Development of Novel Antibiotic Classes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allosteric Drug Transport Mechanism of Multidrug Transporter Acrb
ARTICLE https://doi.org/10.1038/s41467-021-24151-3 OPEN Allosteric drug transport mechanism of multidrug transporter AcrB ✉ Heng-Keat Tam 1,3,4 , Wuen Ee Foong 1,4, Christine Oswald1,2, Andrea Herrmann1, Hui Zeng1 & ✉ Klaas M. Pos 1 Gram-negative bacteria maintain an intrinsic resistance mechanism against entry of noxious compounds by utilizing highly efficient efflux pumps. The E. coli AcrAB-TolC drug efflux pump + 1234567890():,; contains the inner membrane H /drug antiporter AcrB comprising three functionally inter- dependent protomers, cycling consecutively through the loose (L), tight (T) and open (O) state during cooperative catalysis. Here, we present 13 X-ray structures of AcrB in inter- mediate states of the transport cycle. Structure-based mutational analysis combined with drug susceptibility assays indicate that drugs are guided through dedicated transport chan- nels toward the drug binding pockets. A co-structure obtained in the combined presence of erythromycin, linezolid, oxacillin and fusidic acid shows binding of fusidic acid deeply inside the T protomer transmembrane domain. Thiol cross-link substrate protection assays indicate that this transmembrane domain-binding site can also accommodate oxacillin or novobiocin but not erythromycin or linezolid. AcrB-mediated drug transport is suggested to be allos- terically modulated in presence of multiple drugs. 1 Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany. 2 Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK. 3Present -
Combination of Minocycline and Rifampicin Against Methicillin- and Gentamicin-Resistant Staphylococcus Aureus
J Clin Pathol: first published as 10.1136/jcp.34.5.559 on 1 May 1981. Downloaded from J Clin Pathol 1981 ;34:559-563 Combination of minocycline and rifampicin against methicillin- and gentamicin-resistant Staphylococcus aureus E YOURASSOWSKY, MP VAN DER LINDEN, MJ LISMONT, F CROKAERT From the H6pital Universitaire Brugmann, Service de Biologie Clinique, 1020 Bruxelles, Belgique SUMMARY Methicillin- and gentamicin-resistant Staphylococcus aureus may remain sensitive to minocycline and to rifampicin. A study of growth curves has shown that at inhibitory concentrations (0-4 ,ug/ml), minocycline prevents the development of mutants resistant to rifampicin. Staphylococcus aureus resistant to methicillin and strains of different phage type were selected for this gentamicin is responsible for an increasing number of investigation. hospital infections, some of which are severe.1-7 A number of treatments have been suggested although Microbial strains vancomycin is often the only major antibiotic which Minocycline HCL (Cyanamid Benelux, batch no is active against these strains. However, it is necessary 7116B-172). Rifampicin (Lepetit, batch no P/4) copyright. to assess the effect of the "second choice" antibiotics. (solution in dimethyl formamide). The MICs of The risk of rapid development of resistance to minocycline (tube dilution method in Mueller Hinton rifampicin is well known,8 9 and in spite of the medium, inoculum 106 micro-organisms/ml) were excellent penetration particularly in polymor- 0-2 ,ug/ml for all the strains. Rifampicin showed phonuclear cells of this antibiotic,10 11 its use alone is minimal inhibitory activity in liquid medium up to contraindicated. Minocycline is active against Staph a concentration of 0-01 ,ug/ml. -
Compositions and Formulations Based on Swellable Matrices for Sustained Release of Poorly Soluble Drugs Such As Clarithromycin
(19) & (11) EP 2 283 824 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 16.02.2011 Bulletin 2011/07 A61K 9/20 (2006.01) A61K 31/00 (2006.01) (21) Application number: 09166824.4 (22) Date of filing: 30.07.2009 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Camponeschi, Claudio HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL 00040, Pomezia (IT) PT RO SE SI SK SM TR • Colombo, Paolo Designated Extension States: 43100, Parma (IT) AL BA RS (74) Representative: Palladino, Saverio Massimo et al (71) Applicants: Notarbartolo & Gervasi S.p.A. • Special Products Line S.p.A. Corso di Porta Vittoria, 9 00040 Pomezia (IT) 20122 Milano (IT) • So. Se. Pharm S.r.l. 00040 Pomezia (IT) (54) Compositions and formulations based on swellable matrices for sustained release of poorly soluble drugs such as clarithromycin (57) The present