Deep Inelastic Scattering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Followed by a Stretcher That Fits Into the Same
as the booster; the main synchro what cheaper because some ex tunnel (this would require comple tron taking the beam to the final penditure on buildings and general mentary funding beyond the normal energy; followed by a stretcher infrastructure would be saved. CERN budget); and at the Swiss that fits into the same tunnel as In his concluding remarks, SIN Laboratory. Finally he pointed the main ring of circumference 960 F. Scheck of Mainz, chairman of out that it was really one large m (any resemblance to existing the EHF Study Group, pointed out community of future users, not presently empty tunnels is not that the physics case for EHF was three, who were pushing for a unintentional). Bradamante pointed well demonstrated, that there was 'kaon factory'. Whoever would be out that earlier criticisms are no a strong and competent European first to obtain approval, the others longer valid. The price seems un physics community pushing for it, would beat a path to his door. der control, the total investment and that there were good reasons National decisions on the project for a 'green pasture' version for building it in Europe. He also will be taken this year. amounting to about 870 million described three site options: a Deutschmarks. A version using 'green pasture' version in Italy; at By Florian Scheck existing facilities would be some- CERN using the now defunct ISR A ZEUS group meeting, with spokesman Gunter Wolf one step in front of the pack. (Photo DESY) The HERA electron-proton collider now being built at the German DESY Laboratory in Hamburg will be a unique physics tool. -
Jet Quenching in Quark Gluon Plasma: flavor Tomography at RHIC and LHC by the CUJET Model
Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2013 c 2013 Alessandro Buzzatti All Rights Reserved Abstract Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti A new jet tomographic model and numerical code, CUJET, is developed in this thesis and applied to the phenomenological study of the Quark Gluon Plasma produced in Heavy Ion Collisions. Contents List of Figures iv Acknowledgments xxvii Dedication xxviii Outline 1 1 Introduction 4 1.1 Quantum ChromoDynamics . .4 1.1.1 History . .4 1.1.2 Asymptotic freedom and confinement . .7 1.1.3 Screening mass . 10 1.1.4 Bag model . 12 1.1.5 Chiral symmetry breaking . 15 1.1.6 Lattice QCD . 19 1.1.7 Phase diagram . 28 1.2 Quark Gluon Plasma . 30 i 1.2.1 Initial conditions . 32 1.2.2 Thermalized plasma . 36 1.2.3 Finite temperature QFT . 38 1.2.4 Hydrodynamics and collective flow . 45 1.2.5 Hadronization and freeze-out . 50 1.3 Hard probes . 55 1.3.1 Nuclear effects . 57 2 Energy loss 62 2.1 Radiative energy loss models . 63 2.2 Gunion-Bertsch incoherent radiation . 67 2.3 Opacity order expansion . 69 2.3.1 Gyulassy-Wang model . 70 2.3.2 GLV . 74 2.3.3 Multiple gluon emission . 78 2.3.4 Multiple soft scattering . -
Accelerator Search of the Magnetic Monopo
Accelerator Based Magnetic Monopole Search Experiments (Overview) Vasily Dzhordzhadze, Praveen Chaudhari∗, Peter Cameron, Nicholas D’Imperio, Veljko Radeka, Pavel Rehak, Margareta Rehak, Sergio Rescia, Yannis Semertzidis, John Sondericker, and Peter Thieberger. Brookhaven National Laboratory ABSTRACT We present an overview of accelerator-based searches for magnetic monopoles and we show why such searches are important for modern particle physics. Possible properties of monopoles are reviewed as well as experimental methods used in the search for them at accelerators. Two types of experimental methods, direct and indirect are discussed. Finally, we describe proposed magnetic monopole search experiments at RHIC and LHC. Content 1. Magnetic Monopole characteristics 2. Experimental techniques 3. Monopole Search experiments 4. Magnetic Monopoles in virtual processes 5. Future experiments 6. Summary 1. Magnetic Monopole characteristics The magnetic monopole puzzle remains one of the fundamental and unsolved problems in physics. This problem has a along history. The military engineer Pierre de Maricourt [1] in1269 was breaking magnets, trying to separate their poles. P. Curie assumed the existence of single magnetic poles [2]. A real breakthrough happened after P. Dirac’s approach to the solution of the electron charge quantization problem [3]. Before Dirac, J. Maxwell postulated his fundamental laws of electrodynamics [4], which represent a complete description of all known classical electromagnetic phenomena. Together with the Lorenz force law and the Newton equations of motion, they describe all the classical dynamics of interacting charged particles and electromagnetic fields. In analogy to electrostatics one can add a magnetic charge, by introducing a magnetic charge density, thus magnetic fields are no longer due solely to the motion of an electric charge and in Maxwell equation a magnetic current will appear in analogy to the electric current. -
