Revision of Rhabdastrella Distincta (Thiele, 1900)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds. -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct. -
The Chemistry of Marine Sponges∗ 4 Sherif S
The Chemistry of Marine Sponges∗ 4 Sherif S. Ebada and Peter Proksch Contents 4.1 Introduction ................................................................................ 192 4.2 Alkaloids .................................................................................. 193 4.2.1 Manzamine Alkaloids ............................................................. 193 4.2.2 Bromopyrrole Alkaloids .......................................................... 196 4.2.3 Bromotyrosine Derivatives ....................................................... 208 4.3 Peptides .................................................................................... 217 4.4 Terpenes ................................................................................... 240 4.4.1 Sesterterpenes (C25)............................................................... 241 4.4.2 Triterpenes (C30).................................................................. 250 4.5 Concluding Remarks ...................................................................... 268 4.6 Study Questions ........................................................................... 269 References ....................................................................................... 270 Abstract Marine sponges continue to attract wide attention from marine natural product chemists and pharmacologists alike due to their remarkable diversity of bioac- tive compounds. Since the early days of marine natural products research in ∗The section on sponge-derived “terpenes” is from a review article published -
Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges
RESEARCH ARTICLE Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges Astrid Schuster1,2, Dirk Erpenbeck1,3, Andrzej Pisera4, John Hooper5,6, Monika Bryce5,7, Jane Fromont7, Gert Wo¨ rheide1,2,3* 1. Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians- Universita¨tMu¨nchen, Richard-Wagner Str. 10, 80333 Munich, Germany, 2. SNSB – Bavarian State Collections OPEN ACCESS of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany, 3. GeoBio-CenterLMU, Ludwig-Maximilians-Universita¨t Mu¨nchen, Richard-Wagner Str. 10, 80333 Munich, Germany, 4. Institute of Citation: Schuster A, Erpenbeck D, Pisera A, Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland, 5. Queensland Hooper J, Bryce M, et al. (2015) Deceptive Museum, PO Box 3300, South Brisbane, QLD 4101, Australia, 6. Eskitis Institute for Drug Discovery, Griffith Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution University, Nathan, QLD 4111, Australia, 7. Department of Aquatic Zoology, Western Australian Museum, of Lithistid Demosponges. PLoS ONE 10(1): Locked Bag 49, Welshpool DC, Western Australia, 6986, Australia e116038. doi:10.1371/journal.pone.0116038 *[email protected] Editor: Mikhail V. Matz, University of Texas, United States of America Received: July 3, 2014 Accepted: November 30, 2014 Abstract Published: January 7, 2015 Reconciling the fossil record with molecular phylogenies to enhance the Copyright: ß 2015 Schuster et al. This is an understanding of animal evolution is a challenging task, especially for taxa with a open-access article distributed under the terms of the Creative Commons Attribution License, which mostly poor fossil record, such as sponges (Porifera). -
Downloaded from Brill.Com10/04/2021 04:39:43PM Via Free Access 4 E
Bijdragen tot de Dierkunde, 62 (1) 3-19 (1992) SPB Academie Publishing bv, The Hague A revision of Atlantic Asteropus Sollas, 1888 (Demospongiae), including a description of three new species, and with a review of the family Coppatiidae Topsent, 1898 Eduardo Hajdu & Rob W.M. van Soest 1 Laboratorio de Poriferos, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do 2 Rio de Janeiro, Cep. 21941 Cidade Universitária, Rio de Janeiro, Brasil; Institute of Taxonomie Zoology, University of Amsterdam, P.O. Box 4766, 1009 AT Amsterdam, The Netherlands Keywords: taxonomy, Asteropus, Coppatiidae, Demospongiae Abstract necida. A associação de Asteropus e outros génerosrelacionados à família Coppatiidae Topsent, 1898 é discutida, levando à con- clusão de que a família é certamente um taxon polifilético rela- Various records of A. simplex Carter, 1879 from the Atlantic cionado Van a vários grupos de Astrophorida (Hooper, 1986; are assigned to three new species of the sponge genus Asteropus Soest, 1991). viz.: brasil and Sollas, 1888, A. iensis sp. n., A. vasiformissp. n., A. A. niger sp. n., whereas simplex s.s. is restricted to the Indo- Pacific. A worldwide study of Asteropus specimens resulted in the conclusion that two species groups exist, namely “simplex ”- Introduction like species (with true sanidasters), and “sarasinorum”- like spe- cies (with spiny microrhabds), as previously observed by Berg- Examinationof several western Atlantic specimens quist (1965, 1968). A newly discovered microsclere complement 1879 recorded as Asteropus simplex Carter, (cf. of trichodragmata in the first group strengthens the need for generic distinction of both lineages, and accordingly the name Boury-Esnault, 1973; Van Soest & Stentoft, 1988; MelophlusThiele, 1899 is reinstated for the “sarasinorum” spe- Muricy et al., 1991), as well as undescribed materi- cies group. -
Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astroporida) from Korea
Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astroporida) from Korea Eun Jung Shim1,* Chung Ja Sim2 1Natural History Museum of Hannam University, Daejeon 306-791, Korea 2Department of Biological Sciences, College of Life Sciences and Nano Technology, Hannam University, Daejeon 305-811, Korea ABSTRACT Two sponges, Stelletta subtilis (Sollas, 1886) and Stryphnus sollasi n. sp., were collected from depth of 24-30 m at Jeju-do Island and Chuja-do Island by SCUBA diving from July 2003 to June 2010. The new species Stryphnus sollasi n. sp is similar with Stryphnus niger Sollas, 1886 in the composition of spicules, however they differ in colour and spicule size. This new species has smaller oxeas and larger oxyasters than those of S. niger. This new species has two size categories of oxyaster but S. niger has one size category of oxyaster. The colour of S. sollasi n. sp is white, but the latter puce black. Stelletta subtilis (Sollas, 1886) is first recorded in Korean fauna. Keywords: Stelletta, Stryphnus, Ancorinidae, new species, Korea Running title: Two Ancorinid Sponges from Korea * To whom correspondence should be addressed. Tel: 82-42-629-8455 Fax: 82-42-629-8280 E-mail: [email protected] INTRODUCTION The genera Stelletta Schmidt, 1862 and Stryphnus Sollas, 1886 are contained in the family Ancorinidae. This family is characterized by the long-rhabdome triaenes and oxeas as megascleres and euasters, sanidasters or microrhabds as microscleres. The genus Stelletta is characterized by presence of long-shafted triaenes as megascleres and euasters without marked centrum as microscleres. Twelve Stelletta species have been reported in Korean waters so far (Shim and Sim, 2009). -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astrophorida) from Korea
Anim. Syst. Evol. Divers. Vol. 29, No. 1: 31-35, January 2013 http://dx.doi.org/10.5635/ASED.2013.29.1.31 Short communication Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astrophorida) from Korea Eun Jung Shim1,*, Chung Ja Sim2 1Natural History Museum of Hannam University, Daejeon 306-791, Korea 2Department of Biological Sciences, College of Life Sciences and Nano Technology, Hannam University, Daejeon 305-811, Korea ABSTRACT Two sponges, Stelletta subtilis (Sollas, 1886) and Stryphnus sollasi n. sp., were collected from depth of 24-30 m at Jeju-do Island and Chuja-do Island by SCUBA diving from July 2003 to June 2010. The new species Stry- phnus sollasi n. sp is similar with Stryphnus niger Sollas, 1886 in the composition of spicules, however they differ in colour and spicule size. This new species has smaller oxeas and larger oxyasters than those of S. niger. This new species has two size categories of oxyaster but S. niger has one size category of oxyaster. The colour of S. sollasi n. sp is white, but the latter puce black. Stelletta subtilis (Sollas, 1886) is first recorded in Korean fauna. Keywords: Stelletta, Stryphnus, Ancorinidae, new species, Korea INTRODUCTION do and Chuja-do by SCUBA diving from July 2003 to June 2010. A holotype has been deposited in the National Institute The genera Stelletta Schmidt, 1862 and Stryphnus Sollas, 1886 of Biological Resources (NIBR), Incheon, Korea, and para- are contained in the family Ancorinidae. This family is cha- types have been deposited in the Natural History Museum racterized by the long-rhabdome triaenes and oxeas as mega- of Hannam University (HUNHN). -
Stelletta Ruetzleri Sp. Nov., a New Ancorinid from the Southwestern Atlantic (Porifera: Astrophorida)*
SCI. MAR., 66 (1): 69-75 SCIENTIA MARINA 2002 Stelletta ruetzleri sp. nov., a new ancorinid from the Southwestern Atlantic (Porifera: Astrophorida)* BEATRIZ MOTHES and CARLA MARIA M. SILVA Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. Salvador França, 1427, 90690.000, Porto Alegre, RS, Brazil. E-mail: [email protected] SUMMARY: Stelletta ruetzleri sp. nov., a new ancorinid sponge from the Southwestern Atlantic (Porifera, Astrophorida), collected at 128 and 200 m depth off Rio Grande do Sul State coast, Brazil (31°20’-32°24’S/49°52’-50°15’W), is described and illustrated with SEM images of the spicules. The new species is based on the presence of one category of oxeas, dicho- triaenes, oxyasters and spheroxyasters. Key words: Porifera, Ancorinidae, Stelletta, continental shelf, Southwestern Atlantic, taxonomy. INTRODUCTION purea (Ridley, 1884) from Rio de Janeiro and Santa Catarina State (Mothes-de-Moraes, 1985; Mothes The genus Stelletta was described by Schmidt and Lerner, 1994 as Myriastra purpurea) was recent- (1862) and has the Adriatic species Stelletta grubii ly considered (Lerner and Mothes, 1999) as not-con- Schmidt, 1862 as type-species by subsequent desig- specific with Stelletta purpurea (Ridley, 1884). nation (Burton and Rao, 1932). A brief history of the genus Stelletta, including Stelletta is represented from the Brazilian coasts the Brazilian species, was reported in Lerner and by six species, with a single species from subtropical Mothes (1999). deep waters: Stelletta hajdui Lerner and Mothes, 1999, off Rio Grande do Sul State (Lerner and Moth- es, 1999). The other four were recorded from tropi- MATERIAL AND METHODS cal shallow waters: Stelletta anancora (Sollas, 1886) and Stelletta crassispicula (Sollas, 1886), both The studied material was dredged by R./V.