Water Relations of Bromeliaceae in Their Evolutionary Context

Total Page:16

File Type:pdf, Size:1020Kb

Water Relations of Bromeliaceae in Their Evolutionary Context View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. © 2016 The Author. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean Society of London., Botanical Journal of the Linnean Society, 2016, 181, 415–440 ADDITIONAL KEYWORDS: adaptive radiation – crassulacean acid metabolism – ecophysiology – epiphytism – functional anatomy – succulence. INTRODUCTION It would be another hundred years before research- ers began exploring in earnest the functional biology When French botanist Antoine de Jussieu in his of bromeliads, but many of them were then drawn to Genera plantarum of 1789 first established the pay special attention to these tanks and other adap- bromeliads as a taxonomic group, he was laying the tations in bromeliad water relations, physiology and modest foundations for over two centuries and ecology (Schimper, 1884, 1888; Mez, 1904; Tietze, recording of research on this fascinating family of 1906; Picado, 1913). monocotyledons. Admittedly, de Jussieu did include Although a few phylogenetic quandaries await reso- among his ‘ordine naturale’ such interlopers as Bur- lution, our understanding of the diversity and phy- mannia L. (Burmanniaceae), Xerophyta Juss. (Vel- logeny of Bromeliaceae is considerably more advanced loziaceae) and Agave L. (Asparagaceae). He also fell than that of de Jussieu. New bromeliad species con- into the popular trap of describing the epiphytic spe- tinue to be discovered (Aguirre-Santoro, Betancur & cies as ‘parasiticæ’. However, one seemingly minor Holst, 2015; Aguirre-Santoro & Michelangeli, 2015; but important observation recorded in de Jussieu’s Buneker€ et al., 2015; Espejo & Lopez-Ferrari, 2015; brief commentary on bromeliads is the presence of Forzza & Leme, 2015; Gonzalez-Rocha et al., 2015; leaves described as ‘vaginantia’ and ‘canaliculata’. Leme, 2015; Monteiro & Forzza, 2015; Ramırez et al., This commentary represents one of the earliest refer- 2015; de Sousa & Wanderley, 2015), but with >3300 ences, albeit oblique, to the water-impounding tanks species already described (Luther, 2012; Govaerts, (phytotelmata) characteristic of so many bromeliads. Luther & Grant, 2013), the discovery of an explana- tion of the drivers and mechanisms of bromeliad diver- *E-mail: [email protected] sification has become one of the overarching aims of © 2016 The Author. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean 415 Society of London., 2016, 181, 415–440 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 416 J. MALES research into the family. To this end, well resolved, data would shed light on the coherence and origins time-calibrated multi-locus molecular phylogenetic of the ecophysiological syndromes or functional types trees have been reconstructed, recognizing eight sub- recognized by Pittendrigh (1948), which are closely families: (Brocchinioideae, (Lindmanioideae, (Tilland- connected with water-use strategies. In classifying sioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, the bromeliad flora of Trinidad, Pittendrigh identi- (Bromelioideae, Puyoideae))))))) (Givnish et al., 2011). fied a series of characteristic functional types: Type I Informative analyses have been conducted to assess Soil-Root; Type II Tank-Root; Type III Tank-Absorb- the impact of putative key innovations on net diversi- ing Trichome; and Type IV Atmosphere-Absorbing fication rates, demonstrating links between the accu- Trichome. Benzing (2000) modified Pittendrigh’s clas- mulation of species richness in specific lineages and sification to separate Tank-Absorbing Trichome characters such as epiphytism, crassulacean acid Bromelioideae and Tillandsioideae into Types III and metabolism (CAM), impounding tanks, entangling IV, respectively, leaving the atmospheric species as seeds and occurrence in moist, fertile habitats in Type V. The splitting of Pittendrigh’s Type III group South American cordilleras (Givnish et al., 2014; Sil- along phylogenetic lines should be subjected to fur- vestro, Zizka & Schulte, 2014). It is important to note ther scrutiny. Analysis of larger comparative eco- that extreme care should be taken when performing physiological datasets will indicate whether the such analyses to use best