7. Gamma and X-Ray Interactions in Matter

Total Page:16

File Type:pdf, Size:1020Kb

7. Gamma and X-Ray Interactions in Matter Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs at angle , with development of Compton’s theory kinetic energy T and momentum p • The photon scatters at angle with a new, lower quantum energy h and momentum h/c 5 6 1 Compton interaction: Kinematics Compton interaction: Kinematics • The collision kinetics is based upon conservation of 2 • pc can be written in terms of T : pc = T(T + 2 m0c ) both energy and momentum where m0 is the electron’s rest mass • Energy conservation requires • We get a set of three simultaneous equations in T = h − h these five parameters: h, h, T, , and : • Conservation of momentum along the (0°) direction h h = 2 h = h cos + pc cos 1+ (h / m0c )(1− cos) • Conservation of momentum perpendicular to the T = h − h direction of incidence: h cot = 1+ tan h sin = pc sin 2 m0c 2 7 8 Compton interaction: Kinematics Compton interaction: Kinematics energy transferred to the recoiling electron hv’=0.49 Dependence of on Photon energy photon is backscattered – increasing is a strong function of - max energy transferred to e photon energy: (never ALL photon energy) • Low photon energies 90 − / 2 • High photon energies: electrons are mostly forward scattered 2 When photon energy is lower than electron rest mass energy m0c , relativistic effects do not contribute => pure elastic scattering 9 10 Compton interaction: Cross sections Compton interaction: Cross sections Interaction cross section Interaction cross section Cross section describes the probability of interaction Thomson: elastic scattering on free electron • Thomson: elastic scattering on a free electron, no energy is - total cross section (integrated over all directions ) transferred to electron • Differential cross section (per electron for a photon 2 8r0 −25 2 scattered at angle , per unit solid angle) = = 6.6510 cm /electron e T 3 d r 2 max at = 0, 180o e T 0 2 o = (1+ cos ) ½ max at = 90 r0 d 2 - classical radius of electron e2 r = - classical radius of electron 0 2 2 m0c Works well for low photon energies, << m0c Overestimates for photon energies > 0.01MeV (factor of 2 for 0.4MeV) 11 12 2 Compton interaction: Cross sections Compton interaction: Cross sections Interaction cross section Interaction cross section • This cross section (can be thought of as an effective target • Klein-Nishina: Compton scattering on free electron but area) is equal to the probability of a Thomson-scattering event includes Dirac’s quantum relativistic theory occurring when a single photon passes through a layer • Differential cross section: containing one electron per cm2 • It is also the fraction of a large number of incident photons that scatter in passing through the same layer, e.g., approximately 2 ' ' d r h h h 2 665 events for 1027 photons e K−N = 0 + − sin ' • For such a small fraction of photons interacting in a layer of d 2 h h h matter (by all processes combined remains less than about 0.05), the fraction may be assumed to be proportional to absorber thickness; for greater thicknesses the exponential • For elastic scattering (h=h) – reduces to Thomson's expression relation must be used • Needed at high photon energy 13 14 Compton interaction: Cross sections Compton interaction: Cross sections Interaction cross section Interaction cross section Thomson’s: d e K −N shows probability for a photon to be d scattered at an angle Photons with high energies tend to scatter in the forward direction ( ~ 0 ) K–N Compton cross section differential in solid angle: (a) data plotted in Cartesian coordinates; (b) the same data plotted in polar coordinates. When the photon energy increases, the scattered photon distribution becomes strongly forward peaked 15 16 Compton interaction: Cross sections Compton interaction: Cross sections Interaction