Diversity and Evolution of Monocots

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Evolution of Monocots Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . spiderworts, bananas, pineapples . – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinales + Zingiberales • theme: reduction of flower, loss of nectar, loss of zoophily, evolution of • 2 closely related tropical orders bracts • primarily nectar bearing but with losses • bracted inflorescences grass pickeral weed pickeral weed spiderwort heliconia nectar pollen only bracts rapatead bromeliad Commelinaceae - spiderwort Commelinaceae - spiderwort Family of small herbs with succulent stems, stems jointed; leaves sheathing. Family does not produce Inflorescence often bracted nectar, but showy flowers for insect pollen gathering. Rhoeo - Moses in a cradle Commelina erecta - Erect dayflower Tradescantia ohiensis - spiderwort Tradescantia ohiensis - spiderwort Commelinaceae - spiderwort Commelinaceae - spiderwort Flowers actinomorphic or • species rich in pantropics, CA 3 CO 3 A 6 G (3) zygomorphic especially Africa • floral diversity is enormous Commelina communis - day flower Tradescantia ohiensis - spiderwort Pontederiaceae - pickerel weed Pontederiaceae - pickerel weed Aquatic family of emergents or floaters. Pickerel weed has glossy heart-shaped leaves, Water hyacinth (Eichhornia) from superficially like Sagittaria but without net venation. tropical America is invasive species in Flowers are in congested showy purple inflorescences. subtropical areas of the world. Eichhornia crassipes Water hyacinth invading Florida Pontederia cordata - Pickerel weed Pontederiaceae - pickerel weed Haemodoraceae - kangaroo paw Flowers are showy, insect pollinated with nectar glands - previously placed in Liliales! Anigozanthus - kangaroo paw Small family with floral nectar, species radiations in Australia and Pontederia cordata - Pickerel weed South Africa Zingiberales Zingiberales • strongly supported group of 8 tropical • strongly supported group of 8 tropical families families • rhizomatous monocots with showy, • rhizomatous monocots with showy, nectared, but highly bracted flowers nectared, but highly bracted flowers • 3 shared features: 1. Parallel-pinnate leaves, often • 3 shared features: 2. Bracted flowers distichous and inflorescences Zingiberales Zingiberales • strongly supported group of 8 tropical • order fairly well known based on DNA and morphology families • show interesting trends in (1) fusion of perianth and (2) stamen loss and staminode development • rhizomatous monocots with showy, Costus floral pattern nectared, but highly bracted flowers P • 3 shared features: 3. Inferior ovary S A S A A A A P A P S 3 fused sepals 3 separate petals 5 fused sterile anthers (labellum) DNA-based Zingiberales “rhizogram” by John Kress 1 fertile anther Zingiberales Zingiberales Musaceae - banana Musaceae - banana • robust herbs with spiralled phyllotaxy • unisexual flowers • fleshy fruits • “tubular” flowers [3 sepals + 2 petals] • 5 fertile stamens Musa X paradisica (sterile triploid) cultivated banana Zingiberales Zingiberales Strelitziaceae - bird of paradise Strelitziaceae - bird of paradise • woody trunks (usually) with distichous leaves • 3 genera of Gondwanan distribution • 2 fused petals (elaborated flowers for different pollination systems: bird, marsupial, bat) • 5 or 6 fertile stamens Phenakospermum Ravenala Strelitzia Guayana Shield Madagascar South Africa Zingiberales Zingiberales Lowiaceae - orchidantha Heliconiaceae - heliconia • 1 genus • primarily Neotropical • perianth tube = 3 sepals • robust herbs with distichous phyllotaxy • 1 petal = “labellum” • showy bract system • 5 fertile stamens Orchidantha of SE Asia and Pacific Zingiberales Zingiberales Heliconiaceae - heliconia Costaceae - costus • flowers inverted (resupinate) • robust herbs with spiral phyllotaxy • 5 stamens + staminode • double bracted flowers • flower mites Zingiberales Zingiberales Costaceae - costus Zingiberaceae - ginger • two major groups - insect pollinated and bird pollinated • robust herbs with distichous phyllotaxy • “labellum” formed from 5 sterile stamens • ethereal aromatic (ginger) Zingiberales Zingiberales Zingiberaceae - ginger Cannaceae - canna • striking floral diversity and • only Canna of Neotropics pollinators • asymmetrical flowers Zingiberales Poales I - showy flowers Marantaceae - prayer plant 4 main groups: • pantropical, petiolate leaved • Acorales - sister to all monocots • Alismatids • pairs of asymmetrical – inc. Aroids - jack in the pulpit flowers • Lilioids (lilies, orchids, yams) – non-monophyletic – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Poales I - showy flowers *Bromeliaceae - pineapples • mainly epiphytic, but terrestrial as well in • showy