Characterisation of Novel Genetic Variants of Amyotrophic Lateral Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Novel Genetic Variants of Amyotrophic Lateral Sclerosis Characterisation of Novel Genetic Variants of Amyotrophic Lateral Sclerosis By Tobias Alexander Moll Sheffield Institute for Translational Neuroscience A thesis submitted for the degree of Doctor of Philosophy (PhD) June 2020 Abstract Background: Amyotrophic lateral sclerosis (ALS) is an invariably fatal and relatively common neurodegenerative disorder without effective therapy. Identified genetic variants cluster in biological pathways including RNA processing, axonal transport, and protein homeostasis. Discovery of new genetic variants within new biological pathways highlights new disease biology, and can lead to novel therapeutic targets. This project will focus on the development of cell and animal models to characterise novel ALS-associated mutations associated with GLT8D1, CAV1 and CAV2. Aims and objectives: i) To evaluate the relative toxicity of ALS-associated GLT8D1 mutations in neuronal and non-neuronal cell lines via MTT and lactate dehydrogenase assays. ii) To investigate the effect of mutations on the enzyme activity of GLT8D1 using a UDP-GloTM glycosyltransferase assay. iii) To test whether mutant GLT8D1 causes fragmentation of the Golgi network using immunocytochemistry. iv) To model GLT8D1 mutations in zebrafish larvae via RNA microinjection. v) To model CAV1/CAV2 enhancer mutations in neuronal and non-neuronal cells via CRISPR/Cas9 genome editing. vi) To measure ganglioside expression in human cells expressing GLT8D1, CAV1 and CAV2 mutations using live cell imaging. Results: I studied in detail two ALS-associated GLT8D1 mutations: R92C and G78W. The relative toxicity of the mutations in model systems mirrors the clinical severity. Mutated GLT8D1 exhibits in vitro cytotoxicity and induces motor deficits in zebrafish larvae consistent with ALS. Identified GLT8D1 mutations are proximal to the substrate-binding site; both R92C and G78W mutations impair GLT8D1 enzyme activity. An R92C mutation reduces membrane ganglioside expression, which is indicative of dysregulated neurotrophic signalling. Ganglioside biosynthesis occurs in the Golgi; GLT8D1 localises to the Golgi in neuronal and non-neuronal cells, and preliminary data suggests an R92C mutation causes Golgi fragmentation. The second stage of this project follows the identification of ALS-associated variation within an enhancer linked to expression of CAV1/CAV2. CAV1 and CAV2 encode major components of caveolae, which organise membrane lipid rafts (MLR) important for neurotrophic signalling. Gangliosides are a key component of MLR. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt ganglioside expression within MLR in patient-derived cells; and CRISPR/Cas9 perturbation proximate to a patient-mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Conclusions: These results place dysregulated ganglioside metabolism upstream in the pathogenesis of ALS. I propose that GLT8D1 and CAV1/CAV2 share a common pathway of pathogenesis in ALS via disruption of ganglioside recruitment to MLR and impaired neurotrophic signalling. I Declaration I, Tobias Moll, confirm that this thesis is my own work. I am aware of the University’s Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This work has not been previously been presented for an award at this, or any other, university. Where stated, sections of this thesis are comprised of the following published papers: Chapter 1: Introduction – Moll et al., 2020. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain. awz358. In addition to Moll et al., 2020, there is further discussion in Chapter 1 that is not published. Chapter 3: ALS-linked G78W and R92C variants in GLT8D1 are toxic to HEK293 and N2A cells and impair enzyme activity – Cooper-Knock et al., 2019. Mutations in the glycosyltransferase domain of GLT8D1 are associated with familial amyotrophic lateral sclerosis. Cell Reports. 26(9):2298-2306. In addition to Cooper-Knock et al., 2019, further results are presented in Chapter 3 that are not published. Chapter 4: Knockdown of endogenous glt8d1 and overexpression of mutant GLT8D1 produces motor impairment in zebrafish larvae – Cooper-Knock et al., 2019. Mutations in the glycosyltransferase domain of GLT8D1 are associated with familial amyotrophic lateral sclerosis. Cell Reports. 26(9):2298-2306. In addition to Cooper-Knock et al., 2019, further results are presented in Chapter 4 that are not published. In addition, the following experimental chapter includes a paper currently in submission: Chapter 6: Characterisation of ALS-associated CAV1/CAV2 enhancer variants – Rare variant burden analysis within enhancers identifies CAV1 as a new ALS risk gene. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606796 At the start of each chapter, a full acknowledgment and reference of the publication is given, in addition to my contribution, as well as that of my co-authors and collaborators. Some chapters contain additional data and commentary that is not in the published/submitted manuscripts. II Dedication This thesis is dedicated to Mr Lee Newton. The generous contribution from the Newton family has made this work possible, and I hope that this research will aid in the fight against motor neurone disease. I would also like to dedicate this thesis to my father, Victor Moll. Your vision and work ethic inspired me from a young age. I hope I have made you proud. III Acknowledgements I am highly indebted to the enthusiasm, commitment, and above all, friendship of Dr Johnathan Cooper-Knock, who has provided me with every opportunity to develop as a researcher. His passion and dedication have driven me to achieve things I did not think were possible. A very special mention goes to Professor Dame Pamela Shaw, for her continual guidance and support throughout this PhD, and for believing in my ability as a scientist. I would also like to thank Dr Janine Kirby for providing me with so much academic and personal support over the past five years. This PhD would not have been as successful without the help of some very important people at SITraN, particularly Dr Adrian Higginbottom, who has been extremely generous with his time and has shown unprecedented levels of patience when helping me to develop my technical skills and my ability to think critically. I was extremely fortunate to have the support of the Hautbergue lab, who always found the time to explain protocols and help me with performing challenging experiments. I would like to extend my gratitude to Dr Tennore Ramesh for his help with the zebrafish work. To all my friends and colleagues who have given me support, laughter and happiness along the way: John, Sam, Ramya, Helia, Dave, Andre, Robin, Toby, Osman, Mirinda, Emily, Charlotte, Ale, Matt, Nikita, Erica, Cleide, Allan, Alex…I love you all! I would be in trouble if I did not mention my wonderful girlfriend, Anna, who is without question one of the most understanding and supportive people I have known. Thank you for putting up with my working evenings and weekends over the past three years! Finally, this PhD would not have been possible without the love and support of my amazing family, particularly my mother, who has provided me with every opportunity in life, and has continually tried her hardest to understand what I do for a living. I would not have achieved half of what I have without the support of my amazing sister and best friend, Poppy. To the rest of the Moll family: Victor, Max, and Leo – I have always looked up to you boys and I hope I have made you as proud as I am of you. IV Table of contents List of figures .......................................................................................................................... XII List of tables ......................................................................................................................... XIV List of abbreviations ............................................................................................................. XV Chapter 1. Introduction ........................................................................................................... 1 1.1. Introduction to amyotrophic lateral sclerosis ........................................................... 1 1.2. Clinical presentation and disease management ..................................................... 1 1.3. Genetics of ALS ........................................................................................................... 2 1.3.1. SOD1...................................................................................................................... 3 1.3.2. TARDBP ................................................................................................................ 3 1.3.3. FUS ........................................................................................................................ 4 1.3.4. C9ORF72 .............................................................................................................. 4 1.4. ALS pathological mechanisms .................................................................................. 5 1.4.1. Oxidative stress .................................................................................................... 5 1.4.2. Mitochondrial dysfunction ................................................................................... 6 1.4.3. Impaired axonal transport ................................................................................... 6 1.4.4. Dysregulated RNA metabolism .........................................................................