invention concerns the discovery uct, capable to provide a quasi-constant prolonged re- of a new formulation for oral drug sustained release prod- lease of poorly soluble drugs whose solubility depends on the pH. EP 2 283 824 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 283 824 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention concerns the discovery of new compositions and formulations for oral drug modified release products, capable to provide a sustained release of poorly soluble drugs whose solubility depends on the pH. BACKGROUND OF THE INVENTION 10 [0002] New drug dosage forms facilitating the human therapeutic practice are needed for making efficient the treatment of several diseases. -
Pharmaceutical Microbiology Table of Contents
TM Pharmaceutical Microbiology Table of Contents Pharmaceutical Microbiology ������������������������������������������������������������������������������������������������������������������������ 1 Strains specified by official microbial assays ������������������������������������������������������������������������������������������������ 2 United States Pharmacopeia (USP) �������������������������������������������������������������������������������������������������������������������������������������������2 European Pharmacopeia (EP) Edition 8�1 ���������������������������������������������������������������������������������������������������������������������������������5 Japanese Pharmacopeia (JP) ������������������������������������������������������������������������������������������������������������������������������������������������������7 Strains listed by genus and species �������������������������������������������������������������������������������������������������������������10 ATCC provides research and development tools and reagents as well as related biological material management services, consistent with its mission: to acquire, authenticate, preserve, develop, and distribute standard reference THE ESSENTIALS microorganisms, cell lines, and related materials for research in the life sciences� OF LIFE SCIENCE For over 85 years, ATCC has been a leading authenticate and further develop products provider of high-quality biological materials and services essential to the needs of basic and standards to the life -
1028 Subpart A—Susceptibility Discs
§ 460.1 21 CFR Ch. I (4±1±96 Edition) 460.137 Methicillin concentrated stock solu- Neomycin: 30 mcg. tions for use in antimicrobial suscepti- Novobiocin: 30 mcg. bility test panels. Oleandomycin: 15 mcg. 460.140 Penicillin G concentrated stock so- Penicillin G: 10 units. lutions for use in antimicrobial suscepti- Polymyxin B: 300 units. bility test panels. Rifampin: 5 mcg. 460.146 Tetracycline concentrated stock so- Streptomycin: 10 mcg. lutions for use in antimicrobial suscepti- Tetracycline: 30 mcg. bility test panels. Tobramycin: 10 mcg. 460.149 Tobramycin concentrated stock so- Vancomycin: 30 mcg. lutions for use in antimicrobial suscepti- bility test panels. The standard discs used to determine 460.152 Trimethoprim concentrated stock the potency shall be made of paper as solutions for use in antimicrobial suscep- described in § 460.6(d). Each antibiotic tibility test panels. compound used to impregnate such 460.153 Sulfamethoxazole concentrated stock solutions for use in antimicrobial standard discs shall be equilibrated in susceptibility test panels. terms of the working standard des- ignated by the Commissioner for use in AUTHORITY: Sec. 507 of the Federal Food, determining the potency or purity of Drug, and Cosmetic Act (21 U.S.C. 357). such antibiotic. SOURCE: 39 FR 19181, May 30, 1974, unless (b) Packaging. The immediate con- otherwise noted. tainer shall be a tight container as de- fined by the U.S.P. and shall be of such Subpart AÐSusceptibility Discs composition as will not cause any change in the strength, quality, or pu- § 460.1 Certification procedures for an- rity of the contents beyond any limit tibiotic susceptibility discs. -
Linezolid - Tigecycline
