Role of prostaglandin E2 in tissue repair and regeneration Hui Cheng1, 2, 3, Haoyan Huang1, 2, Zhikun Guo4, Ying Chang3*, Zongjin Li1,2,3, 4,5* 1Nankai University School of Medicine, Tianjin, China; 2The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China; 3Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China; 4Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; 5State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China *Correspondence: Zongjin Li, Email:
[email protected]; or Ying Chang, Email:
[email protected] 1 Abstract Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15- PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release. Keywords: Prostaglandin E2; Stem cell; Tissue repair; Regeneration; Inflammation 2 Graphical Abstract 3 1.