ANTIMICROBIAL AGENTS and CHEMOTHERAPY VOLUME 24 * NUMBER 6 * DECEMBER 1983 Leon H

Total Page:16

File Type:pdf, Size:1020Kb

ANTIMICROBIAL AGENTS and CHEMOTHERAPY VOLUME 24 * NUMBER 6 * DECEMBER 1983 Leon H ANTIMICROBIAL AGENTS AND CHEMOTHERAPY VOLUME 24 * NUMBER 6 * DECEMBER 1983 Leon H. Schmidt, Editor in Chief (1985) George A. Jacoby, Jr., Editor (1985) University ofAlabama in Birmingham Massachusetts General Hospital Birmingham, Alabama Boston, Massachusetts Herbert L. Ennis, Editor (1987) Robert C. Moellering, Jr., Editor (1987) Roche Institute ofMolecular Biology New England Deaconess Hospital Nutley, New Jersey Boston, Massachusetts Robert L. Hamili, Editor (1985) John A. Washington I, Editor (1986) Eli Lilly & Company, Inc. Mayo Clinic Indianapolis, Indiana Rochester, Minnesota EDITORIAL BOARD Norris Allen (1983) Gertrude B. Elion (1984) Matthew E. Levison (1984) Christne C. Sanders (1984) Vincent T. Andrlole (1984) Arthur Engsh (1983) Stuart B. Levy (1983) W. Eugene Sanders (1984) John P. Anhalt (1984) Robert J. Fa (1985) Friedrich C. Lutt (1984) Jerome J. Schentag (1985) Bascom F. Anthony (1985) Stuart Feldman (1985) Joan Lusk (1983) F. C. Sclavoino (1985) Donald Armstrong (1983) Sydney Flnegold (1985) R. Luthy (1983) Oldrkb K. Sebek (1983) George R. Aronoff (1983) Robert J. FIzgerald (1983) Francs L. Macrlna (1985) William M. Shannon (1983) Robert Austian (1983) Matin Forbes (1983) Geoge H. McCracken (1984) Charles Shipman, Jr. (1985) Rkhard H. Baltz (1984) Dale N. Gerding (1985) Gerald Medoff (1983) Robert W. Sldwel (1984) Arthur L. Barry (1983) David Gibert (1984) Michael Miller (1984) Walter S_lenthaker (1983) John D. Bartlet (1984) Anthony J. Glazko (1984) Barbarn Minshew (1985) P. F Spdng (1984) Michael Barza (1985) Irng H. Goldberg (1985) Berard Moss (1984) Brian G. Spratt (198) John E. Bennett (1984) Rkhard H. Gustason (1984) Babara E. Mumy (1984) Harold Stford (1985) Rihard F. Bergstrom (1985) Jack Gwaltney (1983) John D. Nelson (1983) R. Sutherbnd (1985) Gerald P. Bodey (1983) Wendell H. Hall (1983) Harold C. Neu (1983) Vera L. Sutter (1984) Lawrence E. Bryan (1985) Maurice W. Harmon (1984) J. F. Niblack (1983) Morton N. Swartz (1985) Ward Bulock (1984) Joseph Hawins, Jr. (1985) James T. Park (1985) Rihard B. Sykes (1985) D. Buyske (1983) Mkbael Hlgns (1983) T. J. Perun (1983) Francs P. Tally (1984) Anthony Chow (1985) Dah Hal Wang Ho (1983) Lac R. Peterso (1985) Alexandr Tom_az (1985) C. Glenn Cobbs (1983) Rihard Hornick (1983) Burton M. Pogeli (1984) Rah Tompt (1985) Paul S. Cohen (1983) George Gee Jackson (1983) Paul Quie (1983) Mkhael Waring (1984) William A. Craig (1984) James H. Jorgensen (1984) Mchael Reln (1983) Bernard Wedsblum (1985) Nigel A. C. Curtis (1983) William J. Jusko (1983) W. H. G. Rkhards (1983) Peter G. Weling (1985) Naomi Datta (1984) A. W. Karchmer (1985) Richard Roberts (1985) Richard Wenzd (1983) Lawrence E. Day (1983) Donald Kaye (1985) Ian M. Rollo (1985) Lowell Young (1985) William E. Dlsmukes (1984) George S. Kobaymah (1985) Ricbard Root (1983) Pauline K. W. Yu (1985) R. Gordon Douglas, Jr. (1983) Donald J. Krogd (1983) John P. Rosaa (1983) John C. Drach (1984) Feli Leitner (1983) Jon E. Rosenblatt (1985) Theodore