flowers, inhospitable regions insect or bird pollinated • +/- reduced flowers, insect or wind pollinated • reduced flowers, wind pollinated *Bromeliaceae - pineapples *Bromeliaceae - pineapples • key adaptations: CAM photosynthesis, modified • key adaptations: CAM photosynthesis, modified trichomes or scales, “tank” formation trichomes or scales, “tank” formation • scales very visible in Spanish moss Tank (water impounding) Tillandsia usneoides in South Carolina live oaks Scales (water & nutrient uptake) *Bromeliaceae - pineapples *Bromeliaceae - pineapples • preadaptations to carnivory in Brocchinia and • inflorescence heavily bracted and often the Catopsis attractant Amino acids radioactively labeled being incorporated into the scales of Brocchinia Brocchinia Catopsis *Bromeliaceae - pineapples *Bromeliaceae - pineapples __ • bromeliads are an American family: 2600 species, 56 CA 3 CO 3 A 6 G (3) or G (3) genera • petals showy, but not the sepals • 2 sets of 3 stamens • superior or inferior ovary, with twisted styles • berry or capsule 1 species of Pitcairnia in west Africa - vicariance or dispersal? *Bromeliaceae - pineapples *Bromeliaceae - pineapples • pineapple not native to Hawaii - along with two other • classification traditionally had three subfamilies ingredients of Hawaiian Punch tillandsioids pitcairnioids bromelioids guava passion fruit Incan ceremonial dance *Bromeliaceae - pineapples *Bromeliaceae - pineapples • tillandsioids • bromelioids Ananas - pineapple Tillandsia usneoides and T. grandis Vriesea Achmea Neoregelia *Bromeliaceae - pineapples *Bromeliaceae - pineapples • pitcairnioids • 2 subfamilies natural Brocchinia based on DNA • pitcairnioids broadly paraphyletic • Brocchinia sister to rest of family • origin of family in Navia Guayana Shield of South America Puya *Bromeliaceae - pineapples *Bromeliaceae - pineapples Guayana Highlands of southern When did the Venezuela and adjacent areas of Atlantic disjunction Brazil and Colombia - the higher occur? elevation “tepuis” are rain drenched and extremely nutrient Bromeliaceae poor Rapateaceae Pitcairnia saxicola Picairnia feliciana in west Africa Costa Rica *Bromeliaceae - pineapples *Bromeliaceae - pineapples When did the Where did the Atlantic split Atlantic disjunction African species occur? come from? Long distance dispersal to Africa! • African species African species originated from Andes! divergence is 15-13 mya DNA tree calibrated with monocot fossils Rapateaceae - a tepui family Rapateaceae - a tepui family • 16 genera and nearly 100 species from the Guayana Shield • most species are pollinated by pollen-gathering bees • hummingbird pollination has evolved once in a clade of two genera Rapateaceae - a tepui family Rapateaceae - a tepui family • most species in the Guayana Shield but one in west Africa Recent long distance dispersal to Africa! African species divergence is 8-6 my whereas Atlantic separation is 80+ mya Atlantic split Is the African Mascolocephalus a product of Atlantic vicariance with closest Guayana Shield relatives, or a product of long distance dispersal?.
Recommended publications
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • Neoregelia Rosy Morn
    FLORIDA COUNCIL OF Volume 37 Issue 2 BROMELIAD SOCIETIES May 2017 Neoregelia Rosy Morn FLORIDA COUNCIL OF BROMELIAD SOCIETIES Page 2 TABLE OF CONTENTS Table of Contents 2 FCBS Officers and Member Societies 3 I love Bromeliads by Carol Wolfe 4 How do you know you are a Master Gardener? 6 Twelve Bromeliad Matters to Ponder 6 In Memoriam: Dean Fairchild 1940-2017 7 Searching for Florida’s Wild Bromeliads by Jay Thurrott 8 The Fire Ant Invasion of 1930 by Tom Wolfe 9 Mexican Bromeliad Weevil Report by Teresa Marie Cooper 10 Armchair Journeys, Bromeliads Habitats on fcbs.org by Karen Andreas 14 Tillandsia utriculata by Tom Wolfe 15 Bromeliads inside the Home by Carol Wolfe 17 2017 Calendar of Events 18 2017 Extravaganza Registration Form 19 2017 Extravaganza Speakers 20 Bromeliad Society of South Florida Show 23 Pitcairnia: A Shady Bromeliad by Karen Andreas 33 2017 Speakers List 37 2017 Bromeliad Sources 38 This newsletter is published four times a year, February, May, August, and November, and is a publication of the Florida Council of Bromeliad Societies. Please submit your bromeliad related activities, articles, photographs, so- ciety shows, news and events, by the first of each of the above months of publication. All material, including arti- cles and photographs, are copyrighted by FCBS, its authors and contributors and may be used by permission only. Commercial use of any materials is prohibited. For permission to reprint any articles, photographs or ma- terials, contact Karen Andreas at [email protected]. FCBS TAX DEDUCTIBLE RECEIPTS - The Florida Council of Bromeliad Societies, Inc.