cross section Energy-transfer cross section Klein-Nishina: Compton scattering on free electron (includes Dirac’s quantum relativistic theory) Total cross section –> fraction of energy diverted into Compton Integrating over all photon scattering angles obtain the total cross interactions –> fraction of energy transferred to electrons –> dose section per electron Thomson’s Energy transfer cross section = 2r2... e K−N 0 T e tr =e d r 2 h ... - depends one incidentT = 0 (1+ cos2 ) Approx. photon energy:d higher 2 ~1/hv Average kinetic energy of recoiling electrons: energy => lower interaction probability; T = h e tr expressed through parameter 2 e = h m0 c 17 18 3 Compton interaction: Cross sections Compton interaction: Cross sections Energy-transfer cross section Other cross sections Differential K-N cross section for electron scattering at angle , per unit solid angle, hv'/ hv T / hv per electron d e K −N d photon energies: For high photon energies electrons are preferentially For hv = 1.6 MeV – half of the photon energy is transferred forward scattered ( = 0) to the electron (T = 0.8 MeV) 19 20 Compton interaction: Cross sections Compton interaction: Other cross sections Mass attenuation coefficient Cross section per electron 0 The distribution of kinetic energies given to the Z Probability that a single photon (no Z dependence due to free e Compton recoiling electrons is ~ flat from 0 will have Compton interaction in almost up to the max electron energy electron assumption) 2 a layer of 1 e/cm and transfers Z energy between T and T+dT Cross section per atom a e d e K−N in cm2MeV −1e−1 N Z dT Cross section per unit mass = A (mass attenuation A e Energy distribution of coefficient) electrons, averaged over all For head-on collisions: NA – Avogadro’s constant; Z – number of electrons per atom; A – number of grams per mole of material; – density in g/cm3 Tmax ~ hv - 0.2555 MeV Stronger effect for high hv 21 22 Photoelectric effect: Kinematics Photoelectric effect basics Most important at low photon energies E • Interaction with atomic-shell electrons tightly bound with L potential energy E < hv mom=hv/c L b h K • Photon is completely absorbed K • Kinetic energy to electron: T = h − Eb • Photon transfers its momentum hv/c plus some independent of scattering angle transversal momentum due to the perpendicular • Atom acquires some momentum electric field in the electromagnetic wave • No universal analytical expression for • Final state = free electron + hole in the atomic shell cross sections 23 24 4 Photoelectric effect: Photoelectric effect: Cross sections Directional distribution Interaction cross section For higher photon energies electrons tend to scatter in forward direction ( =0 is forbidden since it is perpendicular to the vector E) Total interaction cross section per atom, in cm2/atom Z n Directional distribution Half of all electrons is ejected a k m within a forward cone of half (h ) angle equal to bipartition angle k = Const m,n − energy dependent Z 4 n 4, m 3 at hν = 0.1 MeV (h )3 Mass attenuation coefficient 3 Z h 25 26 Photoelectric effect: Mass Photoelectric effect: Cross sections attenuation coefficient Energy-transfer cross section 3 Z h Fraction of energy transferred to all electrons T h − E = b E=88keV h h Vacancy created by a photon in the inner shell has to be filled If through Auger process - additional contribution to kerma Final result: tr h − PKYK h K − (1− PK )PLYL h L = h 27 28 Photoelectric effect: Mass energy-transfer coefficients Atom relaxation h L L K K Excited atom relaxes its energy by - fluorescence (emission of photons) or - Auger process (emission of electron) when the higher energy shell electrons move downward 29 30 5 Pair production: Third body is Pair production needed • Photon is absorbed giving rise to electron and positron e • Occurs predominantly in Coulomb force field • There exists a reference frame usually near atomic nucleus where the total momentum of sometimes in a field of atomic electron h electron and positron is zero 2 p • Minimum photon energy required 2m c =1.022 MeV 0 • But photon momentum is always 2 − + hv = 2m0c + T + T h/c =1.022 MeV + T − + T + • Third body needed for momentum e conservation: electron