Differences Between Quark and Gluon Jets As Seen at LEP 1 Introduction
UA0501305 Differences between Quark and Gluon jets as seen at LEP Marek Tasevsky CERN, CH-1211 Geneva 28, Switzerland E-mail: [email protected] Abstract The differences between quark and gluon jets are stud- ied using LEP results on jet widths, scale dependent multi- plicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the ob- served differences stem primarily from the different quark and gluon colour factors. 1 Introduction The physics of the differences between quark and gluonjets contin- uously attracts an interest of both, theorists and experimentalists. Hadron production can be described by parton showers (successive gluon emissions and splittings) followed by formation of hadrons which cannot be described perturbatively. The gluon emission, being dominant process in the parton showers, is proportional to the colour factor associated with the coupling of the emitted gluon to the emitter. These colour factors are CA = 3 when the emit- ter is a gluon and Cp = 4/3 when it is a quark. Consequently, U6 the multiplicity from a gluon source is (asymptotically) 9/4 higher than from a quark source. In QCD calculations, the jet properties are usually defined in- clusively, by the particles in hemispheres of quark-antiquark (qq) or gluon-gluon (gg) systems in an overall colour singlet rather than by a jet algorithm. In contrast to the experimental results which often depend on a jet finder employed (biased jets), the inclusive jets do not depend on any jet finder (unbiased jets). 2 Results 2.1 Jet Widths As a consequence of the greater radiation of soft gluons in a gluon jet compared to a quark jet, gluon jets are predicted to be broader. -
7. Gamma and X-Ray Interactions in Matter
Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs -
Introduction to QCD and Jet I
Introduction to QCD and Jet I Bo-Wen Xiao Pennsylvania State University and Institute of Particle Physics, Central China Normal University Jet Summer School McGill June 2012 1 / 38 Overview of the Lectures Lecture 1 - Introduction to QCD and Jet QCD basics Sterman-Weinberg Jet in e+e− annihilation Collinear Factorization and DGLAP equation Basic ideas of kt factorization Lecture 2 - kt factorization and Dijet Processes in pA collisions kt Factorization and BFKL equation Non-linear small-x evolution equations. Dijet processes in pA collisions (RHIC and LHC related physics) Lecture 3 - kt factorization and Higher Order Calculations in pA collisions No much specific exercise. 1. filling gaps of derivation; 2. Reading materials. 2 / 38 Outline 1 Introduction to QCD and Jet QCD Basics Sterman-Weinberg Jets Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt) Factorization 3 / 38 References: R.D. Field, Applications of perturbative QCD A lot of detailed examples. R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics CTEQ, Handbook of Perturbative QCD CTEQ website. John Collins, The Foundation of Perturbative QCD Includes a lot new development. Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of Perturbative QCD More advanced discussion on the small-x physics. S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD V. Barone and E. Predazzi, High-Energy Particle Diffraction 4 / 38 Introduction to QCD and Jet QCD Basics QCD QCD Lagrangian a a a b c with F = @µA @ν A gfabcA A . µν ν − µ − µ ν Non-Abelian gauge field theory. -
An Analysis on Single and Central Diffractive Heavy Flavour Production at Hadron Colliders
416 Brazilian Journal of Physics, vol. 38, no. 3B, September, 2008 An Analysis on Single and Central Diffractive Heavy Flavour Production at Hadron Colliders M. V. T. Machado Universidade Federal do Pampa, Centro de Cienciasˆ Exatas e Tecnologicas´ Campus de Bage,´ Rua Carlos Barbosa, CEP 96400-970, Bage,´ RS, Brazil (Received on 20 March, 2008) In this contribution results from a phenomenological analysis for the diffractive hadroproduction of heavy flavors at high energies are reported. Diffractive production of charm, bottom and top are calculated using the Regge factorization, taking into account recent experimental determination of the diffractive parton density functions in Pomeron by the H1 Collaboration at DESY-HERA. In addition, multiple-Pomeron corrections are considered through the rapidity gap survival probability factor. We give numerical predictions for single diffrac- tive as well as double Pomeron exchange (DPE) cross sections, which agree with the available data for diffractive production of charm and beauty. We make estimates which could be compared to future measurements at the LHC. Keywords: Heavy flavour production; Pomeron physics; Single diffraction; Quantum Chromodynamics 1. INTRODUCTION the diffractive quarkonium production, which is now sensitive to the gluon content of the Pomeron at small-x and may be For a long time, diffractive processes in hadron collisions particularly useful in studying the different mechanisms for have been described by Regge theory in terms of the exchange quarkonium production. of a Pomeron with vacuum quantum numbers [1]. However, the nature of the Pomeron and its reaction mechanisms are In order to do so, we will use the hard diffractive factoriza- not completely known. -