Linezolid - Tigecycline Paul M. Tulkens, MD, PhD Cellular and Molecular Pharmacology Louvain Drug Research Institute Catholic University of Louvain, Brussels, Belgium With the support of Wallonie-Bruxelles-International 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 1 Dong-A pharmaceuticals and tedizolid: step #1 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 2 Mode of action: • Protein synthesis inhibition: LZD binds to the 23S portion of the ribosomal 50S subunit (the centre of peptidyl transferase activity) → no initial complex 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 3 RNA interaction Karen L. Leach et al, Molecular Cell (2007) 26,393-402 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 4 Spectrum of activity No useful activity against other Gram-negative organisms because of constitutive efflux ! 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 5 Registered clinical indications Linezolid is often used off-label (endocarditis, osteomyelitis, ….) in pace of vancomycin 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 6 Linzezolid: mechanism of resistance 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 7 Can linzolid induce resistance ? 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 8 Linzolid can induce resistance… Locke et al. Antimicrob Agent Chemother 2009;53:5265-5274. 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 9 Linezolid pharmacokinetics 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 10 Linezolid human pharmacokinetics Oral therapeutic doses (600mg linezolid q12h for 21 days) Linezolid Tedizolid MIC 90 MIC90 Muñoz et al. ECCMID 2010; P1594 Flanagan SD, et al. Pharmacotherapy 2014;34(3):240–250. -
Tigecycline: a Igecycline
Molecules of the Millennium Tigecycline: A novel glycylcycline antibioticantibiotic Tetracycline antibiotics were first isolated at Lederle to occur.[5] Tigecycline is also active against organisms that Laboratories in 1945 and represented a significant display efflux-based resistance, which may be because of the advancement in the treatment of many infections. However, inability of the glycylcyclines to induce tetracycline efflux due to an increased incidence of resistance among various proteins, or because the efflux protein cannot export bacteria, the use of tetracyclines has been relegated to second tigecycline.[6] and third-line categories for most clinical indications. The two The binding site of tigecycline on the ribosome is common major mechanisms of resistance include tetracycline efflux to tetracyclines, but tigecycline binds 5-fold more strongly to and ribosomal protection, where tetracycline is prevented from the ribosome than tetracyclines and this enhanced binding is, binding to the ribosome. Research to find tetracycline probably, responsible for overcoming the ribosomal protection analogues, that circumvented these resistance mechanisms, mechanisms of tetracycline resistance.[5] The action of has led to the development of a novel group of drugs called tigecycline is bacteriostatic in nature, which is likely due to its glycylcyclines, the most promising compound being the 9-tert reversible interaction with the ribosome.[5] Its efficacy suggests butyl glycyclamido derivative of minocycline-tigecycline (GAR that traditional thinking about using bacteriostatic drugs in 936). treating serious infections needs to be revised.[7] Chemistry Antimicrobial activity The nucleus consists of four linear fused tetracyclic rings In vitro antibacterial activity of tigecycline has been and there is the addition of N, N-dimethylglycylamido (DMG) assessed against clinical isolates as a part of ongoing TEST group at C-9 position of minocycline.[1] initiative (Tigecycline Evaluation Surveillance Trial). -
Nature Nurtures the Design of New Semi-Synthetic Macrolide Antibiotics
The Journal of Antibiotics (2017) 70, 527–533 OPEN Official journal of the Japan Antibiotics Research Association www.nature.com/ja REVIEW ARTICLE Nature nurtures the design of new semi-synthetic macrolide antibiotics Prabhavathi Fernandes, Evan Martens and David Pereira Erythromycin and its analogs are used to treat respiratory tract and other infections. The broad use of these antibiotics during the last 5 decades has led to resistance that can range from 20% to over 70% in certain parts of the world. Efforts to find macrolides that were active against macrolide-resistant strains led to the development of erythromycin analogs with alkyl-aryl side chains that mimicked the sugar side chain of 16-membered macrolides, such as tylosin. Further modifications were made to improve the potency of these molecules by removal of the cladinose sugar to obtain a smaller molecule, a modification that was learned from an older macrolide, pikromycin. A keto group was introduced after removal of the cladinose sugar to make the new ketolide subclass. Only one ketolide, telithromycin, received marketing authorization but because of severe adverse events, it is no longer widely used. Failure to identify the structure-relationship responsible for this clinical toxicity led to discontinuation of many ketolides that were in development. One that did complete clinical development, cethromycin, did not meet clinical efficacy criteria and therefore did not receive marketing approval. Work on developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events. -
