Holonomy Groups in Riemannian Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Holonomy Groups in Riemannian Geometry \Clarke-Santoro_New" i i 2012/8/24 page 1 i i Holonomy groups in riemannian geometry Andrew Clarke and Bianca Santoro 1 June 15, 2012 1The ¯rst author would like to acknowledge the support of FAPESP (Processo 2011/07363-6) in the preparation of these notes. The second author acknowledges the support of the PSC-CUNY (award number 64059- 00 42) and of the National Science Foundation under grant DMS 1007155. i i i i \Clarke-Santoro_New" i i 2012/8/24 page 2 i i i i i i \Clarke-Santoro_New" i i 2012/8/24 page 3 i i Preface These are the very unpretentious lecture notes for the minicourse Holonomy Groups in Riemannian geometry, a part of the XVII Brazil- ian School of Geometry, to be held at UFAM (Amazonas, Brazil), in July of 2012. We have aimed at providing a ¯rst introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold. The holonomy group is one of the fundamental analytical objects that one can de¯ne on a riemannian manfold. It interacts with, and contains information about a great number of geometric properties of the manifold. Namely, the holonomy group detects the local re- ducibility of the manifold, and also whether the metric is locally symmetric. We have structured these notes to emphasize the principal bundle formulation. This is done because it was felt that the symmetries of a manifold, even pointwise, are best expressed in this way. We have striven though to give constructions in two di®erent ways, on vector bundles and principal bundles, and also to stress the ways in which these perspectives relate. We plan to keep improving these notes, and the updates will be available at http://www.sci.ccny.cuny.edu/ bsantoro/ and http://www.ime.usp.br/ clark»e/en/ Meanwhile, we invite the reader» to send suggestions, comments and possible corrections to [email protected] or [email protected] Disclaimer: Any opinions, ¯ndings, and conclusions or recommen- dations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. i i i i \Clarke-Santoro_New" i i 2012/8/24 page 4 i i i i i i \Clarke-Santoro_New" i i 2012/8/24 page 5 i i Contents 1 Introduction 7 2 Bundles and Connections 11 2.1 Connections on Vector Bundles . 11 2.2 Principal bundles . 15 2.3 Connections on principal bundles . 23 2.3.1 Homogeneous spaces and G-invariant connections 27 2.4 Curvature and torsion . 29 2.4.1 Curvature and torsion on vector bundles . 29 2.4.2 Curvature on principal bundles . 31 2.4.3 Curvature in the associated bundle construction 33 2.5 Torsion on the principal frame bundle . 35 3 Parallel Transport and Holonomy 41 3.1 Parallel transport on a vector bundle . 41 3.2 Parallel transport and holonomy on principal bundles 45 3.3 Structure of the restricted holonomy group . 49 3.4 Curvature and holonomy . 55 3.4.1 Values taken by the curvature form . 55 3.4.2 The reduction theorem . 57 3.4.3 The Ambrose-Singer Theorem . 58 4 Riemannian Holonomy 60 4.1 Holonomy and invariant di®erential forms . 60 4.2 Reducible holonomy groups . 66 4.3 Decompositions of the curvature tensor . 73 5 i i i i \Clarke-Santoro_New" i i 2012/8/24 page 6 i i 6 CONTENTS 4.3.1 Abstract curvature tensors . 73 4.3.2 The decomposition of Rn into irreducible factors 78 4.3.3 Curvature decomposition for reduced holonomy metrics . 81 4.4 Symmetric Spaces . 82 4.5 Classi¯cation Theorem of Berger . 90 4.6 Holonomy groups and cohomology . 93 5 Irreducible Riemannian Groups 96 5.1 U(n) . 96 5.1.1 Curvature and its contractions on a KÄahler man- ifold . 99 5.1.2 Hodge Theory for KÄahler manifolds . 101 5.2 SU(n) . 102 5.3 Sp(n) . 107 5.3.1 Twistor Spaces . 109 5.3.2 K3 Surfaces . 110 5.4 Sp(n)Sp(1) . 111 5.4.1 Twistor Spaces . 113 5.5 G2 . 114 5.5.1 Topological Properties of compact G2 manifolds 117 5.6 Spin(7) . 