pediat (19721 8 . 4 )80

308. Twomey, A. and Joerin, M.M. Iodin miln ei k Med. J. Aust. 1 (1972) 941

309. Ullrey, D.E., Ely, W.T. and Covert, R.L. mare'n i u C s d milan Fe kn ,Z J. Anim. Sci. 38 (1974) 1276 (See also J. Anim. Sci. 25 (1966) 217)

310. Unanjan, G.S. Microelemental content of Cu, Mn, Cr, Al and Mg in the blood of stillborn and the mammary milk of their mothers Z. Eksp. Klin. Med. 9 (1969) 38

3lOa. Underwood, E.J. Trace Element Relation si Humao nt Animad nan l Nutrition, 4th edition Academic Press Yorw ,Ne k 1977

183 311. Vaughan, L.A., Weber, C.W. and Kemberling, S.R. Relationship between the trace mineral content of lactating women,1 s milk, serum and dietary intake Proc« Trace Element Metabolism in Man and Animals - 3, Kirehgessner . (ed)M , , Freising-Weihenstephan, Technical University, Munich (1977) 452

312. Van, BcJ»s Drescher-Kadens U. and Walser-Kart, K. The composition of deer milk Z. Tierphysiol. Tierernahr. U. Futtermittelk. 31 (1973) 227

313. Van der Bas, J.M. and Mulder, H. The Zn content of cow' s milk Meth. Milk & Dairy J. 18 (1964) 103

Hornn 314Va ,. D.R d Bakeran . , B.E. Seal milk II. Harp seal (pagophilus groenlandicus) milk: effects of stage of lactation on the composition of the milk Can. J. Zool. 49 (1971) 1085

Koetsveldn 315Va . , E.E. Th I econten f fres o f d spra milo d tan han k y dried whey Nettu Milk & Dairy J. 20 (1966) 3 " * 316. Venn, J.A.J., McCance, R.A Widdowsond .an , E.M. Fe metabolism in piglet anaemia ^ J. Comp. Path. Therapeut. 57 (1947) 314

317. Voloshivanov, B.M. Cu, Fe, Zn and Co in human milk Vopr. Pitan, Moscow 23 (1964) 81

318. Voth, J.L. Spectrographic metho determinatior fo d f tracno e elements in milk Anal. Chem. 35 (1963) 1957

3l8a. Vuori, E. and Kuitunen, P. The concentrations of copper and zinc in human milk Acta Paediat. Scand. 68 (1979) 33

319. Walker, A.R.P.', Arvidsson, U.S. and Draper, W.L. e compositioTh f breaso n t mil Soutf ko h African Bantu mothers Trans. Royal Soc. Trop. Med. H/g. 48 (1954) 395

320. Walravens, P.A d Hambidge.an , K.M. Growth of infants fed a Zn supplemented formula Amer . J Clin. . Nutr (19769 2 . ) 1114

321. Watkinson, J.H. The selenium status of New Zealanders N.Z. (19740 Med8 . 2 J .)20

184 322. Weigand Kirchgessner, ,E. Granzer, Ranfft,d M. an . ,W . , K The feeding of large amounts of sulphite to lactating cows: Tolerance to SO2 and SO2 content of milk Zucke (19725 2 r 8 )74

323. Wernery, H., Heeschen, W. , Reichmuth and To lie, A. Magnesium content of cow1s milk Wien. Tierarztl. Mschr (19730 .6 5 )5

324. Widdowson, E.M. Absorption and excretion of fat, nitrogen and minerals from "filled" milks by babies one week old Lance (1965i i t ) 1099

325. Widdowson, E.M. Trace elements in human development, in "Mineral Metabolis Pediatricsn i m " Barltrop Burlandd an . ,D , W.L. (eds) Blackwell Scientific Publications, Oxford (19695 )8 326. Widdowson, E.M. Interrelations of dietary calcium with phytates, phosphate. d fatan s s Bibl. Nutritio et Dieta 15 (1970) 38 327. Windstrom Thorell, ,G. , C.B Abergd .an . ,B The iodine content of Swedish dairy milk Acta Chem. Scand. 17 (1963) Suppl. 1, p. 238

328. Woodruff, G.W., Latham, C. and McDavid, S. Fe Nutrition in the breast fed infant J. Pediatr (19770 9 . 6 )3

329. Wyburn, J.R.. Human breast milk excretio f radionuclideno s following administratio f radiopharmaceuticalo n s J. Nucl. Med. 14 (1973) 115