Progress in Pharmacokinetics and Pharmacodynamics - I
274 Abstracts Progress in pharmacokinetics and pharmacodynamics - I P1022 Pharmacokinetics of telithromycin in plasma and was higher in young women than in young men (21% difference), soft tissue after single-dose administration in healthy volunteers with only a 4% difference between elderly women and men. At the target clinical dose of 100 mg load infused over 30–60 min fol- R. Gattringer, F. Traunmueller, E. Urbauer, M. Zeitlinger, lowed by 50 mg q12h, Cmax and AUCss (mean Æ SD) were M. Mueller, C. Joukhadar 621 Æ 93 ng/mL and 3069 Æ 381 ng h/mL, respectively. Vienna, A Objectives: Telithromycin was described to reach high concentra- Dose (mg), with MD given q 12h tions levels in inflammatory fluid, in bronchopulmonary tissues and in tonsillar tissue. Because of these data telithromycin is spe- Pk parameter 12.5 25 50 75 100 200 300 culated to be a new option in the therapy of skin and soft tissue infections. To determine the concentration of telithromycin in the SD CLt 0.29 Æ 0.20 0.20 Æ 0.10 0.28 Æ 0.04 0.29 Æ 0.04 0.30 Æ 0.08 0.23 Æ 0.04 0.25 Æ 0.03 interstitial space fluid, the pharmacokinetics of this new antibiotic (L/hr/kg) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 57) (n ¼ 24) (n ¼ 12) were assessed after single dose administration in young healthy MD CLt ÁÁÁ 0.20 Æ 0.04 0.20 Æ 0.02 ÁÁÁ 0.24 Æ 0.045 ÁÁÁ ÁÁÁ (L/hr/kg) (n ¼ 5) (n ¼ 5) (n ¼ 3) volunteers by the use of microdialysis. -
TYLOSIN First Draft Prepared by Jacek Lewicki, Warsaw, Poland Philip T
TYLOSIN First draft prepared by Jacek Lewicki, Warsaw, Poland Philip T. Reeves, Canberra, Australia and Gerald E. Swan, Pretoria, South Africa Addendum to the monograph prepared by the 38th Meeting of the Committee and published in FAO Food and Nutrition Paper 41/4 IDENTITY International nonproprietary name: Tylosin (INN-English) European Pharmacopoeia name: (4R,5S,6S,7R,9R,11E,13E,15R,16R)-15-[[(6-deoxy-2,3-di-O-methyl- β-D-allopyranosyl)oxy]methyl]-6-[[3,6-dideoxy-4-O-(2,6-dideoxy-3- C-methyl-α-L-ribo-hexopyranosyl)-3-(dimethylamino)-β-D- glucopyranosyl]oxy]-16-ethyl-4-hydroxy-5,9,13-trimethyl-7-(2- oxoethyl)oxacyclohexadeca-11,13-diene-2,10-dione IUPAC name: 2-[12-[5-(4,5-dihydroxy-4,6-dimethyl-oxan-2-yl)oxy-4- dimethylamino-3-hydroxy-6-methyl-oxan-2-yl]oxy-2-ethyl-14- hydroxy-3-[(5-hydroxy-3,4-dimethoxy-6-methyl-oxan-2- yl)oxymethyl]-5,9,13-trimethyl-8,16-dioxo-1-oxacyclohexadeca-4,6- dien-11-yl]acetaldehyde Other chemical names: 6S,1R,3R,9R,10R,14R)-9-[((5S,3R,4R,6R)-5-hydroxy-3,4-dimethoxy- 6-methylperhydropyran-2-yloxy)methyl]-10-ethyl-14-hydroxy-3,7,15- trimethyl-11-oxa-4,12-dioxocyclohexadeca-5,7-dienyl}ethanal Oxacyclohexadeca-11,13-diene-7-acetaldehyde,15-[[(6-deoxy-2,3- dimethyl-b-D-allopyranosyl)oxy]methyl]-6-[[3,6-dideoxy-4-O-(2,6- dideoxy-3-C-methy-a-L-ribo-hexopyranosyl)-3-(dimethylamino)-b-D- glucopyranosyl]oxy]-16-ethyl-4-hydroxy-5,9,13-trimethyl-2,10- dioxo-[4R-(4R*,5S*,6S*,7R*,9R*,11E,13E,15R*,16R*)]- Synonyms: AI3-29799, EINECS 215-754-8, Fradizine, HSDB 7022, Tilosina (INN-Spanish), Tylan, Tylocine, Tylosin, Tylosine, Tylosine (INN-French), Tylosinum (INN-Latin), Vubityl 200 Chemical Abstracts System number: CAS 1401-69-0 Structural formula: Tylosin is a macrolide antibiotic representing a mixture of four tylosin derivatives produced by a strain of Streptomyces fradiae (Figure 1). -
WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
WO 2016/120258 Al O
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2016/120258 A l 4 August 2016 (04.08.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/00 (2006.01) A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/20 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 16/05 1545 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 26 January 2016 (26.01 .2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 264/MUM/2015 27 January 2015 (27.01 .2015) IN kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: JANSSEN PHARMACEUTICA NV TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [BE/BE]; Turnhoutseweg 30, 2340 Beerse (BE).