118 Bibliography 123 i i i i \Clarke-Santoro_New" i i 2012/8/24 page 7 i i Chapter 1 Introduction It can be said that there are many ways of expressing the geom- etry of a space. The di®erent ways can be thought of as delineating di®erent areas of mathematics. A space in algebraic geometry is typ- ically distinguished by its structure sheaf. That is, it is determined by a ring (rather, a sheaf of rings) that determines the local proper- ties of the space, and carries the information about how these objects are pieced together globally. In hyperbolic geometry, that being of manifolds that admit complete metrics of constant negative curva- ture, much of the structure can be reduced to studying particular subgroups of the set of isometries of hyperbolic space. Some spaces can be studied by understanding a distinguished family of submani- folds, such as calibrated or isoparametric submanifolds. Perhaps the most important is of the geometry that comes from a ¯xed tensor ¯eld, such as a metric or symplectic form. Although the main aim of these notes is to study riemannian geometry, we will do so by looking at the geometry in a particular way. This is by the notion of parallelism. In euclidean space, the notion of two vectors with di®erent base points being parallel is clear. Two vectors are parallel if we can carry one vector from its base point to the other one and map onto the other vector. On other manifolds, it is less clear how to make this de¯nition. We consider a connection on the tangent bundle T M. This is a di®erential operator on vrector ¯elds, that allows us to say when 7 i i i i \Clarke-Santoro_New" i i 2012/8/24 page 8 i i 8 [CAP. 1: INTRODUCTION a vector ¯eld is constant along a curve. Two vectors, de¯ned at di®erent points, are parallel to one another with respect to a ¯xed curve if we can carry one vector to the other using the connection. That is, if γ is the curve with endpoints γ(0) = p and γ(1) = q, then v TpM is parallel to w TqM if there is a vector ¯eld X along γ 2that takes the values of2v and w at the endpoints, and satis¯es @t X = 0. We are able to de¯ne a isomorphism Pγ : TpM TqM thatr identi¯es parallel vectors. ! The complication with this construction though, is the depen- dence of the parallelism on the curve that we take between p and q. If γ and ¿ are curves with the same endpoints, there is no particular reason that the parallel translation maps Pγ and P¿ should coincide. To measure the dependence upon the curve, we consider the set of closed curves emanating from a ¯xed basepoint p M and the set of 2 automorphisms Pγ of TpM. This is the holonomy group of , that we will denote Hol( ; p). In the riemannian context, we willr take the Levi-Civita connection.r The holonomy group of a riemannian manifold is one of the funda- mental analytical objects that one can de¯ne on a riemannian mani- fold. It interacts with, and contains information about a great num- ber of geometric properties of the manifold. The curvature tensor generates the in¯nitesimal holonomy transformations. One can de¯ne a surjective group homomorphism from the fundamental group of the manifold onto the quotient of the holonomy group by its connected component. The holonomy group also detects the local reducibility of the manifold, and also whether the metric is locally symmetric. These properties form part of the hypotheses for the fundamental theorem of Berger that classi¯ed the possible holonomy groups of a riemannian manifold. In a certain sense, the classi¯cation theorem is the climax of these notes. It shows that in the riemannian context, all of the study that we have made of holonomy groups can be reduced to a short list of cases. This theorem also demonstrates the way in which holonomy relates to a number of very central areas of riemannian geometry. KÄahler, hyper-kÄahler, quaternion-KÄahler and Calabi-Yau manifolds have been greatly studied in recent years, and the holonomy perspec- tive is a particularly fruitful way of looking at these objects. The list of Berger also contains two exceptional examples: G2 and Spin(7). i i i i \Clarke-Santoro_New" i i 2012/8/24 page 9 i i 9 These geometries are also very beautiful, and much has been recently done to better understand them. We have structured these notes to emphasise the principal bundle formulation. This is done because it was felt that the symmetries of a manifold, even pointwise, are best expressed in this way. We have striven though to give constructions in two di®erent ways, on vector bundles and principal bundles, and also to stress the ways in which these perspectives relate. In the chapter to follow, we have discussed vector bundles and principal bundles and the way that connections can be de¯ned on them. A large number of examples have been given that attempt to relate these de¯nitions to other, more familiar objects. In particular, we de¯ne the torsion of a connection and prove the existence of the Levi-Civita connection for any metric from the principal bundle point of view.