practice in terms of model phylogenetic distinction is mirrored by a clear diver- calibration and sampling methodology. Quezada & gence in functional type. However, the prevalence of Gianoli (2011) ostensibly recovered CAM as a driver of CAM photosynthesis in Type III species and of C3 diversification in Bromeliaceae, but there were two photosynthesis in Type IV is expected to have impor- fundamental problems with their analysis rendering tant implications for water relations and therefore this result highly questionable. First, the putative Benzing’s scheme is provisionally maintained in this phylogenetic relationships used in this analysis are work. not consistent with those supported by the most com- These functional types represent an evolutionary prehensive molecular phylogenetic analyses. For progression involving decreasing physiological depen- example, the weight of evidence does not support a sis- dence on the substrate, providing access to epiphytic ter-group relationship between Puya Molina and a and lithophytic niche space with reduced interspeci- clade comprising Fascicularia Mez, Ochagavia Phil. fic competition (Pittendrigh, 1948; Givnish et al., and Greigia Regel (Schulte, Barfuss & Zizka, 2009; 1997; Benzing, 2000). Epiphytes account for 56% of Givnish et al., 2011, 2014; Escobedo-Sarti et al., all bromeliad species, such that the family ranks sec- 2013). Second, the character coding fails to capture ond only to Orchidaceae for epiphytic species rich- the complexity of variation in CAM within and ness (Zotz, 2013). The atmospheric Type V species, between lineages. Both Puya and Tillandsia L. are which obtain moisture and nutrients only from direct coded as CAM genera, whereas both are known to or occult precipitation, represent the ultimate include many C3 species and in Puya there are several expression of extreme epiphytism (Schimper, 1888; intermediates (e.g. Herrera et al., 2010; Quezada, Zotz Benzing, 1978; Benzing & Ott, 1981). Characteristic & Gianoli, 2014). A more rigorous analysis by Silve- combinations of innovating traits provide the defini- stro et al. (2014) identified CAM as a driver of diversi- tion of each functional type and its overall water-use fication in Bromelioideae, but it is too facile to assume strategy, but Pittendrigh’s framework could also be this conclusion should apply across the whole family, used to explore the evolution of structure and func- in which 50% of extant species use C3 photosynthesis tion in finer detail. As different lineages have inde- only (Crayn et al., 2015). pendently undergone transitions along the functional A critical dimension of bromeliad biology that has type series, it is interesting to ask whether conver- remained absent from these investigations is the gence in functional type has been achieved through suite of underlying traits pertaining to organismal parallel or alternative changes at the anatomical and and leaf-level anatomical and hydraulic specializa- hydraulic level. tion. These traits undoubtedly make an adaptive con- An improved understanding of the controls on tribution to bromeliad survival in mesic and stressful water fluxes through bromeliads would also be of terrestrial and epiphytic habitats ranging from moist broader relevance and utility, as
Recommended publications
  • Arizona Game and Fish Department Heritage Data Management System
    ARIZONA GAME AND FISH DEPARTMENT HERITAGE DATA MANAGEMENT SYSTEM Plant Abstract Element Code: PMAGA010N2 Data Sensitivity: YES CLASSIFICATION, NOMENCLATURE, DESCRIPTION, RANGE NAME: Agave schottii var. treleasei (Toumey) Kearney & Peebles COMMON NAME: Trelease Agave, Schott Agave, Trelease Shindagger, Trelease’s century plant SYNONYMS: Agave treleasei Toumey FAMILY: Agavaceae AUTHOR, PLACE OF PUBLICATION: Agave schottii var. treleasei (Toumey) T.H. Kearney, and R.H. Peebles, Jour. Wash. Acad. Sciences 29(11): 474. 1939. Agave treleasei Toumey, Annual Rep. Missouri Bot. Gard. 12: 75-76, pl. 32-33. 