Recommended publications
  • Neutron Interactions and Dosimetry Outline Introduction Tissue
    Outline • Neutron dosimetry Neutron Interactions and – Thermal neutrons Dosimetry – Intermediate-energy neutrons – Fast neutrons Chapter 16 • Sources of neutrons • Mixed field dosimetry, paired dosimeters F.A. Attix, Introduction to Radiological • Rem meters Physics and Radiation Dosimetry Introduction Tissue composition • Consider neutron interactions with the majority tissue elements H, O, C, and N, and the resulting absorbed dose • Because of the short ranges of the secondary charged particles that are produced in such interactions, CPE is usually well approximated • Since no bremsstrahlung x-rays are generated, the • The ICRU composition for muscle has been assumed in absorbed dose can be assumed to be equal to the most cases for neutron-dose calculations, lumping the kerma at any point in neutron fields at least up to 1.1% of “other” minor elements together with oxygen to an energy E ~ 20 MeV make a simple four-element (H, O, C, N) composition Neutron kinetic energy Neutron kinetic energy • Neutron fields are divided into three • Thermal neutrons, by definition, have the most probable categories based on their kinetic energy: kinetic energy E=kT=0.025eV at T=20C – Thermal (E<0.5 eV) • Neutrons up to 0.5eV are considered “thermal” due to simplicity of experimental test after they emerge from – Intermediate-energy (0.5 eV<E<10 keV) moderator material – Fast (E>10 keV) • Cadmium ratio test: • Differ by their primary interactions in tissue – Gold foil can be activated through 197Au(n,)198Au interaction and resulting biological effects
    [Show full text]
  • Lecture 6: Spectroscopy and Photochemistry II
    Lecture 6: Spectroscopy and Photochemistry II Required Reading: FP Chapter 3 Suggested Reading: SP Chapter 3 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2005 Prof. Jose-Luis Jimenez Outline of Lecture • The Sun as a radiation source • Attenuation from the atmosphere – Scattering by gases & aerosols – Absorption by gases • Beer-Lamber law • Atmospheric photochemistry – Calculation of photolysis rates – Radiation fluxes – Radiation models 1 Reminder of EM Spectrum Blackbody Radiation Linear Scale Log Scale From R.P. Turco, Earth Under Siege: From Air Pollution to Global Change, Oxford UP, 2002. 2 Solar & Earth Radiation Spectra • Sun is a radiation source with an effective blackbody temperature of about 5800 K • Earth receives circa 1368 W/m2 of energy from solar radiation From Turco From S. Nidkorodov • Question: are relative vertical scales ok in right plot? Solar Radiation Spectrum II From F-P&P •Solar spectrum is strongly modulated by atmospheric scattering and absorption From Turco 3 Solar Radiation Spectrum III UV Photon Energy ↑ C B A From Turco Solar Radiation Spectrum IV • Solar spectrum is strongly O3 modulated by atmospheric absorptions O 2 • Remember that UV photons have most energy –O2 absorbs extreme UV in mesosphere; O3 absorbs most UV in stratosphere – Chemistry of those regions partially driven by those absorptions – Only light with λ>290 nm penetrates into the lower troposphere – Biomolecules have same bonds (e.g. C-H), bonds can break with UV absorption => damage to life • Importance of protection From F-P&P provided by O3 layer 4 Solar Radiation Spectrum vs. altitude From F-P&P • Very high energy photons are depleted high up in the atmosphere • Some photochemistry is possible in stratosphere but not in troposphere • Only λ > 290 nm in trop.
