Powders Are Intimate Mixtures of Dry, Finely Divided Drugs And/Or Chemicals That May Be Intended for Internal Or External Use

Total Page:16

File Type:pdf, Size:1020Kb

Powders Are Intimate Mixtures of Dry, Finely Divided Drugs And/Or Chemicals That May Be Intended for Internal Or External Use Powders are intimate mixtures of dry, finely divided drugs and/or chemicals that may be intended for internal or external use. Advantages/Disadvantages flexibility in compounding good chemical stability Ease of administration time-consuming not well-suited to dispense unpleasant tasting, hygroscopic or deliquescent drugs inaccuracy of dose Types Medicated Aerosol Preparation Weighing of ingredients Comminuting Blending or mixing Weighing of individual dose Materials Active ingredients Packaging Types of material used to pack/dispense divided powders Foil plastic bag used for volatile vegetable parchment thin, semiopaque, moisture-resistant white bond without moisture-resistant properties Glassine glazed, transparent, moisture-resistant paper used for volatile to a certain extent Waxed transparent-water-proof paper used for hygroscopic and volatile drugs Seidlitz powder is the name with which is commonly known a medication composed by a mixture of tartaric acid, sodium bicarbonate, and potassium sodium tartrate, used as a mild cathartic by dissolving in water and drinking. After ingestion, the powder combines with gastric juices developing intestinal gases which are somewhat helpful in evacuating the bowels. This medication's name comes from the Seidlitz Saline Springs of Bohemia (now Sedlčany in the Czech Republic), which were rather famous in Europe at the time this medication was first marketed in the late 19th century, even though the foregoing laxative constituents do not represent those of the springs named. Use of Each ingredient – act as acid and base which react in the presence of water to cause effervescence Use of Preparation - mild cathartic/laxative Appearance – white powder Storage – store in air tight containers Granules are prepared agglomerates of powdered materials, may be used per se for the medicinal value of their content or they may be used for pharmaceutical purposes, as in making tablets. Granules generally fall within the range of 4-12 sieve size Preparation Wet – moistening of the powder/mixture, passing resulting paste thru a sieve, drying in trays by air or heating. Granules are periodically moved about to prevent adhesion - Fluid bed processing in which particles are placed in a conical chamber and vigorously dispersed and suspended while a liquid excipient is sprayed Dry - Passing through a compactor and granulating machine - Slugging where the powder is compressed into slugs and then granulated to the desired size Advantages/Disadvantages Flow better than powders More stable Wetted faster Decreased dissolution rate Types Effervescent granulated salts - prepared by dry/fusion method and wet method Formulation Citric acid 1 Tartaric acid 2 NaHCO3 3.4 Total 6.4 Use of Each ingredient – act as acid and base which react in the presence of water to cause effervescence Use of Preparation – effervescent vehicle Appearance – white granules Storage – store in air tight containers Tablets A tablet is a pharmaceutical dosage form. It comprises a mixture of active substances and excipients, usually in powder form, pressed or compacted from a powder into a solid dose. The excipients can include diluents, binders or granulating agents, glidants (flow aids) and lubricants to ensure efficient tabletting; disintegrants to promote tablet break-up in the digestive tract; sweeteners or flavours to enhance taste; and pigments to make the tablets visually attractive. A polymer coating is often applied to make the tablet smoother and easier to swallow, to control the release rate of the active ingredient, to make it more resistant to the environment (extending its shelf life), or to enhance the tablet's appearance. The compressed tablet is the most popular dosage form in use today. About two-thirds of all prescriptions are dispensed as solid dosage forms, and half of these are compressed tablets. A tablet can be formulated to deliver an accurate dosage to a specific site; it is usually taken orally, but can be administered sublingually, buccally, rectally or intravaginally. The tablet is just one of the many forms that an oral drug can take such as syrups, elixirs, suspensions, and emulsions. Medicinal tablets were originally made in the shape of a disk of whatever color their components determined, but are now made in many shapes and colors to help distinguish different medicines. Tablets are often stamped with symbols, letters, and numbers, which enable them to be identified. Sizes of tablets to be swallowed range from a few millimeters to about a centimeter. Some tablets are in the shape of capsules, and are called "caplets". Medicinal tablets and capsules are often called pills. This is technically incorrect, since tablets are made by compression, whereas pills are ancient solid dose