1901. TYPE LOCALITY: USA: Arizona: Pima County: Castle Rock, SW slope of Santa Catalina Mt. TYPE SPECIMEN: HT: Toumey s.n. (“in herb. Toumey”); possibly IT at: ARIZ, MO, US. “Present location of specimen unknown” (Phillips and Hodgson 1991). What appears to be an isotype found at MO (Hodgson, 1995). TAXONOMIC UNIQUENESS: The variety treleasei is 1 of 2 in the species Agave schottii; the other is var. schottii. In North America, the species schottii is 1 of 34 in the genus Agave. There are more than 200 species recognized from the southern USA to northern South America, and throughout the Caribbean. The variety treleasei is very rare and poorly known. In the Santa Catalina Mountains, it is possibly a polyploid form of schottii, or another case of hybridization between A. chrysantha or A. palmeri and A. schottii var. schottii (Hodgson 1987 Pers. Comm.). Formerly, a population in the Ajo Mountains was thought to be a disjunct population of var. treleasi, but through genetic testing, it was determined to be of hybrid origin between Agave s.
    [Show full text]
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • General Information Bromeliaceae Family
    General Information Bromeliads are a unique and fascinating family of hundreds of extremely diversified and exotic plants, which are amazingly adaptable, tough and relatively easy to grow. People often say that Bromeliads thrive on neglect. The species can tolerate a huge variety of growing conditions including heat, light, air and moisture. No Bromeliads are native to Australia and therefore have all been imported and introduced here. The plants are native to the Southern States of the USA, Central America and deep into South America, with regions like Florida, Mexico, the West Indies, parts of Brazil and as far south as Chile having many and various species. One very primitive species is also found in Africa and has survived since the two continents separated. Bromeliaceae Family The entire bromeliad family called Bromeliaceae, is divided into three subfamilies containing many genera, with the Bromelioideae and Tillandsioideae subfamilies being the most popular bromeliads for enthusiasts and collectors. The subfamily Bromelioideae is distributed from Mexico to Argentina and has the greatest number of genera. They are mostly epiphytic, tank-type plants with spiny leaves and berry-like fruit containing wet seeds. The subfamily Pitcairnioideae are the most primitive bromeliads, descended from the grass family. Nearly all are terrestrial. Most have spiny leaves. The seeds are dry and usually winged. The subfamily Tillandsioideae has few genera, but includes about half of the species of bromeliads. Growing throughout the Americas, they are mostly epiphytes. All have spineless leaves. Seeds are dry, with feathery "parachutes" and are blown and float in the wind. The most notable and commercially developed of the family is the edible pineapple (Ananus comosus).
    [Show full text]
  • Three New Species and Growth Patterns in Hechtia (Bromeliaceae: Hechtioideae)
    Phytotaxa 178 (2): 113–127 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.178.2.3 Three new species and growth patterns in Hechtia (Bromeliaceae: Hechtioideae) IVÓN RAMÍREZ MORILLO1,3, CARLOS F. JIMÉNEZ1, GERMÁN CARNEVALI FERNÁNDEZ-CONCHA1 & JUAN P. PINZÓN2 1Centro de Investigación Científica de Yucatán, A. C., Unidad de Recursos Naturales-Herbario CICY, Calle 43 # 130. Colonia Chuburná de Hidalgo, Mérida, Yucatán 97200, México. 2Universidad Autónoma de Yucatán, Campus de Ciencias Biológicas y Agropecuarias, Departamento de Botánica, Carretera Mérida- Xmatkuil, Km. 15.5 Apdo. Postal: 4-116 Itzimná, Mérida, Yucatán 97100, México. 3E.-mail [email protected] (Author for correspondence) Abstract Three new species of Hechtia from the Mexican State of Oaxaca are herein proposed as new: Hechtia flexilifolia, H. hua- melulaensis, and H. nivea, from the physiogeographical provinces of Mixteca Alta, Costas del Sur, and Sierras Centrales de Oaxaca respectively. All three species are described and illustrated. Iconography provided features plants in habitat and under cultivation. An assessment of their conservation status sensu IUCN criteria is presented as well. We also discuss and illustrate the three growth patterns identified at this time in the genus. Keywords: Diversity, endemism, growth patterns, IUCN, Oaxaca, physiogeographical regions Introduction Oaxaca ranks third in vascular plant diversity among Mexican states only after Chiapas and Guerrero, with 251 families, comprising 1,824 genera and 8,431 species (García-Mendoza 2004). Among them, angiosperms are the most numerous with 7,752 species, whereas Bromeliaceae is the seventh most diverse family of monocots.