    [Show full text]
  • Compton Scattering from the Deuteron at Low Energies
    SE0200264 LUNFD6-NFFR-1018 Compton Scattering from the Deuteron at Low Energies Magnus Lundin Department of Physics Lund University 2002 W' •sii" Compton spridning från deuteronen vid låga energier (populärvetenskaplig sammanfattning på svenska) Vid Compton spridning sprids fotonen elastiskt, dvs. utan att förlora energi, mot en annan partikel eller kärna. Kärnorna som användes i detta försök består av en proton och en neutron (sk. deuterium, eller tungt väte). Kärnorna bestrålades med fotoner av kända energier och de spridda fo- tonerna detekterades mha. stora Nal-detektorer som var placerade i olika vinklar runt strålmålet. Försöket utfördes under 8 veckor och genom att räkna antalet fotoner som kärnorna bestålades med och antalet spridda fo- toner i de olika detektorerna, kan sannolikheten för att en foton skall spridas bestämmas. Denna sannolikhet jämfördes med en teoretisk modell som beskriver sannolikheten för att en foton skall spridas elastiskt mot en deuterium- kärna. Eftersom protonen och neutronen består av kvarkar, vilka har en elektrisk laddning, kommer dessa att sträckas ut då de utsätts för ett elek- triskt fält (fotonen), dvs. de polariseras. Värdet (sannolikheten) som den teoretiska modellen ger, beror på polariserbarheten hos protonen och neu- tronen i deuterium. Genom att beräkna sannolikheten för fotonspridning för olika värden av polariserbarheterna, kan man se vilket värde som ger bäst överensstämmelse mellan modellen och experimentella data. Det är speciellt neutronens polariserbarhet som är av intresse, och denna kunde bestämmas i detta arbete. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Physics Date of issue 2002.04.29 Division of Nuclear Physics Box 118 Sponsoring organization SE-22100 Lund Sweden Author (s) Magnus Lundin Title and subtitle Compton Scattering from the Deuteron at Low Energies Abstract A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden.
    [Show full text]
  • A Study of the Effects of Pair Production and Axionlike Particle
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Summer 8-15-2016 A Study of the Effects of Pair Production and Axionlike Particle Oscillations on Very High Energy Gamma Rays from the Crab Pulsar Avery Michael Archer Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Recommended Citation Archer, Avery Michael, "A Study of the Effects of Pair Production and Axionlike Particle Oscillations on Very High Energy Gamma Rays from the Crab Pulsar" (2016). Arts & Sciences Electronic Theses and Dissertations. 828. https://openscholarship.wustl.edu/art_sci_etds/828 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Physics Dissertation Examination Committee: James Buckley, Chair Francesc Ferrer Viktor Gruev Henric Krawzcynski Michael Ogilvie A Study of the Effects of Pair Production and Axionlike Particle Oscillations on Very High Energy Gamma Rays from the Crab Pulsar by Avery Michael Archer A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2016 Saint Louis, Missouri copyright by Avery Michael Archer 2016 Contents List of Tablesv List of Figures vi Acknowledgments xvi Abstract xix 1 Introduction1 1.1 Gamma-Ray Astronomy............................. 1 1.2 Pulsars......................................
    [Show full text]
  • 1 Standard Model: Successes and Problems
    Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles.
    [Show full text]
  • TUTORIAL on NEUTRON PHYSICS in DOSIMETRY S. Pomp1
    TUTORIAL ON NEUTRON PHYSICS IN DOSIMETRY S. Pomp1,* 1 Department of physics and astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden. *Corresponding author. E‐mail address: [email protected] (S.Pomp) Abstract: Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron‐nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron‐nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set‐ups where such data are measured. Keywords: Neutron physics; nuclear reactions; kerma coefficients; neutron beams; Introduction Dosimetry is concerned with the ability to determine the absorbed dose in matter and tissue resulting from exposure to directly and indirectly ionizing radiation. The absorbed dose is a measure of the energy deposited per unit mass in the medium by ionizing radiation and is measured in Gray, Gy, where 1 Gy = 1 J/kg. Radiobiology then uses information about dose to assess the risks and gains. A risk is increased probability to develop cancer due to exposure to a certain dose. A gain is exposure of a cancer tumour to a certain dose in order to cure it.