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Two Transgenic Mouse Models for Β-Subunit Components of Succinate-Coa Ligase Yielding Pleiotropic Metabolic Alterations
    Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Kacso, Gergely; Ravasz, Dora; Doczi, Judit; Németh, Beáta; Madgar, Ory; Saada, Ann; Ilin, Polina; Miller, Chaya; Ostergaard, Elsebet; Iordanov, Iordan; Adams, Daniel; Vargedo, Zsuzsanna; Araki, Masatake; Araki, Kimi; Nakahara, Mai; Ito, Haruka; Gál, Aniko; Molnár, Mária J; Nagy, Zsolt; Patocs, Attila; Adam-Vizi, Vera; Chinopoulos, Christos Published in: Biochemical Journal DOI: 10.1042/BCJ20160594 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Kacso, G., Ravasz, D., Doczi, J., Németh, B., Madgar, O., Saada, A., Ilin, P., Miller, C., Ostergaard, E., Iordanov, I., Adams, D., Vargedo, Z., Araki, M., Araki, K., Nakahara, M., Ito, H., Gál, A., Molnár, M. J., Nagy, Z., ... Chinopoulos, C. (2016). Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal, 473(20), 3463-3485. https://doi.org/10.1042/BCJ20160594 Download date: 02. okt.. 2021 Biochemical Journal (2016) 473 3463–3485 DOI: 10.1042/BCJ20160594 Research Article Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Gergely Kacso1,2, Dora Ravasz1,2, Judit Doczi1,2, Beáta Németh1,2, Ory Madgar1,2, Ann Saada3, Polina Ilin3, Chaya Miller3, Elsebet Ostergaard4, Iordan Iordanov1,5, Daniel Adams1,2, Zsuzsanna Vargedo1,2, Masatake
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Supplementary Material for “Characterization of the Opossum Immune Genome Provides Insights Into the Evolution of the Mammalian Immune System”
    Supplementary material for “Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system” Katherine Belov1*, Claire E. Sanderson1, Janine E. Deakin2, Emily S.W. Wong1, Daniel Assange3, Kaighin A. McColl3, Alex Gout3,4, Bernard de Bono5, Terence P. Speed3, John Trowsdale5, Anthony T. Papenfuss3 1. Faculty of Veterinary Science, University of Sydney, Sydney, Australia 2. ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia 3. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 4. Department of Medical Biology, The University of Melbourne, Parkville, Australia 5. Immunology Division, University of Cambridge, Cambridge, UK *Corresponding author: K. Belov, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia ph 61 2 9351 3454, fx 61 2 9351 3957, email [email protected] MHC paralogous regions Only 36 of the 114 genes in the opossum MHC have paralogs in one of the three paralogous regions (Supplementary Table 1). Genes represented in at least three of the four paralogous regions (13 genes) were used to compare gene order, revealing rearrangements between the four regions in opossum. Table 1: MHC genes with paralogs on opossum chromosomes 1, 2 and 3, corresponding to MHC paralogous regions on human chromosomes 9, 1 and 19 respectively. MHC Chromosome 1 Chromosome 2 Chromosome 3 (Human Chr 9) (Human Chr 1) (Human Chr 19) AGPAT1 AGPAT2 AIF1 C9orf58 ATP6V1G2 ATP6V1G1 ATP6V1G3 B3GALT4 B3GALT2 BAT1 DDX39 BAT2 KIAA0515 BAT2D1 BRD2 BRD3 BRDT BRD4 C4 C5 C3 SLC44A4 SLC44A5 SLC44A2 CLIC1 CLIC3 CLIC4 COL11A2 COL5A1 COL11A1 COL5A3 CREBL1 ATF6 DDAH2 DDAH1 DDR1 DDR2 EGFL8 EGFL7 EHMT2 EHMT1 GPX5 GPX4 MHC Class I CD1 HSPA1A HSPA5 MDC1 PRG4 NOTCH4 NOTCH1 NOTCH2 NOTCH3 PBX2 PBX3 PBX1 PBX4 PHF1 MTF2 PRSS16 DPP7 PSMB9 PSMB7 RGL2 RALGDS RGL1 RGL3 RING1 RNF2 RXRB RXRA RXRG SYNGAP1 RASAL2 TAP ABCA2 TNF/LTA/LTB TNFSF8/TNFSF15 TNFSF4 CD70/TNFSF9/ TNFSF14/ TNXB TNC TNR Table 2.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 743914V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/743914; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis 2 and ER-associated degradation 3 4 Yicheng Wang1,2, Yusuke Maeda1, Yishi Liu3, Yoko Takada2, Akinori Ninomiya1, Tetsuya 5 Hirata1,2,4, Morihisa Fujita3, Yoshiko Murakami1,2, Taroh Kinoshita1,2,* 6 7 1Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan 8 2WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, 9 Japan 10 3Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, 11 School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China 12 4Current address: Center for Highly Advanced Integration of Nano and Life Sciences (G- 13 CHAIN), Gifu University, 1-1 Yanagido, Gifu-City, Gifu 501-1193, Japan 14 15 *Correspondence and requests for materials should be addressed to T.K. (email: 16 [email protected]) 17 18 19 Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids interact with 20 each other in the mammalian plasma membranes, forming dynamic microdomains. How their 21 interaction starts in the cells has been unclear. Here, based on a genome-wide CRISPR-Cas9 22 genetic screen for genes required for GPI side-chain modification by galactose in the Golgi 23 apparatus, we report that b1,3-galactosyltransferase 4 (B3GALT4), also called GM1 24 ganglioside synthase, additionally functions in transferring galactose to the N- 25 acetylgalactosamine side-chain of GPI.