    [Show full text]
  • 16 Artigo Dyckia Racinae.Indd 1 17/12/2014 10:21:23 398 DORNELES, M.P.; OLIVEIRA, DE J.M.S
    Dyckia racinae L.B.Sm. (Bromeliaceae ): morphological description emphasizing the reproductive structures 397 Dyckia racinae L. B. Sm. (Bromeliaceae): morphological description emphasizing the reproductive structures 1 Mariane Paludette Dorneles2, João Marcelo Santos de Oliveira3 & Thais Scotti do Canto-Dorow 4 1 Parte da dissertação de Mestrado da primeira autora no Programa de Pós-graduação em Agrobiologia, Universidade Federal de Santa Maria. 2 Programa de Pós-graduação em Agrobiologia, Universidade Federal de Santa Maria. 3 Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Biologia, Programa de Pós-graduação em Agrobiologia, Av. Roraima s/n, CEP 97105-900, Santa Maria, RS, Brasil - [email protected] 4 Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Biologia, Av. Roraima s/n, CEP 97105-900, Santa Maria, RS, Brasil. Recebido em 20.III.2014. Aceito em 8.X.2014. ABSTRACT – This study presents an analysis of the external morphology and anatomy, especially of the micromorphology of reproductive organs that are important for characterizing Dyckia racinae L.B.Sm. The presence of a parietal U-shaped thickening in the endothecium and in the connective differ from other Dyckia species. Characteristics of pollen grains and ovules, indicated by micromorphology of the sporoderm and structure of the chalazal appendix, respectively, are similar to other species, and useful for characterizing the genus. Preferences for rocky soils, besides leaf characteristics and infl orescence structure, approximate D. racinae to D. cabrerae Smith & Reitz in the main dichotomous keys for the genus. Considering that Dyckia racinae is endemic in Rio Grande do Sul, and that the original description of the species was proposed based on a single cultivated individual, it is clear that the characteristics described in the present study, based on individual species analyzed in their natural environment, are important botanical contributions.
    [Show full text]
  • Spanish Moss and Ball Moss 1
    FOR52 Spanish Moss and Ball Moss 1 Nancy P. Arny2 Spanish moss (Tillandsia usneoides) and ball Bromeliads moss (T. recurvata) are common elements of the Florida landscape. They are two of Florida's native Like almost all members of the Bromeliaceae, members of the Bromeliaceae, also known as the Spanish moss and ball moss are perennial herbs. This pineapple family. This family includes species as means they do not have permanent woody stems diverse as pineapples, Spanish moss and a above ground, but that individual plants persist for carnivorous relative native to Australia. Bromeliads years and will reproduce without human intervention. are members of the plant division Like many other bromeliads, these plants are Magnoliophyta--the flowering plants. While most epiphytes or "air plants". This indicates that they do Floridians are at least vaguely familiar with Spanish not require soil to root in, but can survive and thrive moss, many have never seen it flower and may be growing above the ground hanging on branches of surprised at the beauty of its delicate blossom. Of trees or other structures. They are not parasites. course, the fact that both Spanish moss and ball moss Without soil as a source of nutrients, these plants produce flowers is proof that they are not truly have evolved the capacity to make use of minerals mosses at all. dissolved in the water which flows across leaves and down branches. This fact sheet will help the reader to distinguish between the two common Tillandsias . It also Spanish moss plants appear to vary in mineral provides basic information on the biology and content and it has been proven that they gain a ecology of these fascinating plants and provides significant portion of their nutrients from stem recommendations for their management in the home run-off from the trees on which they are anchored.