Ekkhoff (1985) Stephen A. Lerner (1983) Merle Sande (1985) Helen R. Whiteley, Chairman, Publications Board Walter G. Peter III, Director, Publications Linda M. Illig, Managing Editor, Journals Deborah J. Shuman, Production Editor Antimicrobial Agents and Chemotherapy (ISSN 0066-4804), an interdisciplinary publication of the American Society for Microbiology, 1913 I St., NW, Washington, DC 20006, is devoted to the dissemination of knowledge relating to all aspects of antimicrobial agents, anticancer agents, and chemotherapy. Instructions to authors are published in the January issue each year; reprints are available from the editors and the Publications Office. Antimicrobial Agents and Chemotherapy is published monthly, and the twelve numbers are divided into two volumes per year. The nonmember subscription price is $145 per year; single copies are $14. The member subscription price is $29 (foreign, $36 [surface rate]) per year; single copies are $7. Correspondence relating to subscriptions, reprints, defective copies, availability of back issues, lost or late proofs, disposition of submitted manuscripts, and general editorial matters should be directed to the ASM Publications Office, 1913 I St., NW, Washington, DC 20006 (area 202 833-9680). Claims for missing issues from residents of the United States, Canada, and Mexico must be submitted within 3 months after publication of the issues; residents of all other countries must submit claims within 6 months of publication of the issues. Claims for issues missing because of failure to report an address change or for issues "missing from files" will not be allowed. Second-class postage paid at Washington, DC 20006, and at additional mailing offices. POSTMASTER: Send address changes to Antimicrobial Agents and Chemotherapy, ASM, 1913 I St., NW, Washington, DC 20006. Made in the United States of America. Copyright C 1983, American Society for Microbiology. a *: rh i1 5+ t A , E XIll{JO#i 1 1Jto All Rights Reserved. The code at the top of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made for personal use or for personal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., 21 Congress St., Salem, MA 01970, for copying beyond that permitted by Sections 107 and 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Author Index Allan, Brenda J., 930 Harris, Russell, 876 Park, Choong H., 841 Andrews, J. M., 909 Higuchi, William I., 941 Pfeffer, Morris, 915 Artis, William M., 876 Hironaga, Kyozo, 905 Pien, Francis D., 856 Assael, B. M., 955 Hixon, Debbie L., 841 Poretz, Donald M., 841 Boccazzi, A., 955 Inoue, Matsuhisa, 925 Rizzo, M., 955 Boerema, Hans B. J., 902 Ruoff, Kathryn, 871 Jacobus, Nilda V., 936 Caccamo, M. L., 955 Jacques, M., 952 Schiller, John, 892 Cassey, John G., 950 Javor, George T., 860, 868 Shipman, Charles, Jr., 947 Centifanto-Fitzgerald, Ysolina M., Jones, Bernard, 950 Smee, Donald F., 883 888 Jones, Henry E., 876 Smith, Diana, 851 Cesar, Evangeline Y., 941 Smith, Sandra H., 947 Clark, David A., 950 Sonobe, Takashi, 941 Cobbs, C. Glenn, 847 Karam, George H., 847 Strom, Mark, 892 Coyle, Marie, 892 Kaster, Steven R., 829 Cuchural, George J., Jr., 936 Katlama, Namat B., 947 Kaufman, Herbert E., 888 