A New Avenue to Parton Distribution Functions Uncertainties: Self-Organizing Maps Abstract
A New Avenue to Parton Distribution Functions Uncertainties: Self-Organizing Maps Abstract Neural network algorithms have been recently applied to construct Parton Distribution Functions (PDFs) parametrizations as an alternative to standard global fitting procedures. We propose a different technique, namely an interactive neural network algorithm using Self-Organizing Maps (SOMs). SOMs enable the user to directly control the data selection procedure at various stages of the process. We use all available data on deep inelastic scattering experiments in the kinematical region of 0:001 ≤ x ≤ 0:75, and 1 ≤ Q2 ≤ 100 GeV2, with a cut on the final state invariant mass, W 2 ≥ 10 GeV2. Our main goal is to provide a fitting procedure that, at variance with standard neural network approaches, allows for an increased control of the systematic bias. Controlling the theoretical uncertainties is crucial for determining the outcome of a variety of high energy physics experiments using hadron beams. In particular, it is a prerequisite for unambigously extracting from experimental data the signal of the Higgs boson, that is considered to be, at present, the key for determining the theory of the masses of all known elementary particles, or the Holy Grail of particle physics. PACS numbers: 13.60.-r, 12.38.-t, 24.85.+p 1 I. DEFINITION OF THE PROBLEM AND GENERAL REMARKS In high energy physics experiments one detects the cross section, σX , for observing a particle X during a given collision process. σX is proportional to the number of counts in the detector. It is, therefore, directly \observable". Consider the collision between two hadrons (a hadron is a more general name to indicate a proton, neutron...or a more exotic particle made of quarks). -
Collider Physics at HERA
ANL-HEP-PR-08-23 Collider Physics at HERA M. Klein1, R. Yoshida2 1University of Liverpool, Physics Department, L69 7ZE, Liverpool, United Kingdom 2Argonne National Laboratory, HEP Division, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA May 21, 2008 Abstract From 1992 to 2007, HERA, the first electron-proton collider, operated at cms energies of about 320 GeV and allowed the investigation of deep-inelastic and photoproduction processes at the highest energy scales accessed thus far. This review is an introduction to, and a summary of, the main results obtained at HERA during its operation. To be published in Progress in Particle and Nuclear Physics arXiv:0805.3334v1 [hep-ex] 21 May 2008 1 Contents 1 Introduction 4 2 Accelerator and Detectors 5 2.1 Introduction.................................... ...... 5 2.2 Accelerator ..................................... ..... 6 2.3 Deep Inelastic Scattering Kinematics . ............. 9 2.4 Detectors ....................................... .... 12 3 Proton Structure Functions 15 3.1 Introduction.................................... ...... 15 3.2 Structure Functions and Parton Distributions . ............... 16 3.3 Measurement Techniques . ........ 18 3.4 Low Q2 and x Results .................................... 19 2 3.4.1 The Discovery of the Rise of F2(x, Q )....................... 19 3.4.2 Remarks on Low x Physics.............................. 20 3.4.3 The Longitudinal Structure Function . .......... 22 3.5 High Q2 Results ....................................... 23 4 QCD Fits 25 4.1 Introduction.................................... ...... 25 4.2 Determinations ofParton Distributions . .............. 26 4.2.1 TheZEUSApproach ............................... .. 27 4.2.2 TheH1Approach................................. .. 28 4.3 Measurements of αs inInclusiveDIS ............................ 29 5 Jet Measurements 32 5.1 TheoreticalConsiderations . ........... 32 5.2 Jet Cross-Section Measurements . ........... 34 5.3 Tests of pQCD and Determination of αs ......................... -
Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007
Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 3 Bryan Webber Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Monte Carlo Methods 3 Bryan Webber Lecture 3: Hadronization Partons are not physical 1. Phenomenological particles: they cannot models. freely propagate. 2. Confinement. Hadrons are. 3. The string model. 4. Preconfinement. Need a model of partons' 5. The cluster model. confinement into 6. Underlying event hadrons: hadronization. models. Monte Carlo Methods 3 Bryan Webber Phenomenological Models Experimentally, two jets: Flat rapidity plateau and limited Monte Carlo Methods 3 Bryan Webber Estimate of Hadronization Effects Using this model, can estimate hadronization correction to perturbative quantities. Jet energy and momentum: with mean transverse momentum. Estimate from Fermi motion Jet acquires non-perturbative mass: Large: ~ 10 GeV for 100 GeV jets. Monte Carlo Methods 3 Bryan Webber Independent Fragmentation Model (“Feynman—Field”) Direct implementation of the above. Longitudinal momentum distribution = arbitrary fragmentation function: parameterization of data. Transverse momentum distribution = Gaussian. Recursively apply Hook up remaining soft and Strongly frame dependent. No obvious relation with perturbative emission. Not infrared safe. Not a model of confinement. Monte Carlo Methods 3 Bryan Webber Confinement Asymptotic freedom: becomes increasingly QED-like at short distances. QED: + – but at long distances, gluon self-interaction makes field lines attract each other: QCD: linear potential confinement Monte Carlo Methods 3 Bryan Webber Interquark potential Can measure from or from lattice QCD: quarkonia spectra: String tension Monte Carlo Methods 3 Bryan Webber String Model of Mesons Light quarks connected by string. -
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons !Measuring Jets !Fragmentation !Mesons and Baryons !Isospin and hypercharge !SU(3) flavour symmetry !Heavy Quark states 1 From Tuesday: Summary • In QCD, the coupling strength "S decreases at high momentum transfer (q2) increases at low momentum transfer. • Perturbation theory is only useful at high momentum transfer. • Non-perturbative techniques required at low momentum transfer. • At colliders, hard scatter produces quark, anti-quarks and gluons. • Fragmentation (hadronisation) describes how partons produced in hard scatter become final state hadrons. Need non-perturbative techniques. • Final state hadrons observed in experiments as jets. Measure jet pT, !, ! • Key measurement at lepton collider, evidence for NC=3 colours of quarks. + 2 σ(e e− hadrons) e R = → = N q σ(e+e µ+µ ) c e2 − → − • Next lecture: mesons and baryons! Griffiths chapter 5. 2 6 41. Plots of cross sections and related quantities + σ and R in e e− Collisions -2 10 ω φ J/ψ -3 10 ψ(2S) ρ Υ -4 ρ ! 10 Z -5 10 [mb] σ -6 R 10 -7 10 -8 10 2 1 10 10 Υ 3 10 J/ψ ψ(2S) Z 10 2 φ ω to theR Fermilab accelerator complex. In addition, both the CDF [11] and DØ detectors [12] 10 were upgraded. The resultsρ reported! here utilize an order of magnitude higher integrated luminosity1 than reported previously [5]. ρ -1 10 2 II. PERTURBATIVE1 QCD 10 10 √s [GeV] + + + + Figure 41.6: World data on the total cross section of e e− hadrons and the ratio R(s)=σ(e e− hadrons, s)/σ(e e− µ µ−,s). -
Fragmentation and Hadronization 1 Introduction
Fragmentation and Hadronization Bryan R. Webber Theory Division, CERN, 1211 Geneva 23, Switzerland, and Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.1 1 Introduction Hadronic jets are amongst the most striking phenomena in high-energy physics, and their importance is sure to persist as searching for new physics at hadron colliders becomes the main activity in our field. Signatures involving jets almost always have the largest cross sections, but are the most difficult to interpret and to distinguish from background. Insight into the properties of jets is therefore doubly valuable: both as a test of our understanding of strong interaction dy- namics and as a tool for extracting new physics signals in multi-jet channels. In the present talk, I shall concentrate on jet fragmentation and hadroniza- tion, the topic of jet production having been covered admirably elsewhere [1, 2]. The terms fragmentation and hadronization are often used interchangeably, but I shall interpret the former strictly as referring to inclusive hadron spectra, for which factorization ‘theorems’2 are available. These allow predictions to be made without any detailed assumptions concerning hadron formation. A brief review of the relevant theory is given in Section 2. Hadronization, on the other hand, will be taken here to refer specifically to the mechanism by which quarks and gluons produced in hard processes form the hadrons that are observed in the final state. This is an intrinsically non- perturbative process, for which we only have models at present. The main models are reviewed in Section 3. In Section 4 their predictions, together with other less model-dependent expectations, are compared with the latest data on single- particle yields and spectra.