forms prepared by rolling a soft mass into a round shape. Other products are manufactured in the form of tablets which are designed to dissolve or disintegrate; e.g. cleaning and deodorizing products. Tabletting formulations In the tablet-pressing process, it is important that all ingredients be fairly dry, powdered or granular, somewhat uniform in particle size, and freely flowing. Mixed particle sized powders can segregate during manufacturing operations due to different densities, which can result in tablets with poor drug or active pharmaceutical ingredient (API) content uniformity but granulation should prevent this. Content uniformity ensures that the same API dose is delivered with each tablet. Some APIs may be tableted as pure substances, but this is rarely the case; most formulations include excipients. Normally, an pharmacologically inactive ingredient (excipient) termed a binder is added to help hold the tablet together and give it strength. A wide variety of binders may be used, some common ones including lactose, dibasic calcium phosphate, sucrose, corn (maize) starch, microcrystalline cellulose, povidone polyvinylpyrrolidone and modified cellulose (for example hydroxypropyl methylcellulose and hydroxyethylcellulose). Often, an ingredient is also needed to act as a disintegrant to aid tablet dispersion once swallowed, releasing the API for absorption. Some binders, such as starch and cellulose, are also excellent disintegrants. Small amounts of lubricants are usually added, as well. The most common of these is magnesium stearate and calcium stearate. [edit] Advantages and disadvantages Variations on a common tablet design, which can be distinguished by both color and shape Tablets are simple and convenient to use. They provide an accurately measured dosage of the active ingredient in a convenient portable package, and can be designed to protect unstable medications or disguise unpalatable ingredients. Colored coatings, embossed markings and printing can be used to aid tablet recognition. Manufacturing processes and techniques can provide tablets special properties, for example, sustained release or fast dissolving formulations. Some drugs may be unsuitable for administration by the oral route. For example, protein drugs such as insulin may be denatured by stomach acids. Such drugs cannot be made into tablets. Some drugs may be deactivated by the liver when they are carried there from the gastrointestinal tract by the hepatic portal vein (the "first pass effect"), making them unsuitable for oral use. Drugs which can be taken sublingually are absorbed through the oral mucosae, so that they bypass the liver and are less susceptible to the first pass effect. The oral bioavailability of some drugs may be low due to poor absorption from the gastrointestinal tract. Such drugs may need to be given in very high doses or by injection. For drugs that need to have rapid onset, or that have severe side effects, the oral route may not be suitable. For example salbutamol, used to treat problems in the pulmonary system, can have effects on the heart and circulation if taken orally; these effects are greatly reduced by inhaling smaller doses direct to the required site of action. [edit] Tablet properties Tablets can be made in virtually any shape, although requirements of patients and tableting machines mean that most are round, oval or capsule shaped. More unusual shapes have been manufactured but patients find these harder to swallow, and they are more vulnerable to chipping or manufacturing problems. Tablet diameter and shape are determined by the machine tooling used to produce them - a die plus an upper and a lower punch are required. This is called a station of tooling. The thickness is determined by the amount of tablet material and the position of the punches in relation to each other during compression. Once this is done, we can measure the corresponding pressure applied during compression. The shorter the distance between the punches, thickness, the greater the pressure applied during compression, and sometimes the harder the tablet. Tablets need to be hard enough that they don't break up in the bottle, yet friable enough that they disintegrate in the gastric tract. Tablets need to be strong enough to resist the stresses of packaging, shipping and handling by the pharmacist and patient. The mechanical strength of tablets is assessed using a combination of (i) simple failure and erosion tests, and (ii) more sophisticated engineering tests. The simpler tests are often used for quality control purposes, whereas the more complex tests are used during the design of the formulation and manufacturing process in the research and development phase. Standards for tablet properties are published in the various international pharmacopeias
Recommended publications
  • A Study on Recent Implication of Nanotechnology in Drug Delivery Systems