Tachibana, Chikanori, 835 Kirkland, Theo N., 921 Tally, Francis P., 936 Danks, G., 909 Kissling, Grace E., 888 Taylor, Diane E., 930 De Clercq, Erik, 888 Konishi, Hisanori, 905 Tong, Shiu-Lok, 947 deRepentigny, J., 952 Koshiro, Akira, 905 Turgeon, P. L., 952 Drach, John C., 947 Drutz, David J., 829 Levy, Stuart B., 835 van der Ros-van de Repe, Joke, 902 Eliopoulos, George M., 871 Marsh, Peter K., 936 van der Waaij, Dick, 902 Elliott, Ann M., 847 Marshall, Bonnie, 835 van Veldhuizen, Gerben L., 902 Eron, Lawrence J., 841 Mathieu, L. G., 952 Varneli, Emily D., 888 Matthews, Thomas R., 883 Mayhew, James W., 936 Farber, Bruce F., 871 McFadden, Harry W., Jr., 851 Ward, Joel I., 871 Fierer, Joshua, 921 Merrick, Peter, 950 Welling, Gjalt W., 902 Fraser-Smith, Elizabeth B., 883 Miller, Norman G., 851 Wise, R., 909 Minami, Shinzaburou, 925 Mitsuhashi, Susumu, 925 Gamer, Rosemary S., 930 Moellering, Robert C., Jr., 871 Ximenez, Jose, 915 Gaver, Robert C., 915 Muytjens, Harry L., 902 Goldenberg, Robin I., 841 Graybill, John R., 829 Yoshii, Zensaku, 905 Groman, Neal, 892 Oie, Shigeharu, 905 Yotsuji, Akira, 925 ACKNOWLEDGMENT The following have served as invited special reviewers for the Journal during 1983, and their help is greatly appreciated. Lois Allen Cyrus C. Hopkins J. Peter Rissing Corrado Baglioni K. Y. Hostetler Glenn D. Roberts Arnold S. Bayer E. S. Inamine William Robinson M. Bender David Janicke Allan R. Ronald L. L. Bennett S. E. Jensen H. S. Rosenkranz William M. Bennett Ed Kaplan Robert H. Rubin G. K. Best Sheldon Kaplan Leon Sabath Karen K. Biron Daniel Keim F. M. Schabel William Bowie Richard T. Kelly Leonard W. Scheibel Richard E. Bryant H. A. Kirst Michael Scheld G. Bryce Vernon Knight E. Schiffmann E. Cabib J. R. Knowles Raymond Schinazi P. E. Carson J. Konisky Alan Schocket Henry F. Chambers L. Leive Fritz D. Schoenknecht R. L. Cihlar A. Martin Lerner Robert Schooley J. W. Costerton Gerald L. Mandell P. Shaffer W. A. Cramer D. J. Marmer E. Shefter Clyde Crumpacker Margaret Matthew Arnold Smith L. Daneo-Moore Gary R. Matzke J. T. Smith P. J. Davis Philip R. Mayer Thomas F. Smith George Deepe C. Glenn Mayhall Herbert M. Sommers D. C. DeLong Evan W. McChesney D. A. Stevens A. L. Demain William McCormack H. Harlan Stone R. B. Diasio Richard 0. McCracken Anne O. Summers Walter Dobrogosz Martin McHenry Edward A. Swabb D. Doyle P. McPhie T. R. Sweeney David Drutz A. A. Medeiros James Tan James Dvorak Thomas C. Merigan Herbert B. Tanowitz R. P. Elander Richard Meyer E. Thomas W. Epstein John Mills John F. Timoney Lawrence Eron J. Z. Montgomerie D. J. Tipper J. C. Fantone T. P. Moyer Marvin Turck David Feingold Roy Mundy J. T. Vilcek Robert H. Fitzgerald, Jr. Daniel Musher K. Vosbeck M. A. Foglesong T. Nakae R. Wallace K. P. Fu J. B. Neilands Richard J. Wallace, Jr. Pierce Gardner N. Neuss Joel Ward Richard Garibaldi Phuc Nguyen-Dinh P. A. Ward Layne Gentry H. Nikaido Lawrence G. Wayne Lance George Carl E. Nord G. Weeks David Gilbert Carl Norden Allan Weinstein M. R. Glick R. F. Novak Louis Weinstein Peter Goldman D. Oxender Alison Weiss Donald Goldmann Demosthenes Pappagianis W. D. Welch L. F. Guyman A. Parkinson L. M. Werbel Scott Hammer Mark Pasternack C.