    [Show full text]
  • Arxiv:1809.04815V2 [Physics.Hist-Ph] 28 Jan 2020
    Who discovered positron annihilation? Tim Dunker∗ (Dated: 29 January 2020) In the early 1930s, the positron, pair production, and, at last, positron annihila- tion were discovered. Over the years, several scientists have been credited with the discovery of the annihilation radiation. Commonly, Thibaud and Joliot have received credit for the discovery of positron annihilation. A conversation between Werner Heisenberg and Theodor Heiting prompted me to examine relevant publi- cations, when these were submitted and published, and how experimental results were interpreted in the relevant articles. I argue that it was Theodor Heiting— usually not mentioned at all in relevant publications—who discovered positron annihilation, and that he should receive proper credit. arXiv:1809.04815v2 [physics.hist-ph] 28 Jan 2020 ∗ tdu {at} justervesenet {dot} no 2 I. INTRODUCTION There is no doubt that the positron was discovered by Carl D. Anderson (e.g. Anderson, 1932; Hanson, 1961; Leone and Robotti, 2012) after its theoretical prediction by Paul A. M. Dirac (Dirac, 1928, 1931). Further, it is undoubted that Patrick M. S. Blackett and Giovanni P. S. Occhialini discovered pair production by taking photographs of electrons and positrons created from cosmic rays in a Wilson cloud chamber (Blackett and Occhialini, 1933). The answer to the question who experimentally discovered the reverse process—positron annihilation—has been less clear. Usually, Frédéric Joliot and Jean Thibaud receive credit for its discovery (e.g., Roqué, 1997, p. 110). Several of their contemporaries were enganged in similar research. In a letter correspondence with Werner Heisenberg Heiting and Heisenberg (1952), Theodor Heiting (see Appendix A for a rudimentary biography) claimed that it was he who discovered positron annihilation.
    [Show full text]
  • Pkoduction of RELATIVISTIC ANTIHYDROGEN ATOMS by PAIR PRODUCTION with POSITRON CAPTURE*
    SLAC-PUB-5850 May 1993 (T/E) PkODUCTION OF RELATIVISTIC ANTIHYDROGEN ATOMS BY PAIR PRODUCTION WITH POSITRON CAPTURE* Charles T. Munger and Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 .~ and _- Ivan Schmidt _ _.._ Universidad Federico Santa Maria _. - .Casilla. 11 O-V, Valparaiso, Chile . ABSTRACT A beam of relativistic antihydrogen atoms-the bound state (Fe+)-can be created by circulating the beam of an antiproton storage ring through an internal gas target . An antiproton that passes through the Coulomb field of a nucleus of charge 2 will create e+e- pairs, and antihydrogen will form when a positron is created in a bound rather than a continuum state about the antiproton. The - cross section for this process is calculated to be N 4Z2 pb for antiproton momenta above 6 GeV/c. The gas target of Fermilab Accumulator experiment E760 has already produced an unobserved N 34 antihydrogen atoms, and a sample of _ N 760 is expected in 1995 from the successor experiment E835. No other source of antihydrogen exists. A simple method for detecting relativistic antihydrogen , - is -proposed and a method outlined of measuring the antihydrogen Lamb shift .g- ‘,. to N 1%. Submitted to Physical Review D *Work supported in part by Department of Energy contract DE-AC03-76SF00515 fSLAC’1 and in Dart bv Fondo National de InvestiPaci6n Cientifica v TecnoMcica. Chile. I. INTRODUCTION Antihydrogen, the simplest atomic bound state of antimatter, rf =, (e+$, has never. been observed. A 1on g- sought goal of atomic physics is to produce sufficient numbers of antihydrogen atoms to confirm the CPT invariance of bound states in quantum electrodynamics; for example, by verifying the equivalence of the+&/2 - 2.Py2 Lamb shifts of H and I?.