    [Show full text]
  • Dreimasterblumen
    Dreimasterblumen Dreimasterblumen (Tradescantia), auch Gottesaugen genannt, sind eine Pflanzengattung in der Familie der Dreimasterblumen Commelinagewächse (Commelinaceae). Viele Tradescantia-Arten sind als Zimmerpflanzen geeignet, mit unterschiedlich gefärbten Blättern. Einige Arten vertragen lichtarme Standorte. Inhaltsverzeichnis Beschreibung Verbreitung Systematik Botanische Geschichte Einzelne Arten Literatur Tradescantia virginiana Einzelnachweise Systematik Weblinks Monokotyledonen Commeliniden Ordnung: Commelinaartige Beschreibung (Commelinales) Familie: Commelinagewächse (Commelinaceae) Unterfamilie: Commelinoideae Gattung: Dreimasterblumen Wissenschaftlicher Name Tradescantia L. Blüte von Tradescantia ohiensis Es sind mehrjährige krautige Pflanzen, einige Arten sind sukkulent. Wie bei Einkeimblättrigen Pflanzen üblich sind die Blüten dreizählig. Die Blüten sind radiär. Die beiden Blütenhüllblattkreise sind deutlich verschiedengestaltig, sie haben also Kelch- und Kronblätter. Die Blütenhüllblätter sind meist frei oder nur an der Basis ein wenig verwachsen. Sie bilden dreikammerige Kapselfrüchte mit ein bis zwei Samen pro Kammer. Bei Pflanzung in Ziergärten sollte man beachten, dass sich einige Arten unkrautartig vermehren und es sehr schwierig ist, diese Gewächse zu kontrollieren. Verbreitung Ihre ursprüngliche Heimat ist die Neotropis. Manche Arten verwildern als Neophyten. Systematik Die Erstbeschreibung durch Carl von Linné in Species Plantarum wurde 1753 veröffentlicht.[1] Die Gattung Tradescantia umfasst die folgenden Arten
    [Show full text]
  • Spanish Moss and Ball Moss 1
    FOR52 Spanish Moss and Ball Moss 1 Nancy P. Arny2 Spanish moss (Tillandsia usneoides) and ball Bromeliads moss (T. recurvata) are common elements of the Florida landscape. They are two of Florida's native Like almost all members of the Bromeliaceae, members of the Bromeliaceae, also known as the Spanish moss and ball moss are perennial herbs. This pineapple family. This family includes species as means they do not have permanent woody stems diverse as pineapples, Spanish moss and a above ground, but that individual plants persist for carnivorous relative native to Australia. Bromeliads years and will reproduce without human intervention. are members of the plant division Like many other bromeliads, these plants are Magnoliophyta--the flowering plants. While most epiphytes or "air plants". This indicates that they do Floridians are at least vaguely familiar with Spanish not require soil to root in, but can survive and thrive moss, many have never seen it flower and may be growing above the ground hanging on branches of surprised at the beauty of its delicate blossom. Of trees or other structures. They are not parasites. course, the fact that both Spanish moss and ball moss Without soil as a source of nutrients, these plants produce flowers is proof that they are not truly have evolved the capacity to make use of minerals mosses at all. dissolved in the water which flows across leaves and down branches. This fact sheet will help the reader to distinguish between the two common Tillandsias . It also Spanish moss plants appear to vary in mineral provides basic information on the biology and content and it has been proven that they gain a ecology of these fascinating plants and provides significant portion of their nutrients from stem recommendations for their management in the home run-off from the trees on which they are anchored.