Recommended publications
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • Infant Antibiotic Exposure Search EMBASE 1. Exp Antibiotic Agent/ 2
    Infant Antibiotic Exposure Search EMBASE 1. exp antibiotic agent/ 2. (Acedapsone or Alamethicin or Amdinocillin or Amdinocillin Pivoxil or Amikacin or Aminosalicylic Acid or Amoxicillin or Amoxicillin-Potassium Clavulanate Combination or Amphotericin B or Ampicillin or Anisomycin or Antimycin A or Arsphenamine or Aurodox or Azithromycin or Azlocillin or Aztreonam or Bacitracin or Bacteriocins or Bambermycins or beta-Lactams or Bongkrekic Acid or Brefeldin A or Butirosin Sulfate or Calcimycin or Candicidin or Capreomycin or Carbenicillin or Carfecillin or Cefaclor or Cefadroxil or Cefamandole or Cefatrizine or Cefazolin or Cefixime or Cefmenoxime or Cefmetazole or Cefonicid or Cefoperazone or Cefotaxime or Cefotetan or Cefotiam or Cefoxitin or Cefsulodin or Ceftazidime or Ceftizoxime or Ceftriaxone or Cefuroxime or Cephacetrile or Cephalexin or Cephaloglycin or Cephaloridine or Cephalosporins or Cephalothin or Cephamycins or Cephapirin or Cephradine or Chloramphenicol or Chlortetracycline or Ciprofloxacin or Citrinin or Clarithromycin or Clavulanic Acid or Clavulanic Acids or clindamycin or Clofazimine or Cloxacillin or Colistin or Cyclacillin or Cycloserine or Dactinomycin or Dapsone or Daptomycin or Demeclocycline or Diarylquinolines or Dibekacin or Dicloxacillin or Dihydrostreptomycin Sulfate or Diketopiperazines or Distamycins or Doxycycline or Echinomycin or Edeine or Enoxacin or Enviomycin or Erythromycin or Erythromycin Estolate or Erythromycin Ethylsuccinate or Ethambutol or Ethionamide or Filipin or Floxacillin or Fluoroquinolones
    [Show full text]
  • Pharmaceutical Microbiology Table of Contents
    TM Pharmaceutical Microbiology Table of Contents Pharmaceutical Microbiology ������������������������������������������������������������������������������������������������������������������������ 1 Strains specified by official microbial assays ������������������������������������������������������������������������������������������������ 2 United States Pharmacopeia (USP) �������������������������������������������������������������������������������������������������������������������������������������������2 European Pharmacopeia (EP) Edition 8�1 ���������������������������������������������������������������������������������������������������������������������������������5 Japanese Pharmacopeia (JP) ������������������������������������������������������������������������������������������������������������������������������������������������������7 Strains listed by genus and species �������������������������������������������������������������������������������������������������������������10 ATCC provides research and development tools and reagents as well as related biological material management services, consistent with its mission: to acquire, authenticate, preserve, develop, and distribute standard reference THE ESSENTIALS microorganisms, cell lines, and related materials for research in the life sciences� OF LIFE SCIENCE For over 85 years, ATCC has been a leading authenticate and further develop products provider of high-quality biological materials and services essential to the needs of basic and standards to the life
    [Show full text]
  • Retention of Antibiotic Activity Against Resistant Bacteria
    www.nature.com/scientificreports OPEN Retention of antibiotic activity against resistant bacteria harbouring amin ogl ycosid e‑ N‑ acetyl transferase enzyme by adjuvants: a combination of in‑silico and in‑vitro study Shamim Ahmed*, Sabrina Amita Sony, Md. Belal Chowdhury, Md. Mahib Ullah, Shatabdi Paul & Tanvir Hossain Interference with antibiotic activity and its inactivation by bacterial modifying enzymes is a prevailing mode of bacterial resistance to antibiotics. Aminoglycoside antibiotics become inactivated by aminoglycoside‑6′‑N‑acetyltransferase‑Ib [AAC(6′)‑Ib] of gram‑negative bacteria which transfers an acetyl group from acetyl‑CoA to the antibiotic. The aim of the study was to disrupt the enzymatic activity of AAC(6′)‑Ib by adjuvants and restore aminoglycoside activity as a result. The binding afnities of several vitamins and chemical compounds with AAC(6′)‑Ib of Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei were determined by molecular docking method to screen potential adjuvants. Adjuvants having higher binding afnity with target enzymes were further analyzed in‑vitro to assess their impact on bacterial growth and bacterial modifying enzyme AAC(6′)‑Ib activity. Four compounds—zinc pyrithione (ZnPT), vitamin D, vitamin E and vitamin K‑exhibited higher binding afnity to AAC(6′)‑Ib than the enzyme’s natural substrate acetyl‑CoA. Combination of each of these adjuvants with three aminoglycoside antibiotics—amikacin, gentamicin and kanamycin—were found to signifcantly increase the antibacterial activity against the selected bacterial species as well as hampering the activity of AAC(6′)‑Ib. The selection process of adjuvants and the use of those in combination with aminoglycoside antibiotics promises to be a novel area in overcoming bacterial resistance.
    [Show full text]
  • Nature Nurtures the Design of New Semi-Synthetic Macrolide Antibiotics
    The Journal of Antibiotics (2017) 70, 527–533 OPEN Official journal of the Japan Antibiotics Research Association www.nature.com/ja REVIEW ARTICLE Nature nurtures the design of new semi-synthetic macrolide antibiotics Prabhavathi Fernandes, Evan Martens and David Pereira Erythromycin and its analogs are used to treat respiratory tract and other infections. The broad use of these antibiotics during the last 5 decades has led to resistance that can range from 20% to over 70% in certain parts of the world. Efforts to find macrolides that were active against macrolide-resistant strains led to the development of erythromycin analogs with alkyl-aryl side chains that mimicked the sugar side chain of 16-membered macrolides, such as tylosin. Further modifications were made to improve the potency of these molecules by removal of the cladinose sugar to obtain a smaller molecule, a modification that was learned from an older macrolide, pikromycin. A keto group was introduced after removal of the cladinose sugar to make the new ketolide subclass. Only one ketolide, telithromycin, received marketing authorization but because of severe adverse events, it is no longer widely used. Failure to identify the structure-relationship responsible for this clinical toxicity led to discontinuation of many ketolides that were in development. One that did complete clinical development, cethromycin, did not meet clinical efficacy criteria and therefore did not receive marketing approval. Work on developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events.
    [Show full text]
  • Properties of Achromobacter Xylosoxidans Highly Resistant to Aminoglycoside Antibiotics
    Apr. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69―2 113( 33 ) 〈Brief Report〉 Properties of Achromobacter xylosoxidans highly resistant to aminoglycoside antibiotics 1 1 2 SACHIKO NAKAMOTO , NATSUMI GODA , TATSUYA HAYABUCHI , 1 1 1 1 HIROO TAMAKI , AYAMI ISHIDA , AYAKA SUZUKI , KAORI NAKANO , 1 1 1 SHOKO YUI , YUTO KATSUMATA , YUKI YAMAGAMI , 1 3 4 NAOTO BURIOKA , HIROKI CHIKUMI and EIJI SHIMIZU 1 Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine 2 Matsue City Hospital 3 Department of Infection Control and Prevention, Tottori University Hospital 4 Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine (Received for publication September 10, 2015) We herein discovered a highly resistant clinical isolate of Pseudomonas aeruginosa with MICs to amikacin, gentamicin, and arbekacin of 128 μg/mL or higher in a drug sensitivity survey of 92 strains isolated from the specimens of Yoka hospital patients between January 2009 and October 2010, and Achromobacter xylosoxidans was separated from this P. aeruginosa isolate. The sensitivity of this bacterium to 29 antibiotics was investigated. The MICs of this A. xylosoxidans strain to 9 aminoglycoside antibiotics were: amikacin, gentamicin, arbekacin, streptomycin, kanamycin, neomycin, and spectinomycin, 1,024 μg/mL or ≧1,024 μg/mL; netilmicin, 512 μg/mL; and tobramycin, 256 μg/mL. This strain was also resistant to dibekacin. This aminoglycoside antibiotic resistant phenotype is very rare, and we are the first report the emergence of A. xylosoxidans with this characteristic. In the present study, we investigated the antibiotic sensitivities of 92 clinical isolates of Pseudomonas aeruginosa collected from Yoka hospital between January 2009 and October 2010.