    [Show full text]
  • Network Scan Data
    Selbyana 15: 132-149 CHECKLIST OF VENEZUELAN BROMELIACEAE WITH NOTES ON SPECIES DISTRIBUTION BY STATE AND LEVELS OF ENDEMISM BRUCE K. HOLST Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA ABSTRACf. A checklist of the 24 genera and 364 native species ofBromeliaceae known from Venezuela is presented, including their occurrence by state and indications of which are endemic to the country. A comparison of the number of genera and species known from Mesoamerica (southern Mexico to Panama), Colombia, Venezuela, the Guianas (Guyana, Suriname, French Guiana), Ecuador, and Peru is presented, as well as a summary of the number of species and endemic species in each Venezuelan state. RESUMEN. Se presenta un listado de los 24 generos y 364 especies nativas de Bromeliaceae que se conocen de Venezuela, junto con sus distribuciones por estado y una indicaci6n cuales son endemicas a Venezuela. Se presenta tambien una comparaci6n del numero de los generos y especies de Mesoamerica (sur de Mexico a Panama), Colombia, Venezuela, las Guayanas (Guyana, Suriname, Guyana Francesa), Ecuador, y Peru, y un resumen del numero de especies y numero de especies endemicas de cada estado de Venezuela. INTRODUCTION Bromeliaceae (Smith 1971), and Revision of the Guayana Highland Bromeliaceae (Smith 1986). The checklist ofVenezuelan Bromeliaceae pre­ Several additional country records were reported sented below (Appendix 1) adds three genera in works by Smith and Read (1982), Luther (Brewcaria, Neoregelia, and Steyerbromelia) and (1984), Morillo (1986), and Oliva-Esteva and 71 species to the totals for the country since the Steyermark (1987). Author abbreviations used last summary of Venezuelan bromeliads in the in the checklist follow Brummit and Powell Flora de Venezuela series which contained 293 (1992).
    [Show full text]
  • Functional Structure of the Bromeliad Tank Microbiome Is Strongly Shaped by Local Geochemical Conditions
    Environmental Microbiology (2017) 19(8), 3132–3151 doi:10.1111/1462-2920.13788 Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions Stilianos Louca,1,2* Saulo M. S. Jacques,3,4 denitrification steps, ammonification, sulfate respira- Aliny P. F. Pires,3 Juliana S. Leal,3,5 tion, methanogenesis, reductive acetogenesis and 6 1,2,7 Angelica L. Gonzalez, Michael Doebeli and anoxygenic phototrophy. Overall, CO2 reducers domi- Vinicius F. Farjalla3 nated in abundance over sulfate reducers, and 1Biodiversity Research Centre, University of British anoxygenic phototrophs largely outnumbered oxy- Columbia, Vancouver, BC, Canada. genic photoautotrophs. Functional community 2Department of Zoology, University of British Columbia, structure correlated strongly with environmental vari- Vancouver, BC, Canada. ables, between and within a single bromeliad species. 3Department of Ecology, Biology Institute, Universidade Methanogens and reductive acetogens correlated Federal do Rio de Janeiro, Rio de Janeiro, Brazil. with detrital volume and canopy coverage, and exhib- 4Programa de Pos-Graduac ¸ao~ em Ecologia e ited higher relative abundances in N. cruenta.A Evoluc¸ao,~ Universidade Estadual do Rio de Janeiro, Rio comparison of bromeliads to freshwater lake sedi- de Janeiro, Brazil. ments and soil from around the world, revealed stark differences in terms of taxonomic as well as func- 5Programa de Pos-Graduac ¸ao~ em Ecologia, tional microbial community structure. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. 6Biology Department & Center for Computational & Introduction Integrative Biology, Rutgers University, Camden, NJ, USA. Bromeliads (fam. Bromeliaceae) are plants found through- 7Department of Mathematics, University of British out the neotropics, with many species having rosette-like Columbia, Vancouver, BC, Canada.