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2015, 7 (7):213-220 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 A study on recent implication of nanotechnology in drug delivery systems Mahendra Pratap Singh 1, Parjanya Kumar Shukla 1,2* , Amita Verma 2 and Ramesh Patel 1 1Krishnarpit Institute of Pharmacy, Allahabad 2Department of Pharmaceutical Sciences, Faculty of Health Science, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India _____________________________________________________________________________________________ ABSTRACT Efficient drug targeting to diseases by circumventing all the shortcomings of conventional drug delivery systems can be achieved by the significant approach of advances in nanotechnology. Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmaceutical Sciences. Most of the available drugs now are lipophilic in nature and this stands as challenging aspect faced for scientists to formulate and deliver for better efficacy, so nanoparticles, nanosuspension, nanocapsules are used now days to deliver these drugs with greater bioavailability and also have been adopted to improve the solubility of poorly soluble drugs. The use of nanoparticles is an universal formulation approach to increase the therapeutic performance of drugs in any route of administration. This review article describes the preparation methods, physicochemical
    [Show full text]
  • A Gellan-Based Fluid Gel Carrier for Spray Delivery
    AGELLAN-BASEDFLUIDGELCARRIERFOR SPRAY DELIVERY by BRITT TER HORST Athesissubmittedto The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering College of Engineering and Physical Sciences The University of Birmingham May 2019 UNIVERSITYDF BIRMINGHAM University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Autologous cell transplantation is a promising approach to enhance burn wound re- epithelialisation. It was introduced to clinical practice decades ago with current delivery techniques involving spraying autologous cultured or uncultured cells in low-viscosity sus- pensions. This delivery method is limited since it results in an uneven distribution on the wound bed and cell loss as the liquid is not retained on the skin surface. In this thesis, a sprayable gel that solidifies on the surface of the skin has been developed to circumvent this problem. A gellan-based fluid gel system was developed with flexible viscoelastic properties that can be tuned by a biocompatible polymer concentration and ionic strength to facilitate spray delivery. The material liquefies at high shear during spraying with self-healing properties of the gel causing it to solidify on the receiving sur- face.
    [Show full text]
  • Glioblastoma Treatments: an Account of Recent Industrial Developments
    REVIEW published: 13 September 2018 doi: 10.3389/fphar.2018.00879 Glioblastoma Treatments: An Account of Recent Industrial Developments Edouard Alphandéry 1,2* 1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France, 2 Nanobacterie SARL, Paris, France The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of Edited by: blood brain barrier are discussed. Finally societal and economic aspects are described François E. Paris, University of Nantes, France with a presentation of the orphan drug status that can accelerate the development of Reviewed by: GBM therapies, patents protecting various GBM treatments, the different actors tackling Tullio Florio, GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis Università di Genova, Italy of the different companies involved in the development of GBM therapies.
    [Show full text]
  • Lipid-Polymer Hybrid Nanoparticles As a Next-Generation Drug Delivery
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Articles, Abstracts, and Reports 1-1-2019 Lipid-polymer hybrid nanoparticles as a next- generation drug delivery platform: state of the art, emerging technologies, and perspectives. Anubhab Mukherjee Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific euN roscience Institute, Providence Saint John's Health Center, Santa Monica, CA Ariana K Waters Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific euN roscience Institute, Providence Saint John's Health Center, Santa Monica, CA Pranav Kalyan Achal Singh Achrol Department of Neurosurgery and Neurosciences, John Wayne Cancer Institute and Pacific euN roscience Institute, Santa Monica, CA, USA Santosh Kesari Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center FSeoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://digitalcommons.psjhealth.org/publications Part of the Oncology Commons Recommended Citation Mukherjee, Anubhab; Waters, Ariana K; Kalyan, Pranav; Achrol, Achal Singh; Kesari, Santosh; and Yenugonda, Venkata, "Lipid- polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives." (2019). Articles, Abstracts, and Reports. 1504. https://digitalcommons.psjhealth.org/publications/1504 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Articles, Abstracts, and Reports by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Authors Anubhab Mukherjee, Ariana K Waters, Pranav Kalyan, Achal Singh Achrol, Santosh Kesari, and Venkata Yenugonda This article is available at Providence St.
    [Show full text]
  • Nanomaterials and Nanotechnology
    nanomaterials and nanotechnology Collection of Selected Papers | 2013 | issn 1847-9804 © Vasil Vasilev/Shutterstock © Vasil Editor-in-Chief Paola Prete Institute for Microelectronics and Microsystems, National Research Council, Lecce, Italy Editorial Board C. N. R. Rao Fellow of the Royal Society, National Research Professor, Linus Pauling Research Professor and President of Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Toshiaki Enoki Tokyo Institute of Technology, Japan Stephen O’Brien Department of Chemistry, The City College of New York, USA Juan Ramon Morante Catalonia Institute for Energy Research and University of Barcelona, Spain Stephen Pearton Department of Material Science and Engineering, University of Florida, USA Wolfgang Richter University of Rome Tor Vergata, Italy and Technischen Universität Berlin, Germany Federico Rosei Institut National de la Recherche Scientifique, Universite du Quebec, Varennes, Canada Jonathan E. Spanier Department of Materials Science and Engineering, Drexel University, Philadelphia, USA Leander Tapfer Technical Unit of Materials Technologies Brindisi, ENEA, Italy Reshef Tenne Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel Fabrice Vallee CNRS and Université Claude Bernard Lyon, France Nanomater. nanotechnol., 2013, Collection of Selected Papers free online editions of InTech Books and Journals can be found at www.intechopen.com Nanomaterials and Nanotechnology Collection of Selected Papers, 2013 Abstracted/Indexed in IET Inspec, Ulrich’s Periodical Directory, Scirus, EBSCO - A-to-Z, WorldCat, BASE - Bielefeld Academic Search Engine, DOAJ - Directory of Open Access Journals, Electronic Journals Library, Google Scholar, CAS - Chemical Abstracts Service, Hrcak Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Identification Statement Online ISSN 1847-9804 Abbreviated key title: Nanomater.
    [Show full text]
  • Role of Prostaglandin E2 in Tissue Repair and Regeneration
    Role of prostaglandin E2 in tissue repair and regeneration Hui Cheng1, 2, 3, Haoyan Huang1, 2, Zhikun Guo4, Ying Chang3*, Zongjin Li1,2,3, 4,5* 1Nankai University School of Medicine, Tianjin, China; 2The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China; 3Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China; 4Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; 5State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China *Correspondence: Zongjin Li, Email: [email protected]; or Ying Chang, Email: [email protected] 1 Abstract Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15- PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release. Keywords: Prostaglandin E2; Stem cell; Tissue repair; Regeneration; Inflammation 2 Graphical Abstract 3 1.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0053845 A1 Sengupta Et Al
    US 2007.0053845A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0053845 A1 Sengupta et al. (43) Pub. Date: Mar. 8, 2007 (54) NANOCELL DRUG DELIVERY SYSTEM Publication Classification (76) Inventors: Shiladitya Sengupta, Waltham, MA (51) Int. Cl. (US); Ganlin Zhao, Arlington, MA A6IR 9/14 (2006.01) (US); Ishan Capila, Ashland, MA (US); A6IL 9/04 (2006.01) David Eavarone, North Quincy, MA (52) U.S. Cl. ................................................................ 424/46 (US); Ram Sasisekharan, Bedford, MA (57) ABSTRACT (US) Nanocells allow the sequential delivery of two different Correspondence Address: therapeutic agents with different modes of action or different CHOATE, HALL & STEWART LLP pharmacokinetics. A nanocell is formed by encapsulating a TWO INTERNATIONAL PLACE nanocore with a first agent inside a lipid vesicle containing BOSTON, MA 02110 (US) a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the (21) Appl. No.: 11/495,947 nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to (22) Filed: Jul. 28, 2006 patients Suffering from diseases such as cancer, inflamma tory diseases Such as asthma, autoimmune diseases such as Related U.S. Application Data rheumatoid arthritis, infectious diseases, and neurological diseases Such as epilepsy. In treating cancer, a traditional (63) Continuation-in-part of application No. 11/070,731, antineoplastic agent is contained in the outer lipid vesicle of filed on Mar. 2, 2005. the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent (60) Provisional application No.
    [Show full text]
  • Market Access Right Product, Right Patient, Tight Price, Tighter Reimbursement
    invivo.pharmamedtechbi.com NOVEMBER 2016 Invol. 34 ❚ no. 10 Vivopharma intelligence ❚ informa Market Access Right product, right patient, tight price, tighter reimbursement Value Frameworks Price Transparency Real-World Evidence Outcomes-Based Reimbursement invivo.pharmamedtechbi.com CONTENTS ❚ In Vivo Pharma intelligence | November 2016 26 Curative Regenerative Medicines: Preparing Health Care Systems For The Coming Wave FARAZ ALI, TED SLOCOMB AND MICHAEL WERNER We may be at the dawn of a new era of curative regenerative therapies, but their very nature may create barriers to adoption. The Alliance for Regenerative Medicine frames the opportunities and challenges for the industry, arguing that policy makers must begin to understand THE MARKET ACCESS ISSUE the ways that these therapies represent value for money. 10 22 States Fight For Drug Price US Outcomes-Based 1 Transparency Contracts: Big Uptick In ED SILVERMAN Interest, But Not Execution California’s Proposition 61 and a number CATHY KELLY of other state-led measures to control The promise of outcomes-based drug prices failed to gain traction in contracts for biopharmaceuticals has 2016. But states are likely to remain a yet to be realized in the US. Although battleground in the war against costs in precise numbers are hard to come by, a pharma-friendly Trump administration. payers and manufacturers agree the field is still nascent. However, they 16 don’t seem to be giving up on the idea. Is The UK Still Open 34 For Medtech Innovation Reimbursement? Real-World Evidence ASHLEY YEO And The Quest For Confusing and ineffective channels of European Market Access innovation adoption and a lack of FRANcescA BRUce funding hamper the UK’s reputation as Real-world evidence promises to solve one of the world’s health care capitals many problems inherent in getting a and a driver of care excellence – in spite drug to patients at a good price.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0146783 A1 CHERESH Et Al
    US 2016O146783A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0146783 A1 CHERESH et al. (43) Pub. Date: May 26, 2016 (54) COMPOSITIONS AND METHODS FOR Publication Classification TREATING CANCER AND DISEASES AND CONDITIONS RESPONSIVE TO CELL (51) Int. C. GROWTH INHIBITION GOIN33/50 (2006.01) (52) U.S. C. (71) Applicant: THE REGENTS OF THE CPC. G0IN33/5011 (2013.01); G0IN 2333/4724 UNIVERSITY OF CALIFORNLA, (2013.01); G0IN 2333/70557 (2013.01) Oakland, CA (US) (57) ABSTRACT (72) Inventors: David CHERESH, Encinitas, CA (US); In alternative embodiments, the invention provides composi Laetitia SEGUIN, San Diego, CA (US); tions and methods for overcoming or diminishing or prevent Sudarshan ANAND, San Diego, CA ing Growth Factor Inhibitor resistance in a cell, or, a method (US) for increasing the growth-inhibiting effectiveness of a Growth Factor inhibitor on a cell, or, a method for re-sensi (21) Appl. No.: 14/883,398 tizing a cell to a Growth Factor Inhibitor, comprising for example, administration of a combination of a TBK1 inhibi tor and an RTK inhibitor. In alternative embodiments, the cell (22) Filed: Oct. 14, 2015 is a tumor cell, a cancer cell or a dysfunctional cell. In alter native embodiments, the invention provides compositions Related U.S. Application Data and methods for determining: whether an individual or a patient would benefit from or respond to administration of a (63) Continuation of application No. 14/325,288, filed on Growth Factor Inhibitor, or, which individuals or patients Jul. 7, 2014, which is a continuation-in-part of appli would benefit from a combinatorial approach comprising cation No.
    [Show full text]
  • New Trends in Bio-Based Aerogels
    pharmaceutics Review New Trends in Bio-Based Aerogels Loredana Elena Nita, Alina Ghilan, Alina Gabriela Rusu, Iordana Neamtu and Aurica P. Chiriac * “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487 Iasi, Romania; [email protected] (L.E.N.); [email protected] (A.G.); [email protected] (A.G.R.); [email protected] (I.N.) * Correspondence: [email protected]; Tel.: +40-232-454417 Received: 6 April 2020; Accepted: 11 May 2020; Published: 13 May 2020 Abstract: (1) Background: The fascinating properties of currently synthesized aerogels associated with the flexible approach of sol-gel chemistry play an important role in the emergence of special biomedical applications. Although it is increasingly known and mentioned, the potential of aerogels in the medical field is not sufficiently explored. Interest in aerogels has increased greatly in recent decades due to their special properties, such as high surface area, excellent thermal and acoustic properties, low density and thermal conductivity, high porosity, flame resistance and humidity, and low refractive index and dielectric constant. On the other hand, high manufacturing costs and poor mechanical strength limit the growth of the market. (2) Results: In this paper, we analyze more than 180 articles from recent literature studies focused on the dynamics of aerogels research to summarize the technologies used in manufacturing and the properties of materials based on natural polymers from renewable sources. Biomedical applications of these bio-based materials are also introduced. (3) Conclusions: Due to their complementary functionalities (bioactivity, biocompatibility, biodegradability, and unique chemistry), bio-based materials provide a vast capability for utilization in the field of interdisciplinary and multidisciplinary scientific research.
    [Show full text]
  • What's Inside
    Newsletter A publication of the Controlled Release Society Volume 34 • Number 2 • 2017 What’s Inside Formulation and Delivery of Mono-N-Oxide Vinblastine Liposomal Formulation for Targeting Non-Small Cell Lung Cancer with Hypoxic Environments In Vitro and In Vivo Evaluation of Controlled Payload Release Using Acoustically Responsive Scaffolds CRS Annual Meeting DDTR Update Science. People. Products. Connect and collaborate with delivery science and technology leaders from academia and industry, under one roof at #CRSboston Join us in Boston, Massachusetts, U.S.A. from July 16–19 for the 2017 Controlled Release Society Annual Meeting & Exposition. Registration is now open! Visit controlledreleasesociety.org/CRSboston for details. 2 Newsletter Ryan Donnelly Vol. 34 • No. 2 • 2017 Editor > TABLE OF CONTENTS 4 From the Editor 5 2017 Controlled Release Society Annual Meeting & Exposition Steven Giannos 7 Scientifically Speaking Editor Formulation and Delivery of Mono-N-Oxide Vinblastine Liposomal Formulation for Targeting Non-Small Cell Lung Cancer with Hypoxic Environments 10 Scientifically Speaking In Vitro and In Vivo Evaluation of Controlled Payload Release Using Acoustically Responsive Scaffolds 13 DDTR Update Drug Delivery and Translational Research Update Medha Joshi Editor 14 People in the News 15 Companies in the News Cover image: Malignant effusion: Pleural fluid cytology of lung (pulmonary) papillary adenocarcinoma, a type of non small cell carcinoma. Pap stain. David Litman / Shutterstock.com Arlene McDowell Editor Bozena Michniak-Kohn Editor Rod Walker Editor 3 > FROM THE EDITOR Editors Ryan Donnelly Steven Giannos Steven Giannos Medha Joshi University of Texas Medical Branch Arlene McDowell Galveston, TX, U.S.A. Bozena Michniak-Kohn Rod Walker The CRS Newsletter is the official Please Come to Boston newsletter of the Controlled Release Society.
    [Show full text]
  • Radiofrequency Fields (RF) and Their Biological Effects
    Latin American Experts Committee on High Frequency Electromagnetic Fields and Human Health Scientific Review Non-Ionizing Electromagnetic Radiation in the Radiofrequency Spectrum and its Effects on Human Health With a Review on the Standards and Policies of Radiofrequency Radiation Protection in Latin America Organized by: The Edumed Institute for Education in Medicine and Health Independent Research Group on the Impacts of Mobile Technologies on Health April 2010 Table of Contents Preface.......................................................................................................................5 Executive Summary.................................................................................................10 Biological and Health Effects...............................................................................10 Experimental Studies......................................................................................10 Epidemiological Studies..................................................................................12 Indirect Effects.................................................................................................13 Social Issues and Public Communication...........................................................13 Chapter I - Radiofrequency Fields (RF) and their Biological Effects.......................17 Introduction .........................................................................................................17 Natural and Artificial Sources..........................................................................18
    [Show full text]