Ionizing Photon Production from Massive Stars Michael W. Topping CASA, Department of Astrophysical & Planetary Sciences, University of Colorado, Boulder, CO 80309
[email protected] ABSTRACT Ionizing photons are important ingredients in our understanding of stellar and interstellar processes, but modeling their properties can be difficult. This paper examines methods of modeling Lyman Continuum (LyC) photon production us- ing stellar evolutionary tracks coupled to a grid of model atmospheres. In the past, many stellar models have not been self-consistent and have not been able to accurately reproduce stellar population spectra and ionizing photon luminosities. We examine new models of rotating stars at both solar and sub-solar metallicity and show that they increase accuracy of ionizing photon production and satisfy self-consistency relationships. Thesis Advisor: Dr. Michael Shull | Department of Astrophysical and Planetary Sciences Thesis Committee: Dr. John Stocke | Department of Astrophysical and Planetary Sciences Dr. William Ford | Department of Physics Dr. Emily Levesque | Department of Astrophysical and Planetary Sciences Defense Date: March 17, 2014 { 2 { Contents 1 INTRODUCTION 3 1.1 Background . .4 1.1.1 Evolutionary Tracks . .4 1.1.2 Model Atmospheres . .5 2 METHODS 6 2.1 EVOLUTIONARY TRACKS . .7 2.1.1 Old Non-Rotating Tracks (Schaller 1992) . .8 2.1.2 New Non-Rotating Tracks . .8 2.1.3 New Rotating Tracks . .8 2.2 Model Atmospheres . 12 2.2.1 Program Setup . 12 2.2.2 Initial Parameter Files . 12 2.2.3 Model Atmosphere Calculation . 13 2.2.4 Defining the Grid . 15 2.3 Putting It All Together . 15 3 RESULTS 20 3.1 Lifetime Integrated H I Photon Luminosities .