    [Show full text]
  • Bromeliaceae) Como Subsídio Para Conservação E Reintrodução De Populações Extintas Na Natureza
    Biologia reprodutiva e diversidade genética de Dyckia distachya Hassler (Bromeliaceae) como subsídio para conservação e reintrodução de populações extintas na natureza Manuela Boleman Wiesbauer i Universidade Federal de Santa Catarina Centro de Ciências Agrárias Programa de Pós-Graduação em Recursos Genéticos Vegetais Biologia reprodutiva e diversidade genética de Dyckia distachya Hassler (Bromeliaceae) como subsídio para conservação e reintrodução de populações extintas na natureza Manuela Boleman Wiesbauer Orientador: Ademir Reis Co-orientador: Maurício Sedrez dos Reis Dissertação apresentada ao Programa de Pós-Graduação em Recursos Genéticos Vegetais da Universidade Federal de Santa Catarina, como requisito para a obtenção do título de Mestre em Recursos Genéticos Vegetais Florianópolis Santa Catarina – Brasil 2008 ii Catalogação na fonte pela Biblioteca Universitária da Universidade Federal de Santa Catarina W649b Wiesbauer, Manuela Boleman . Biologia reprodutiva e diversidade genética de Dyckia distachya Hassler (Bromeliaceae) como subsídio para conservação e reintrodução de populações extintas na natureza [dissertação] / Manuela Boleman Wiesbauer ; orientador, Ademir Reis. - Florianópolis, SC, 2008. 94 f.: il., grafs., tabs., mapas Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-Graduação em Recursos Genéticos Vegetais. Inclui referências 1. Recursos genéticos vegetais. 2. Endogamia. 3. Planta reófita. 4. Espécie ameaçada de extinção. 5. Auto - Incompatibilidade. I. Reis, Ademir. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Recursos Genéticos Vegetais. III. Título. CDU 631 iii iv v DEDICATÓRIA Dedico esta dissertação a todos aqueles envolvidos com esta longa história chamada Dyckia distachya . Dedico primeiramente aos amantes da Botânica que curiosos descreveram a espécie, coletaram. Imagine naquelas épocas... sem herbários on line .
    [Show full text]
  • Guía Visual De Bromelias Presentes En Un Sector Del Parque Natural Chicaque
    GUÍA VISUAL DE BROMELIAS PRESENTES EN UN SECTOR DEL PARQUE NATURAL CHICAQUE PRESENTADO POR: DIANA CAROLINA GUTIERREZ GONZALEZ ANDREA LISETH SALAMANCA BARRERA UNIVERSIDAD PEDAGÓGICA NACIONAL FACULTAD DE CIENCIA Y TECNOLOGÍA DEPARTAMENTO DE BIOLOGÍA BOGOTÁ 2015 1 GUÍA VISUAL DE BROMELIAS PRESENTES EN UN SECTOR DEL PARQUE NATURAL CHICAQUE PRESENTADO POR: DIANA CAROLINA GUTIERREZ GONZALEZ ANDREA LISETH SALAMANCA BARRERA Trabajo de grado presentado para optar al título de Licenciado en Biología DIRECTOR FRANCISCO MEDELLÍN CADENA UNIVERSIDAD PEDAGÓGICA NACIONAL FACULTAD DE CIENCIA Y TECNOLOGÍA DEPARTAMENTO DE BIOLOGÍA BOGOTÁ 2015 2 NOTA DE ACEPTACIÓN _____________________________ _____________________________ _____________________________ _____________________________ ________________________________________ DIRECTOR: FRANCISCO MEDELLÍN CADENA _______________________________________ JURADO ______________________________________ JURADO Diciembre, 2015 3 AGRADECIMIENTOS En primer lugar agradecemos al profesor Francisco Medellín Cadena por orientar este trabajo con sus asesorías , recomendaciones y conocimientos, también es necesario brindar un agradecimiento a la línea de investigación Ecología y Diversidad de los sistemas acuáticos de la región andina ( SARA) por aceptar este trabajo y proporcionarnos los instrumentos y bibliografía necesaria para su realización. En la realización de este trabajo también fue importante la ayuda de nuestro compañero Julián Romero y Wholfan Díaz que nos colaboraron con el préstamo del material necesario para obtener