    [Show full text]
  • E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
    This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/
    [Show full text]
  • WO 2016/120258 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2016/120258 A l 4 August 2016 (04.08.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/00 (2006.01) A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/20 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 16/05 1545 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 26 January 2016 (26.01 .2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 264/MUM/2015 27 January 2015 (27.01 .2015) IN kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: JANSSEN PHARMACEUTICA NV TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [BE/BE]; Turnhoutseweg 30, 2340 Beerse (BE).
    [Show full text]
  • (3H) Tobramycin Was Synthesized As Described Previously3) and Had a Specific Radioac- Tivity of 5,000 Ci/Mole
    VOL. XXXIII NO. 8 THE JOURNAL OF ANTIBIOTICS 895 HAVE DEOXYSTREPTAMINE AMINOGLYCOSIDE ANTIBIOTICS THE SAME BINDING SITE ON BACTERIAL RIBOSOMES ? FRANCOIS LE GOFFIC, MARIE-LOUISE CAPMAU, EREDERIC TANGY and ELIANE CAMINADE C.N.R.S.-C.E.R.C.O.A. 2 a 8, rue Henry Dunant, 94320 Thiais, France (Received for Publication January 22, 1980) (3H) Tobramycin was used as a probe to determine the relationship between the structure of aminoglycoside antibiotics and their ability to remove this drug from its higher affinity bind- ing site on the ribosome. The dissacharide moieties (neamine, tobramine, gentamine) appeared to have a common binding site, whereas the kanosamine, garosamine and ribose moieties determined the specificity of this binding. Amikacin and butikacin behaved in an anomalous manner in spite of their close structural relationship to tobramycin. Biochemical experiments have recently demonstrated that those aminoglycoside antibiotics with deoxystreptamine and kanosamine moieties possess two types of binding sites on the bacterial ribo- some.1,2) When the binding experiments were carried out with the ribosomal subunits two types of binding sites were also found on the 50 S subunit whereas only one type of binding site was located on the 30 S particle.3) The question then arises as to whether all aminoglycoside antibiotics possessing a deoxystreptamine moiety glycosidically bound to other aminosugar residues have the same receptor site. The present study tries to answer this important question. Materials and Methods Chemicals: (3H) Tobramycin was synthesized as described previously3) and had a specific radioac- tivity of 5,000 Ci/mole. Putrescine and spermidine were from Sigma.