Recommended publications
  • Kähler Manifolds, Ricci Curvature, and Hyperkähler Metrics
    K¨ahlermanifolds, Ricci curvature, and hyperk¨ahler metrics Jeff A. Viaclovsky June 25-29, 2018 Contents 1 Lecture 1 3 1.1 The operators @ and @ ..........................4 1.2 Hermitian and K¨ahlermetrics . .5 2 Lecture 2 7 2.1 Complex tensor notation . .7 2.2 The musical isomorphisms . .8 2.3 Trace . 10 2.4 Determinant . 11 3 Lecture 3 11 3.1 Christoffel symbols of a K¨ahler metric . 11 3.2 Curvature of a Riemannian metric . 12 3.3 Curvature of a K¨ahlermetric . 14 3.4 The Ricci form . 15 4 Lecture 4 17 4.1 Line bundles and divisors . 17 4.2 Hermitian metrics on line bundles . 18 5 Lecture 5 21 5.1 Positivity of a line bundle . 21 5.2 The Laplacian on a K¨ahlermanifold . 22 5.3 Vanishing theorems . 25 6 Lecture 6 25 6.1 K¨ahlerclass and @@-Lemma . 25 6.2 Yau's Theorem . 27 6.3 The @ operator on holomorphic vector bundles . 29 1 7 Lecture 7 30 7.1 Holomorphic vector fields . 30 7.2 Serre duality . 32 8 Lecture 8 34 8.1 Kodaira vanishing theorem . 34 8.2 Complex projective space . 36 8.3 Line bundles on complex projective space . 37 8.4 Adjunction formula . 38 8.5 del Pezzo surfaces . 38 9 Lecture 9 40 9.1 Hirzebruch Signature Theorem . 40 9.2 Representations of U(2) . 42 9.3 Examples . 44 2 1 Lecture 1 We will assume a basic familiarity with complex manifolds, and only do a brief review today. Let M be a manifold of real dimension 2n, and an endomorphism J : TM ! TM satisfying J 2 = −Id.
    [Show full text]
  • Quantum Dynamical Manifolds - 3A
    Quantum Dynamical Manifolds - 3a. Cold Dark Matter and Clifford’s Geometrodynamics Conjecture D.F. Scofield ApplSci, Inc. 128 Country Flower Rd. Newark, DE, 19711 scofield.applsci.com (June 11, 2001) The purpose of this paper is to explore the concepts of gravitation, inertial mass and spacetime from the perspective of the geometrodynamics of “mass-spacetime” manifolds (MST). We show how to determine the curvature and torsion 2-forms of a MST from the quantum dynamics of its constituents. We begin by reformulating and proving a 1876 conjecture of W.K. Clifford concerning the nature of 4D MST and gravitation, independent of the standard formulations of general relativity theory (GRT). The proof depends only on certain derived identities involving the Riemann curvature 2-form in a 4D MST having torsion. This leads to a new metric-free vector-tensor fundamental law of dynamical gravitation, linear in pairs of field quantities which establishes a homeomorphism between the new theory of gravitation and electromagnetism based on the mean curvature potential. Its generalization leads to Yang-Mills equations. We then show the structure of the Riemann curvature of a 4D MST can be naturally interpreted in terms of mass densities and currents. By using the trace curvature invariant, we find a parity noninvariance is possible using a de Sitter imbedding of the Poincar´egroup. The new theory, however, is equivalent to the Newtonian one in the static, large scale limit. The theory is compared to GRT and shown to be compatible outside a gravitating mass in the absence of torsion. We apply these results on the quantum scale to determine the gravitational field of leptons.
    [Show full text]
  • Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
    Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • A Theorem on Holonomy
    A THEOREM ON HOLONOMY BY W. AMBROSE AND I. M. SINGER Introduction. The object of this paper is to prove Theorem 2 of §2, which shows, for any connexion, how the curvature form generates the holonomy group. We believe this is an extension of a theorem stated without proof by E. Cartan [2, p. 4]. This theorem was proved after we had been informed of an unpublished related theorem of Chevalley and Koszul. We are indebted to S. S. Chern for many discussions of matters considered here. In §1 we give an exposition of some needed facts about connexions; this exposition is derived largely from an exposition of Chern [5 ] and partly from expositions of H. Cartan [3] and Ehresmann [7]. We believe this exposition does however contain one new element, namely Lemma 1 of §1 and its use in passing from H. Cartan's definition of a connexion (the definition given in §1) to E. Cartan's structural equation. 1. Basic concepts. We begin with some notions and terminology to be used throughout this paper. The term "differentiable" will always mean what is usually called "of class C00." We follow Chevalley [6] in general for the definition of tangent vector, differential, etc. but with the obvious changes needed for the differentiable (rather than analytic) case. However if <p is a differentiable mapping we use <j>again instead of d<f>and 8<(>for the induced mappings of tangent vectors and differentials. If AT is a manifold, by which we shall always mean a differentiable manifold but which is not assumed connected, and mGM, we denote the tangent space to M at m by Mm.