    [Show full text]
  • BROMELI ANA PUBLISHED by the NEW YORK BROMELIAD SOCIETY1 (Visit Our Website
    BROMELI ANA PUBLISHED BY THE NEW YORK BROMELIAD SOCIETY1 (visit our website www.nybromeliadsociety.org) November, 2014 Vol. 51, No. 9 THE WBC IN HAWAII - Updates and Corrections by Herb Plever My report of the World Conference in the October issue was silent about visiting a local grower. We were scheduled to visit Larry McGraw’s garden during our trip to Lyon Arboretum and Nu’uanu Pali overlook, but were advised that we had to skip the visit because our bus couldn’t make the steep turnaround on Lisa Vinzant’s unnamed Auction Neo. the narrow road up to the garden. (We were running There was a lot of suspense about the late.) beautiful, unnamed Neoregelia generously But I learned from the In Larry McGraw’s garden - what donated by Lisa Vinzant, but it had not yet been looks like Neo. ‘Fireball’ in the back, report in the East London Tillandsia streptophylla in the middle auctioned when I had to leave. Lisa had given the Bromeliad Society (South and Tillandsia xerographica in front. buyer the right to name the plant (subject to her Africa) Newsletter that approval). I have heard that the plant went for another bus did manage to visit Larry McGraw’s $600 but the purchaser likely believes that is a garden and the people were very impressed. The bargain for such an outstanding plant. The winner and adjacent photo is from that Newsletter. any name given the plant have not yet been We did not stay to the end of the Rare Plant confirmed. (See photo above.) Auction on Saturday night after the banquet, as we Two trees dominated the coastal landscape on had an early flight to Kona the next morning.
    [Show full text]
  • Diversity and Evolution of Monocots
    Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . spiderworts, bananas, pineapples . – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinales + Zingiberales • theme: reduction of flower, loss of nectar, loss of zoophily, evolution of • 2 closely related tropical orders bracts • primarily nectar bearing but with losses • bracted inflorescences grass pickeral weed pickeral weed spiderwort heliconia nectar pollen only bracts rapatead bromeliad Commelinaceae - spiderwort Commelinaceae - spiderwort Family of small herbs with succulent stems, stems jointed; leaves sheathing. Family does not produce Inflorescence often bracted nectar, but showy flowers for insect pollen gathering. Rhoeo - Moses in a cradle Commelina erecta - Erect dayflower Tradescantia ohiensis - spiderwort Tradescantia ohiensis - spiderwort Commelinaceae - spiderwort Commelinaceae - spiderwort Flowers actinomorphic or • species rich in pantropics, CA 3 CO 3 A 6 G (3) zygomorphic especially Africa • floral diversity is enormous Commelina communis - day flower Tradescantia ohiensis - spiderwort Pontederiaceae - pickerel weed Pontederiaceae - pickerel weed Aquatic family of emergents or floaters. Pickerel weed has glossy heart-shaped leaves, Water hyacinth (Eichhornia) from superficially like Sagittaria but without net venation.
    [Show full text]