    [Show full text]
  • US 2002/0071822 A1 Uhrich (43) Pub
    US 20020071822A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0071822 A1 Uhrich (43) Pub. Date: Jun. 13, 2002 (54) THERAPEUTIC POLYESTERS AND provisional application No. 60/261,337, filed on Jan. POLYAMIDES 12, 2001. (76) Inventor: Kathryn E. Uhrich, Hoboken, NJ (US) Publication Classification Correspondence Address: (51) Int. Cl." ..................... A61K 31/785; A61K 31/765; SCHWEGMAN, LUNDBERG, WOESSNER & C08G 63/685; CO8G 63/688 KLUTH, PA. (52) U.S. Cl. ....................... 424/78.37; 528/288; 528/293 P.O. BOX 2938 MINNEAPOLIS, MN 55402 (US) (57) ABSTRACT (21) Appl. No.: 09/917,194 Polymers (i.e. polyesters, polyamides, and polythioesters or (22) Filed: Jul. 27, 2001 a mixture thereof) which degrade hydrolytically into bio logically active compounds are provided. Methods of pro Related U.S. Application Data ducing these polymers, intermediates useful for preparing these polymers, and methods of using these polymers to (63) Non-provisional of provisional application No. deliver biologically active compounds to a host are also 60/220,707, filed on Jul. 27, 2000. Non-provisional of provided. US 2002/0071822 A1 Jun. 13, 2002 THERAPEUTIC POLYESTERS AND POLYAMDES 0012. The invention also provides processes and inter mediates disclosed herein that are useful for preparing a PRIORITY OF INVENTION polymer of the invention. 0001. This application claims priority from U.S. Provi DETAILED DESCRIPTION OF THE sional Application No. 60/220,707, filed Jul. 27, 2000 and INVENTION U.S. Provisional Application No. 60/261,337, filed Dec. 1, 2001, which are incorporated herein by reference. 0013 Definitions 0014. The following definitions are used, unless other BACKGROUND OF THE INVENTION wise described: halo is fluoro, chloro, bromo, or iodo.
    [Show full text]
  • Revision of Precautions
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride (preparations for otic and nasal use), chloramphenicol (solution for topical use, oral dosage form), tetracycline hydrochloride (powders, capsules), polymixin B sulfate (powders), clindamycin hydrochloride, clindamycin phosphate (injections), benzylpenicillin potassium, benzylpenicillin benzathine hydrate, lincomycin hydrochloride hydrate, aztreonam, amoxicillin hydrate, ampicillin hydrate, ampicillin sodium, potassium clavulanate/amoxicillin hydrate, dibekacin sulfate (injections), sultamicillin tosilate hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin (oral dosage form with indications for otitis media), cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride (intravenous injections), cefcapene pivoxil hydrochloride hydrate, cefditoren pivoxil, cefdinir, ceftazidime hydrate, cefteram pivoxil, ceftriaxone sodium hydrate, cefpodoxime proxetil, cefroxadine hydrate, cefuroxime axetil, tebipenem pivoxil, doripenem hydrate, bacampicillin hydrochloride, panipenem/betamipron, faropenem sodium hydrate, flomoxef sodium, fosfomycin calcium hydrate, meropenem hydrate, chloramphenicol sodium succinate,
    [Show full text]
  • Effects of Chlortetracycline and Copper Supplementation on Levels of Antimicrobial Resistance in the Feces of Weaned Pigs
    EFFECTS OF CHLORTETRACYCLINE AND COPPER SUPPLEMENTATION ON LEVELS OF ANTIMICROBIAL RESISTANCE IN THE FECES OF WEANED PIGS by GETAHUN EJETA AGGA DVM, Addis Ababa University, 2003 MSc, Utrecht University, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Abstract The use of antibiotics in food animals is of major concern as a purported cause of antimicrobial resistance (AMR) in human pathogens; as a result, alternatives to in-feed antibiotics such as heavy metals have been proposed. The effect of copper and CTC supplementation in weaned pigs on AMR in the gut microbiota was evaluated. Four treatment groups: control, copper, chlortetracycline (CTC), and copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples (n = 576) were collected weekly from three pigs per pen over six weeks and two Escherichia coli isolates per sample were tested phenotypically for antimicrobial and copper susceptibilities and genotypically for the presence of tetracycline (tet), copper (pcoD) and ceftiofur (blaCMY-2) resistance genes. CTC-supplementation significantly increased tetracycline resistance and susceptibility to copper when compared with the control group. Copper supplementation decreased resistance to most of the antibiotics, including cephalosporins, over all treatment periods. However, copper supplementation did not affect minimum inhibitory concentrations of copper or detection of pcoD. While tetA and blaCMY-2 genes were associated with a higher multi-drug resistance (MDR), tetB and pcoD were associated with lower MDR. Supplementations of CTC or copper alone were associated with increased tetB prevalence; however, their combination was paradoxically associated with reduced prevalence.
    [Show full text]