    [Show full text]
  • Genome-Wide Analysis of Differential Transcriptional and Epigenetic
    bioRxiv preprint doi: https://doi.org/10.1101/083246; this version posted October 26, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Genome-wide Analysis of Differential Transcriptional and 2 Epigenetic Variability Across Human Immune Cell Types 3 Simone Ecker,1,2,* Lu Chen,3,4 Vera Pancaldi,1 Frederik O. Bagger,4,5,6 José María Fernández,1 Enrique Carrillo de 4 Santa Pau,1 David Juan,1 Alice L. Mann,3 Stephen Watt,3 Francesco Paolo Casale,6 Nikos Sidiropoulos,7,8,9 Nicolas 5 Rapin,7,8,9 Angelika Merkel,10 BLUEPRINT Consortium, Henk Stunnenberg,11 Oliver Stegle,6 Mattia Frontini,4,5,12 Kate 6 Downes,4,5 Tomi Pastinen,13 Taco W. Kuijpers,14,15 Daniel Rico,1,17 Alfonso Valencia,1,17 Stephan Beck,2,17 Nicole 7 Soranzo3,4,17,* and Dirk S. Paul2,16,17,* 8 9 1Structural Biology and Biocomputing Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain 10 2UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK 11 3Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK 12 4Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK 13 5National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, CB2
    [Show full text]
  • Iii. Administración Local
    BOCM BOLETÍN OFICIAL DE LA COMUNIDAD DE MADRID Pág. 468 LUNES 21 DE MARZO DE 2011 B.O.C.M. Núm. 67 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE 17 MADRID RÉGIMEN ECONÓMICO Agencia Tributaria Madrid Subdirección General de Recaudación En los expedientes que se tramitan en esta Subdirección General de Recaudación con- forme al procedimiento de apremio, se ha intentado la notificación cuya clave se indica en la columna “TN”, sin que haya podido practicarse por causas no imputables a esta Administra- ción. Al amparo de lo dispuesto en el artículo 112 de la Ley 58/2003, de 17 de diciembre, Ge- neral Tributaria (“Boletín Oficial del Estado” número 302, de 18 de diciembre), por el presen- te anuncio se emplaza a los interesados que se consignan en el anexo adjunto, a fin de que comparezcan ante el Órgano y Oficina Municipal que se especifica en el mismo, con el obje- to de serles entregada la respectiva notificación. A tal efecto, se les señala que deberán comparecer en cualquiera de las Oficinas de Atención Integral al Contribuyente, dentro del plazo de los quince días naturales al de la pu- blicación del presente anuncio en el BOLETÍN OFICIAL DE LA COMUNIDAD DE MADRID, de lunes a jueves, entre las nueve y las diecisiete horas, y los viernes y el mes de agosto, entre las nueve y las catorce horas. Quedan advertidos de que, transcurrido dicho plazo sin que tuviere lugar su compare- cencia, se entenderá producida la notificación a todos los efectos legales desde el día si- guiente al del vencimiento del plazo señalado.
    [Show full text]
  • Magazin Wirtschaft
    www.stuttgart.ihk.de 07.2013 Stuttgart - Böblingen - Esslingen-Nürtingen - Göppingen - Ludwigsburg - Rems-Murr Magazin Wirtschaft Ein Service der IHK für Unternehmen in der Region Stuttgart Fachkräfte finden zwischen Alb und Gäu Seite 6 wer hat schon ein ganzes kabinett nur für diewirtschaft? Selbstverständlich wir. Damit die Betriebe gute Rahmenbedingungen haben, sind in unseren Gremien ausschließlich Wirtschaftexperten vertreten. www.stuttgart.ihk.de oder Infoline 0711 2005-0 EDITORIAL Handelskriege kennen keine Gewinner Ähnlich dem Frühjahrswetter in diesem weit kommen? China ist die zweitgrößte Wirt- Jahr ziehen nun auch Wolken über dem schaftsmacht der Welt. Daher sollte das Land Parkett des internationalen Handels beginnen, sich an internationale Spielregeln auf. Auslöser ist die vorläufige Erhebung von zu halten. Globalisierung benötigt faire Wett- EU-Strafzöllen auf chinesische Solarmodule. bewerbsbedingungen, an die sich China zu- China kontert mit einem Anti-Dumping-Ver- weilen jedoch nicht hält. Belegte Fälle von fahren gegen europäischen Wein. Immer Wettbewerbsverstößen gibt es genug. mehr Produkte treten in den Fokus der Dum- ping-Diskussion. Vernünftige Handelspolitik Die EU muss schnellstens sieht anders aus. Mangels Deeskalation wird Verhandlungen aufnehmen die Situation für China und Europa immer tassilo zywietz unangenehmer. Ein Handelskrieg droht. Europa darf davor die Augen nicht ver- Geschäftsführer International Globalisierung erfordert jedoch gegensei- schließen. Nachgiebigkeit ist keine Erfolg ver- der IHK Region Stuttgart tige Rücksichtnahme und Handeln im Sinne sprechende Strategie – damit würde die EU der immer stärker miteinander verbundenen erpressbar. Lässt man China gewähren, kann Volkswirtschaften: China und die EU haben die Methode künftig in der Chemiebranche letztes Jahr Waren und Dienstleistungen in und irgendwann im Autobau angewendet Höhe von über 400 Milliarden Euro ausge- werden.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]