    [Show full text]
  • Riemannian Geometry – Lecture 16 Computing Sectional Curvatures
    Riemannian Geometry – Lecture 16 Computing Sectional Curvatures Dr. Emma Carberry September 14, 2015 Stereographic projection of the sphere Example 16.1. We write Sn or Sn(1) for the unit sphere in Rn+1, and Sn(r) for the sphere of radius r > 0. Stereographic projection φ from the north pole N = (0;:::; 0; r) gives local coordinates on Sn(r) n fNg Example 16.1 (Continued). Example 16.1 (Continued). Example 16.1 (Continued). We have for each i = 1; : : : ; n that ui = cxi (1) and using the above similar triangles, we see that r c = : (2) r − xn+1 1 Hence stereographic projection φ : Sn n fNg ! Rn is given by rx1 rxn φ(x1; : : : ; xn; xn+1) = ;:::; r − xn+1 r − xn+1 The inverse φ−1 of stereographic projection is given by (exercise) 2r2ui xi = ; i = 1; : : : ; n juj2 + r2 2r3 xn+1 = r − : juj2 + r2 and so we see that stereographic projection is a diffeomorphism. Stereographic projection is conformal Definition 16.2. A local coordinate chart (U; φ) on Riemannian manifold (M; g) is conformal if for any p 2 U and X; Y 2 TpM, 2 gp(X; Y ) = F (p) hdφp(X); dφp(Y )i where F : U ! R is a nowhere vanishing smooth function and on the right-hand side we are using the usual Euclidean inner product. Exercise 16.3. Prove that this is equivalent to: 1. dφp preserving angles, where the angle between X and Y is defined (up to adding multi- ples of 2π) by g(X; Y ) cos θ = pg(X; X)pg(Y; Y ) and also to 2 2.
    [Show full text]
  • Special Holonomy and Two-Dimensional Supersymmetric
    Special Holonomy and Two-Dimensional Supersymmetric σ-Models Vid Stojevic arXiv:hep-th/0611255v1 23 Nov 2006 Submitted for the Degree of Doctor of Philosophy Department of Mathematics King’s College University of London 2006 Abstract d = 2 σ-models describing superstrings propagating on manifolds of special holonomy are characterized by symmetries related to covariantly constant forms that these manifolds hold, which are generally non-linear and close in a field dependent sense. The thesis explores various aspects of the special holonomy symmetries (SHS). Cohomological equations are set up that enable a calculation of potential quantum anomalies in the SHS. It turns out that it’s necessary to linearize the algebras by treating composite currents as generators of additional symmetries. Surprisingly we find that for most cases the linearization involves a finite number of composite currents, with the exception of SU(3) and G2 which seem to allow no finite linearization. We extend the analysis to cases with torsion, and work out the implications of generalized Nijenhuis forms. SHS are analyzed on boundaries of open strings. Branes wrapping calibrated cycles of special holonomy manifolds are related, from the σ-model point of view, to the preser- vation of special holonomy symmetries on string boundaries. Some technical results are obtained, and specific cases with torsion and non-vanishing gauge fields are worked out. Classical W -string actions obtained by gauging the SHS are analyzed. These are of interest both as a gauge theories and for calculating operator product expansions. For many cases there is an obstruction to obtaining the BRST operator due to relations between SHS that are implied by Jacobi identities.