    [Show full text]
  • 12 Scattering in Three Dimensions
    12 Scattering in three dimensions 12.1 Cross sections and geometry Most experiments in physics consist of sending one particle to collide with another, and looking at what comes out. The quantity we can usually measure is the scattering cross section: by analogy with classical scattering of hard spheres, we assuming that scattering occurs if the particles ‘hit’ each other. The cross section is the apparent ‘target area’. The total scattering cross section can be determined by the reduction in intensity of a beam of particles passing through a region on ‘targets’, while the differential scattering cross section requires detecting the scattered particles at different angles. We will use spherical polar coordinates, with the scattering potential located at the origin and the plane wave incident flux parallel to the z direction. In this coordinate system, scattering processes dσ are symmetric about φ, so dΩ will be independent of φ. We will also use a purely classical concept, the impact parameter b which is defined as the distance of the incident particle from the z-axis prior to scattering. S(k) δΩ I(k) θ z φ Figure 11: Standard spherical coordinate geometry for scattering 12.2 The Born Approximation We can use time-dependent perturbation theory to do an approximate calculation of the cross- section. Provided that the interaction between particle and scattering centre is localised to the region around r = 0, we can regard the incident and scattered particles as free when they are far from the scattering centre. We just need the result that we obtained for a constant perturbation, Fermi’s Golden Rule, to compute the rate of transitions between the initial state (free particle of momentum p) to the final state (free particle of momentum p0).
    [Show full text]
  • Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
    1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics.
    [Show full text]
  • Chapter 30: Quantum Physics ( ) ( )( ( )( ) ( )( ( )( )
    Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator. Use Wien’s Displacement Law (equation 30-1) to find the peak frequency of the radiation from the tungsten filament. −− 10 1 1 1. (a) Solve Eq. 30-1 fTpeak =×⋅(5.88 10 s K ) for the peak frequency: =×⋅(5.88 1010 s−− 1 K 1 )( 2850 K) =× 1.68 1014 Hz 2. (b) Because the peak frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared than the visible part of the spectrum. 10. The image shows two oxygen atoms oscillating back and forth, similar to a mass on a spring. The image also shows the evenly spaced energy levels of the oscillation. Use equation 13-11 to calculate the period of oscillation for the two atoms. Calculate the frequency, using equation 13-1, from the inverse of the period. Multiply the period by Planck’s constant to calculate the spacing of the energy levels. m 1. (a) Set the frequency T = 2π k equal to the inverse of the period: 1 1k 1 1215 N/m f = = = =4.792 × 1013 Hz Tm22ππ1.340× 10−26 kg 2. (b) Multiply the frequency by Planck’s constant: E==×⋅ hf (6.63 10−−34 J s)(4.792 × 1013 Hz) =× 3.18 1020 J 19. The light from a flashlight can be considered as the emission of many photons of the same frequency. The power output is equal to the number of photons emitted per second multiplied by the energy of each photon.
    [Show full text]
  • Glossary of Scientific Terms in the Mystery of Matter
    GLOSSARY OF SCIENTIFIC TERMS IN THE MYSTERY OF MATTER Term Definition Section acid A substance that has a pH of less than 7 and that can react with 1 metals and other substances. air The mixture of oxygen, nitrogen, and other gasses that is consistently 1 present around us. alchemist A person who practices a form of chemistry from the Middle Ages 1 that was concerned with transforming various metals into gold. Alchemy A type of science and philosophy from the Middle Ages that 1 attempted to perform unusual experiments, taking something ordinary and turning it into something extraordinary. alkali metals Any of a group of soft metallic elements that form alkali solutions 3 when they combine with water. They include lithium, sodium, potassium, rubidium, cesium, and francium. alkaline earth Any of a group of metallic elements that includes beryllium, 3 metals magnesium, calcium, strontium, barium, and radium. alpha particle A positively charged particle, indistinguishable from a helium atom 5, 6 nucleus and consisting of two protons and two neutrons. alpha decay A type of radioactive decay in which a nucleus emits 6 an alpha particle. aplastic anemia A disorder of the bone marrow that results in too few blood cells. 4 apothecary The person in a pharmacy who distributes medicine. 1 atom The smallest component of an element that shares the chemical 1, 2, 3, 4, 5, 6 properties of the element and contains a nucleus with neutrons, protons, and electrons. atomic bomb A bomb whose explosive force comes from a chain reaction based on 6 nuclear fission. atomic number The number of protons in the nucleus of an atom.
    [Show full text]