    [Show full text]
  • Pollination and Evolution of Plant and Insect Interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket a Dar, Gh
    Journal of Pharmacognosy and Phytochemistry 2017; 6(3): 304-311 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Pollination and evolution of plant and insect interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket A Dar, Gh. I Hassan, Bilal A Padder, Ab R Wani and Sajad H Showket A Dar Parey Sher-e-Kashmir University of Agricultural Science and Technology, Shalimar, Jammu Abstract and Kashmir-India Flowers exploit insects to achieve pollination; at the same time insects exploit flowers for food. Insects and flowers are a partnership. Each insect group has evolved different sets of mouthparts to exploit the Gh. I Hassan food that flowers provide. From the insects' point of view collecting nectar or pollen is rather like fitting Sher-e-Kashmir University of a key into a lock; the mouthparts of each species can only exploit flowers of a certain size and shape. Agricultural Science and This is why, to support insect diversity in our gardens, we need to plant a diversity of suitable flowers. It Technology, Shalimar, Jammu is definitely not a case of 'one size fits all'. While some insects are generalists and can exploit a wide and Kashmir-India range of flowers, others are specialists and are quite particular in their needs. In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the Bilal A Padder embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon Sher-e-Kashmir University of guidance and moving cell systems in animals.
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]
  • The Bird of Paradise Produces Spectacular Garden Flowers With
    The Bird of Paradise produces spectacular garden flowers with brilliant orange and blue petals, and has large, bluish-green leathery leaves, not unlike those of bananas. In fact, until recently, Strelitzia was classified as a genus within the Musaceae, the Banana family, and was only recently placed in the Strelitziaceae. Strelitzia is a native of the Cape Province of South Africa where the flowers are visited by Sunbirds, but not pollinated by them. Sunbirds steal nectar without contributing to pollination. The nectary is covered by convoluted bases of petals which reduce nectar theft by sunbirds, but are probably more effective at deterring nectar theft by insects. However, another bird, the Weaver Bird, does pollinate Strelitzia, visiting the flowers, perching on the blue petal and contacting both anthers and stigma. Strelitzia reginae in its native habitat in South Africa grows on river banks and cleared areas of coastal scrub. The first Strelitzia plants were brought to Australia by sailing ships in the early days of European settlement so they have been popular with Australian gardeners seemingly forever. However, if you are tempted to plant one at home, make sure you plant it in a location from which you will never, ever need to move it. Strelitzia plants are like icebergs, only a small part is visible above the ground. You may well need a bobcat or even a bulldozer to remove an old, established plant. The three genera in the family Strelitziaceae have an interesting distribution. Strelitzia (5 species) occur in southern Africa, Ravenala madagascariensis, the Travellers’ Palm, comes from Madagascar and Phenakospermum guianense can be found in the Amazon basin of South America.
    [Show full text]
  • Bromeliads Bromeliads Are a Family of Plants (Bromeliaceae, the Pineapple Family) Native to Tropical North and South America
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 March 2012 Bromeliads Bromeliads are a family of plants (Bromeliaceae, the pineapple family) native to tropical North and South America. Europeans fi rst found out about bromeliads on Columbus’ second trip to the New World in 1493, where the pineapple (Ananas sp.) was being cultivated by the Carib tribe in the West Indies. The commercial pineapple (Ananas comosus) is native to southern Brazil and Paraguay. After the colonization of the New World it was rapidly transported to all areas of the tropics, and now is widely grown in tropical and sub- tropical areas. The only A collection of bromeliads placed on a tree at Costa Flores, Costa Rica. bromeliad to occur north of the tropics is Spanish “moss” (Tillandsia usneoides). It is neither Spanish nor a moss, but an epiphytic bromeliad. It doesn’t look much like a typical Commercial pineapple, Ananas comosus, bromeliad, though, with its long scaly stems and reduced in the fi eld. fl owers. Bromeliads are monocots, many of which, like their grass relatives, have a special form of photosynthesis that uses a variation of the more usual biochemical pathways to allow them to use water more effi ciently. Even though they come from the tropics, this helps those that are epiphytes contend with life in the treetops where there is limited water and a real danger of drying out. There are about 2500 species Many bromeliads are tropical and several thousand hybrids epiphytes. and cultivars. Many have brightly colored leaves, fl owers or fruit, and range in size from moss-like species of Tillandsia to the enormous Puya raimondii from the Andes which produces a fl owering stem up to 15 feet tall.
    [Show full text]