    [Show full text]
  • On the Third-Degree Continuous Cohomology of Simple Lie Groups 2
    ON THE THIRD-DEGREE CONTINUOUS COHOMOLOGY OF SIMPLE LIE GROUPS CARLOS DE LA CRUZ MENGUAL ABSTRACT. We show that the class of connected, simple Lie groups that have non-vanishing third-degree continuous cohomology with trivial ℝ-coefficients consists precisely of all simple §ℝ complex Lie groups and of SL2( ). 1. INTRODUCTION ∙ Continuous cohomology Hc is an invariant of topological groups, defined in an analogous fashion to the ordinary group cohomology, but with the additional assumption that cochains— with values in a topological group-module as coefficient space—are continuous. A basic refer- ence in the subject is the book by Borel–Wallach [1], while a concise survey by Stasheff [12] provides an overview of the theory, its relations to other cohomology theories for topological groups, and some interpretations of algebraic nature for low-degree cohomology classes. In the case of connected, (semi)simple Lie groups and trivial real coefficients, continuous cohomology is also known to successfully detect geometric information. For example, the situ- ation for degree two is well understood: Let G be a connected, non-compact, simple Lie group 2 ℝ with finite center. Then Hc(G; ) ≠ 0 if and only G is of Hermitian type, i.e. if its associated symmetric space of non-compact type admits a G-invariant complex structure. If that is the case, 2 ℝ Hc(G; ) is one-dimensional, and explicit continuous 2-cocycles were produced by Guichardet– Wigner in [6] as an obstruction to extending to G a homomorphism K → S1, where K<G is a maximal compact subgroup. The goal of this note is to clarify a similar geometric interpretation of the third-degree con- tinuous cohomology of simple Lie groups.
    [Show full text]
  • Automorphism Groups of Locally Compact Reductive Groups
    PROCEEDINGS OF THE AMERICAN MATHEMATICALSOCIETY Volume 106, Number 2, June 1989 AUTOMORPHISM GROUPS OF LOCALLY COMPACT REDUCTIVE GROUPS T. S. WU (Communicated by David G Ebin) Dedicated to Mr. Chu. Ming-Lun on his seventieth birthday Abstract. A topological group G is reductive if every continuous finite di- mensional G-module is semi-simple. We study the structure of those locally compact reductive groups which are the extension of their identity components by compact groups. We then study the automorphism groups of such groups in connection with the groups of inner automorphisms. Proposition. Let G be a locally compact reductive group such that G/Gq is compact. Then /(Go) is dense in Aq(G) . Let G be a locally compact topological group. Let A(G) be the group of all bi-continuous automorphisms of G. Then A(G) has the natural topology (the so-called Birkhoff topology or ^-topology [1, 3, 4]), so that it becomes a topo- logical group. We shall always adopt such topology in the following discussion. When G is compact, it is well known that the identity component A0(G) of A(G) is the group of all inner automorphisms induced by elements from the identity component G0 of G, i.e., A0(G) = I(G0). This fact is very useful in the study of the structure of locally compact groups. On the other hand, it is also well known that when G is a semi-simple Lie group with finitely many connected components A0(G) - I(G0). The latter fact had been generalized to more general groups ([3]).
    [Show full text]
  • SECTIONAL CURVATURE-TYPE CONDITIONS on METRIC SPACES 2 and Poincaré Conditions, and Even the Measure Contraction Property
    SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES MARTIN KELL Abstract. In the first part Busemann concavity as non-negative curvature is introduced and a bi-Lipschitz splitting theorem is shown. Furthermore, if the Hausdorff measure of a Busemann concave space is non-trivial then the space is doubling and satisfies a Poincaré condition and the measure contraction property. Using a comparison geometry variant for general lower curvature bounds k ∈ R, a Bonnet-Myers theorem can be proven for spaces with lower curvature bound k > 0. In the second part the notion of uniform smoothness known from the theory of Banach spaces is applied to metric spaces. It is shown that Busemann functions are (quasi-)convex. This implies the existence of a weak soul. In the end properties are developed to further dissect the soul. In order to understand the influence of curvature on the geometry of a space it helps to develop a synthetic notion. Via comparison geometry sectional curvature bounds can be obtained by demanding that triangles are thinner or fatter than the corresponding comparison triangles. The two classes are called CAT (κ)- and resp. CBB(κ)-spaces. We refer to the book [BH99] and the forthcoming book [AKP] (see also [BGP92, Ots97]). Note that all those notions imply a Riemannian character of the metric space. In particular, the angle between two geodesics starting at a com- mon point is well-defined. Busemann investigated a weaker notion of non-positive curvature which also applies to normed spaces [Bus55, Section 36]. A similar idea was developed by Pedersen [Ped52] (see also [Bus55, (36.15)]).
    [Show full text]