330. Yagill, R., Etzion, F. and Berlyne, G.M. The effect of D-aldosterone and spirondactone on the concentration of Na and K in the milk of rats . J Endocr (19739 5 3 . 63 )

331. Ziegler, E.E. Na, chloride, K : Renal solute load and problems of water balanc n nutritioi e f infantno s Mschr. Kinderheilk. 122 (1974) 279 ANNEX

Lis f 3-letteo t r country codes

Africa (continen ) of t AFS, L AU Australia Bulgaria BUL Canada CAN I CH Chile R CH China, Republi f o c Czechoslovakia CZE N DE Denmark Y EG Egypt H ET Ethiopia N FI Finland France FRA Germany, Federal Republic of GFR Greece GRE Hungary HUN N I India Iran IRA R IS Israel A IT Italy P JA n a p Ja Malaysia MAL Netherlands NET New Zealand NEZ Nigeria NIG R NO Norway K PA Pakistan Papua New Guinea PNG Poland POL Puerto Rico PUR South Africa SOU Spain SPA E SW Sweden K U United Kingdom United States of America USA USSR USR Vanuatu (New Hebrides) VAN West Indies WIN G YU Yugoslavia

186 ORDEO T W R HO IAEA PUBLICATIONS

exclusivn A e sales agen r IAEfo t A publications whoo ,t l ordermal s and inquiries should be addressed, has been appointed in the following country:

UNITED STATES OF AMERICA UNIPUB, P.O. Box 433, Murray Hill Station, New York, NY 10016

In the following countries IAEA publications may be purchased from the sales agent r booksellerso s liste througr do h your major local booksellers. Paymen made b locan n ei ca t l currenc r wityo h UNESCO coupons.

ARGENTINA Comision Nacional de Energt'a Atomica, Avenida'del Libertador 8250. RA-1429 Buenos Aires AUSTRALIA Hunter Publications GippA 8 5 , s Street, Collingwood, Victoria 3066 BELGIUM Service Courrier UNESCO, 202. Avenu Roiu ed , B-1060 Brussels CZECHOSLOVAKIA S.N.T.L., Spalena 51, CS-113 02 Prague 1 Alfa, Publishers, Hurbanovo namestie 6, CS-893 31 Bratislava FRANCE Office Internationa Documentatioe d l t Librairien e Gay-Lussac e ru , 48 , , F-75240 Paris Cedex 05 HUNGARY Kultura, Hungarian Foreign Trading Company 149x P.OBo ,. H-1389 Budapes2 6 t INDIA Oxford Boo Stationerd kan y Co. , Par,17 k Street, Calcutta-700 016' Oxford Boo Stationerd kan y Co., Scindia House Oelhi-11w Ne , 1 000 ISRAEL Heiliger and Co., Ltd., Scientific and Medical Books, 3, Nathan Strauss Street, Jerusalem 94227 ITALY Libreria Scientifica, Dott. Luci Biasie od o "aeiou". Via Meravigli 16, 1-20123 Milan JAPAN Maruzen Company, Ltd. ,5050x P.OBo . , 100-31 Tokyo International NETHERLANDS Martinus Nijhoff 8.V., Booksellers, Lange Voorhout 9-11, P.O269x Bo . , NL-2501 The Hague PAKISTAN Mirza Book Agency , Shahra65 , h Quaid-e-Azam 729x , P.OBo ,. Lahore3 POLAND Ars Polona-Ruch, Centrala Handlu Zagranicznego, Krakowskie Przedmiesci , PL-00-06e7 8 Warsaw ROMANIA llexim, P.O. Box 136-137, Bucarest SOUTH AFRICA Van Schaik's Bookstore (Pty) Ltd., Libri Building, Church Street, P.O. Box 724, Pretoria 0001 SPAIN Diaz de Santos, Lagasca 95, Madrid-6 Dia Santose zd , Balmes 417, Barcelona-6 SWEDEN AS C.E. Fritzes Kungl. Hovbokhandel, Fredsgatan 2, P.O. Box 16356, StockholS-107 2 3 m UNITED KINGDOM Her Majesty's Stationery Office, Agency Section PDIB, P.O.Box 569, H Londo9N 1 nSE U.S.S.R. Mezhdunarodnaya Kniga, Smolenskaya-Sennaya 32-34, Moscow G-200 YUGOSLAVIA Jugoslovenska Knjiga, Terazije 27, P.O. Box 36, YU-11001 Belgrade

Orders from countries where sales agents have not yet been appointed and requests for information should be addressed directly to: Division of Publications International Atomic Energy Agency Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria