Three New Species and Growth Patterns in Hechtia (Bromeliaceae: Hechtioideae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DISSERTAÇÃO José Roseno De Mendonça Filho.Pdf
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Orientadora: Profa. Dra. Ana Maria Benko Iseppon Coorientadores: Profa. Dra. Ana Christina Brasileiro-Vidal Prof. Dr Jaílson Gitai dos Santos Frazão Recife 2019 JOSÉ ROSENO DE MENDONÇA FILHO DIVERSIDADE CARIOTÍPICA EM REPRESENTANTES DO COMPLEXO CRYPTANTHOID (BROMELIOIDEAE, BROMELIACEAE) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas, Área de Concentração Genética, da Universidade Federal de Pernambuco, como requisito para obtenção do título de mestre em Ciências Biológicas. Aprovada em: 23/07/2019 COMISSÃO EXAMINADORA ___________________________________________ Profa. Dra. Ana Maria Benko Iseppon UFPE (Orientadora) ___________________________________________ Profa. Dra. Maria Betânia de Oliveira Melo UFPE (Membro Interno) ____________________________________________ Prof. Dr. Geyner Alves dos Santos Cruz UPE – Campus de Petrolina (Membro Externo) MEMBROS SUPLENTES ____________________________________________ -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Adaptive Radiation, Correlated and Contingent Evolution, and Net Species Diversification in Bromeliaceae
Molecular Phylogenetics and Evolution 71 (2014) 55–78 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae Thomas J. Givnish a,*, Michael H.J. Barfuss b, Benjamin Van Ee c, Ricarda Riina d, Katharina Schulte e,f, Ralf Horres g, Philip A. Gonsiska a, Rachel S. Jabaily h, Darren M. Crayn f, J. Andrew C. Smith i, Klaus Winter j, Gregory K. Brown k, Timothy M. Evans l, Bruce K. Holst m, Harry Luther n, Walter Till b, Georg Zizka e, Paul E. Berry o, Kenneth J. Sytsma a a Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA b Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria c School of Natural Sciences, Black Hills State University, Spearfish, SD 57799, USA d Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid 28014, Spain e Department of Botany and Molecular Evolution, Research Institute Senckenberg and J.W. Goethe University, Frankfurt am Main D-60325, Germany f Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia g GenXPro, Frankfurt am Main 60438, Germany h Department of Biology, Rhodes College, Memphis, TN 38112, USA i Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom j Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama k Department of Botany, University of Wyoming, Laramie, WY 82071, USA l Department of Biology, Grand Valley State University, Allendale, MI 49401, USA m Marie Selby Botanical Gardens, Sarasota, FL 34236, USA n Gardens By The Bay, National Parks Board Headquarters, Singapore 259569, Singapore o Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: We present an integrative model predicting associations among epiphytism, the tank habit, entangling Received 22 May 2013 seeds, C3 vs. -
FERNANDA MARIA CORDEIRO DE OLIVEIRA.Pdf
UNIVERSIDADE ESTADUAL DE PONTA GROSSA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA EVOLUTIVA (Associação Ampla entre a UEPG e a UNICENTRO) FERNANDA MARIA CORDEIRO DE OLIVEIRA O GÊNERO QUESNELIA GAUDICH. (BROMELIACEAE-BROMELIOIDEAE) NO ESTADO DO PARANÁ, BRASIL: ASPECTOS TAXONÔMICOS E ANATÔMICOS PONTA GROSSA 2012 UNIVERSIDADE ESTADUAL DE PONTA GROSSA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA EVOLUTIVA (Associação Ampla entre a UEPG e a UNICENTRO) FERNANDA MARIA CORDEIRO DE OLIVEIRA O GÊNERO QUESNELIA GAUDICH. (BROMELIACEAE-BROMELIOIDEAE) NO ESTADO DO PARANÁ, BRASIL: ASPECTOS TAXONÔMICOS E ANATÔMICOS Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Biologia Evolutiva da Universidade Estadual de Ponta Grossa, em associação com a Universidade Estadual do Centro Oeste como parte dos requisitos para a obtenção do título de mestre em Ciências Biológicas (Área de Concentração em Biologia Evolutiva) Orientadora: Prof. Dra. Rosângela Capuano Tardivo; Co-orientadora: Prof. Dra. Maria Eugênia Costa PONTA GROSSA 2012 “Somewhere over the rainbow Way up high, There's a land that I dreamed of Once in a lullaby. Somewhere over the rainbow Skies are blue, And the dreams that you dare to dream Really do come true. Someday I'll wish upon a star And wake up where the clouds are far Behind me. Where troubles melt like lemon drops High above the chimney tops That's where you'll find me. Somewhere over the rainbow Bluebirds fly. Birds fly over the rainbow. Why then, oh why can't I?” Over the rainbow – E.Y Harburg “O mundo e o universo são lugares extremamente belos e quanto mais os conhecemos, mais belos eles parecem.” (Richard Dawkins) “Ame muitas coisas, porque em amar está a verdadeira força. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Bromeliaceae
Bromeliaceae VOLUME XLI - No. 5 - SEPT/OCT 2007 The Bromeliad Society of Queensland Inc. P. O. Box 565, Fortitude Valley Queensland, Australia 4006, Home Page www.bromsqueensland.com OFFICERS PRESIDENT Olive Trevor (07) 3351 1203 VICE PRESIDENT Barry Kable PAST PRESIDENT Bob Reilly (07) 3870 8029 SECRETARY Chris Coulthard TREASURER Glenn Bernoth (07) 4661 3 634 BROMELIACEAE EDITOR Ross Stenhouse SHOW ORGANISER Bob Cross COMMITTEE David Rees, Paul Dunstan, Ann McBur - nie, Arnold James,Viv Duncan MEMBERSHIP SECRETARY Roy Pugh (07) 3263 5057 SEED BANK CO-ORDINATOR Doug Parkinson (07) 5497 5220 AUDITOR Anna Harris Accounting Services SALES AREA STEWARD Pat Barlow FIELD DAY CO-ORDINATOR Nancy Kickbusch LIBRARIAN Evelyn Rees ASSISTANT SHOW ORGANISER Phil Beard SUPPER STEWARDS Nev Ryan, Barry Genn PLANT SALES Nancy Kickbusch (Convenor) N. Poole (Steward) COMPETITION STEWARDS Dorothy Cutcliffe, Alan Phythian CHIEF COMPETITION STEWARD Jenny Cakurs HOSTESS Gwen Parkinson BSQ WEBMASTER Ross Stenhouse LIFE MEMBERS Grace Goode OAM Peter Paroz, Michael O’Dea Editors Email Address: [email protected] The Bromeliad Society of Queensland Inc. gives permission to all Bromeliad Societies to re- print articles in their journals provided proper acknowledgement is given to the original author and the Bromeliaceae, and no contrary direction is published in Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author. Opinions expressed in this publication are those of the individual contributor and may not neces- sarily reflect the opinions of the Bromeliad Society of Queensland or of the Editor Authors are responsible for the accuracy of the information in their articles. -
Nuclear Genes, Matk and the Phylogeny of the Poales
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations. -
Network Scan Data
Selbyana 18(1): 85-88 CHROMOSOME NUMBERS IN BROMELIACEAE GREGORY K. BROWN! AND CARLOS A. PALACf Department of Botany, University of Wyoming, Laramie, Wyoming 82071 HARRY E. LUTHER Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida 34236 ABSTRACT. Chromosome numbers are reported for 44 taxa from Bromeliaceae, including first reports for three genera (Hohenbergia, Lymania, Quesnelia), and first reports for 27 addition~ s1?ecie~. The ~eporte~ numbers are all diploid (2n = 50), except for Ananas ananassoides (2n = 75), a tnplOld, Tillandsza butZll (2n = 100), a tetraploid, and Fosterella villosula (2n = 150), a hexaploid. These chromosome numb.ers support the proposed base chromosome number of x = 25. for extant Bromeliac~ae: Hypotheses concermng the evolution of chromosome base number in the BromelIaceae are evaluated In lIght of recent molecular evidence suggesting that the Rapateaceae and Bromeliaceae may be sister taxa. INTRODUCTION meliaceae, still an unverified n = 16 for Til landsia usneoides (Billings 1904), reinforced the Chromosome numbers have been published bias for x = 8. McWilliams (1974), for example, for approximately 220 of the nearly 3,000 bro suggested that an ancestor with x = 8 produced meliad species, and Brown and Gilmartin (1986, the x = 25 bromeliad lineage through successive 1989a) have summarized the systematic signifi rounds of polyploidy, followed by ascending an cance of these numbers. However, no chromo euploidy. In contrast, Brown and Gilmartin some numbers are available for nearly half of (1989a) proposed the origin of a dibasic x = 17 the genera (Le., Abromeitiella, Androlepis, Ay lineage, via hybridization of x = 8 and x = 9 ensua, Brewcaria, Brocchinia, Connellia, Cot parental types, followed by a second hybridiza tendorfia, Deinacanthon, Disteganthus, Encho tion with an x = 8 lineage, to produce x = 25. -
Trees, Shrubs and Herbs of the Coastal Myrtaceae Swamp Forest (Región De La Araucanía, Chile): a Dataset
Biodiversity Data Journal 9: e63634 doi: 10.3897/BDJ.9.e63634 Data Paper Trees, shrubs and herbs of the coastal Myrtaceae swamp forest (Región de La Araucanía, Chile): a dataset Jimmy Pincheira-Ulbrich‡, Elías Andrade Mansilla§, Fernando Peña-Cortés‡, Cristián Vergara Fernández‡ ‡ Laboratorio de Planificación Territorial, Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco, Chile § Facultad de Educación, Universidad Católica de Temuco, Temuco, Chile Corresponding author: Jimmy Pincheira-Ulbrich ([email protected]) Academic editor: Anatoliy Khapugin Received: 26 Jan 2021 | Accepted: 23 Feb 2021 | Published: 01 Mar 2021 Citation: Pincheira-Ulbrich J, Andrade Mansilla E, Peña-Cortés F, Vergara Fernández C (2021) Trees, shrubs and herbs of the coastal Myrtaceae swamp forest (Región de La Araucanía, Chile): a dataset. Biodiversity Data Journal 9: e63634. https://doi.org/10.3897/BDJ.9.e63634 Abstract Background Species lists are fundamental for knowledge of species diversity in regions subject to intense anthropogenic pressure, especially in poorly-studied ecosystems. The dataset comes from an inventory conducted in 30 fragments of Myrtaceae swamp forest, located in an agroforestry matrix landscape of the coastal La Araucanía Region in Chile. The data collection was carried out using line transect sampling, which was traced through the core of each fragment orientated towards its longest axis. The dataset provides a record of 55 species (24 trees, 1 vine [as a host], 16 herbs and 15 shrubs) including accidental epiphytes (n = 7), hemiparasites (n = 4), host (n = 10) and additionally woody debris (n = 36). The most frequent trees in the landscape were Myrceugenia exsucca (n = 36 records) and Blepharocalyx cruckshanksii (n = 33 records), species that were also the most common hosts. -
Hydraulics Link Leaf Shape and Environmental Niche in Terrestrial Bromeliads
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo BIOTROPICA 0(0): 1–12 2017 10.1111/btp.12475 Hydraulics link leaf shape and environmental niche in terrestrial bromeliads Jamie Males1 Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK ABSTRACT Terrestrial species of the megadiverse bromeliad family display a wide variety of leaf shapes, many of which have evolved convergently in different lineages. Here, I examine the links between leaf shape, venation architecture, hydraulic function, and bioclimatic relations in two bromeliad groups displaying diverse leaf shapes, the genus Pitcairnia (Pitcairnioideae) and the terrestrial grade of the Bromelioideae subfamily. Leaf shapes with broader leaf blades, notably petiolate and lanceolate morphologies, tend to show wider vein spacing, which is associated with reduced hydraulic capacity and higher hydraulic vulnerability. In turn, these leaf shapes tend to occur in species restricted to moist, aseasonal environments, suggesting that hydraulic function is an important mediator of the relationship between leaf shape and bromeliad environmental niches. This network of trait–trait and trait–environment relationships may have been of profound important in the ecological and evolutionary diversification of the bromeliads. Similar structure–function principles are likely to apply in other tropical herbaceous monocots, which are of great ecological importance but generally neglected in plant hydraulic research. Key words: bioclimatic envelopes; Bromeliaceae; leaf hydraulics; leaf shape; morphology; Neotropics. THE BROMELIACEAE (POALES) IS A HIGHLY DIVERSE MONOCOT FAM- has rarely been included as a factor in quantitative investigations ILY DISTRIBUTED ACROSS THE NEOTROPICS AND ADJACENT TEMPERATE of bromeliad ecophysiology. -
Booklet[1].Pdf
-- ~~~ <3 ~ a ~ ~ :; 18~.-4-4 ~() n..c~t-\"'a ~g & \---E ~ [ N 0 N ~ ~ WELCOME TO THE 2012 SHOW Each year the Bromeliad Society of South Florida gathers the most spectacular and beautifully grown bromeliads in the Miami area, invites a range of commercial growers from throughout the state and throws in a rare plant auction where you can find some very unusual plants for your collection. These are all brought together in the lovely setting of 11AUCTION IN THE GARDEN HOUSE !! Fairchild Tropical Botanic Garden for your enjoyment. Whether you are new to bromeliads or a seasoned grower, you can expect to fmd SATURDAY, APRIL 21,1:00 PM something new and interesting. SUNDAY, APRIL 22,1:00 PM In the Garden Room, we display plants entered in the Judged Show. There will be two auctions of bromeliads this year in the These plants demonstrate the great variety of bromeliads that can be grown in our gardens locally. Plants selected by the judges to be most Garden House. Bidding on the first starts at 1:00 p.m. outstanding among those presented earn major awards and are on Saturday and on the second at 1:00 p.m. on Sunday. displayed on the stage. Other plants are entered in the show as part of Rare, new and beautiful bromeliads donated by some of artistic displays (including decorative containers, cut inflorescences and the world's finest nurseries will be available for bidding. flower arrangements). Feel free to borrow the ideas you see here in your own creations. In addition to the plant show, we have an art show with works featuring bromeliads adorning the walls of the Garden Room.