Plastome of Quercus Xanthoclada and Comparison of Genomic Diversity Amongst Selected Quercus Species Using Genome Skimming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rediscovery of Quercus Aliena Blume (Fagaceae) in Taiwan
Taiwania, 48(2): 112-117, 2003 Rediscovery of Quercus aliena Blume (Fagaceae) in Taiwan Mong-Huai Su(1), Sheng-Chieh Wu(1), Chang-Fu Hsieh(1), Sin-I Chen(2) and Kuoh-Cheng Yang(2, 3) (Manuscript received 9 April, 2003; accepted 9 May, 2003) ABSTRACT: The first collection of Quercus aliena Blume var. acutiserrata Maxim. ex Wenz. in Taiwan was made by Y. Shimada in 1924 from Hongmao. Since then, no other specimen had ever been collected. Recently, this species was rediscovered from Fengshan (3 km south of Hongmao) in Hsinchu County. On closer studies it was found to be the typical variety of Q. aliena Blume rather than the name recognized by Shimada. The population of Q. aliena is quite small at that limited location, and is vulnerable to human impacts. Therefore, it is necessary to take steps to conserve the habitat as soon as possible. The taxonomic treatment, morphological descriptions, photographs and notes of the species are given here. A key to distinguish it from the other three closely related Taiwanese species is also provided. KEY WORDS: Quercus aliena, Description, Distribution, Flora of Taiwan, Rare species, Taxonomy. INTRODUCTION On Sept. 22, 1924, Yaichi Shimada, a Japanese forester, collected a specimen of Fagaceae from Hongmao, Hsinchu. The specimen was identified as "Quercus aliena Bl. var. acute-dentata Maximowicz" on the label. Although it was a new record to Taiwan, Shimada never reported his discovery in any paper. Six years later, another Japanese forester, Syuniti Sasaki, adopted the name "Quercus aliena Blume var. acuteserrata Maximowicz" when he published a catalogue of the specimens presented in the Herbarium of the Department of Forestry, Government Research Institute, Formosa (Sasaki, 1930). -
S41598-021-85710-8.Pdf
www.nature.com/scientificreports OPEN Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China Jianqiang Li*, Qibo Chen, Zhuang Li, Bangxiao Peng, Jianlong Zhang, Xuexia Xing, Binyang Zhao & Denghui Song The carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a feld inventory to determine the distribution and altitudinal patterns of SC and SN among various −1 forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% −1 and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. -
Quercus Cerris L.) Populations
PATTERN OF GENETIC DIVERSITY IN TURKEY OAK (QUERCUS CERRIS L.) POPULATIONS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY YELĠZ TÜMBĠLEN ÖZER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY JULY 2014 Approval of the Thesis PATTERN OF GENETIC DIVERSITY IN TURKEY OAK (QUERCUS CERRIS L.) POPULATIONS submitted by YELİZ TÜMBİLEN ÖZERin partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Department, Middle East Technical University by, Prof. Dr. Canan Özgen _______________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı _______________ Head of the Department, Biology Prof. Dr. Zeki Kaya _______________ Supervisor, Biology Dept., METU Examining Committee Members: Prof. Dr. Musa Doğan _______________ Biology Dept., METU Prof.Dr. Zeki Kaya _______________ Biology Dept., METU Prof. Dr. Hayri Duman _______________ Biology Dept., Gazi University Assoc. Prof. Dr. Sertaç Önde _______________ Biology Dept., METU Assist. Prof. Dr. AyĢegül Birand _______________ Biology Dept., METU Date: 03.07.2014 iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Yeliz TÜMBĠLEN ÖZER Signature: iv ABSTRACT PATTERN OF GENETIC DIVERSITY IN TURKEY OAK (QUERCUS CERRIS L.) POPULATIONS TÜMBĠLEN ÖZER, Yeliz Ph D., Department of Biology Supervisor: Prof. Dr. Zeki KAYA July 2014, 119 pages Quercus cerris L. -
Elevation Alters Carbon and Nutrient Concentrations and Stoichiometry in Quercus Aquifolioides in Southwestern China
Science of the Total Environment 622–623 (2018) 1463–1475 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Elevation alters carbon and nutrient concentrations and stoichiometry in Quercus aquifolioides in southwestern China Ao Wang a,c,g,1, Xue Wang a,b,g,1, Roberto Tognetti d,Jing-PinLeie, Hong-Li Pan f, Xing-Liang Liu f,YongJiangb, Xiao-Yu Wang b,g,PengHeb,g, Fei-Hai Yu a,⁎,Mai-HeLib,g,⁎ a Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China b Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China c College of Nature Conservation, Beijing Forestry University, Beijing 100083, China d Dipartimento di Agraria, Ambiente e Alimenti, Università del Molise, 86090 Campobasso, Italy - European Forest Institute (EFI) Project Centre on Mountain Forests (MOUNTFOR), 38010 San Michele all'Adige, Italy e Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China f Sichuan Academy of Forestry, Chengdu 610081, China g Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland HIGHLIGHTS GRAPHICAL ABSTRACT • The concentration of non-structural car- bohydrates (NSCs) in fine roots de- creased with elevation in winter. • Winter NSCs stored in roots transferred to aboveground tissues during winter and at the beginning of growing season. • Both available soil P and plant tissue P concentrations decreased with increas- ing elevation. • The upper limit of Q. aquifolioides on Balang Mountain may be co-deter- mined by winter root NSC storage and P availability. -
FAGACEAE 1. FAGUS Linnaeus, Sp. Pl. 2: 997. 1753
Flora of China 4: 314–400. 1999. 1 FAGACEAE 壳斗科 qiao dou ke Huang Chengjiu (黄成就 Huang Ching-chieu)1, Zhang Yongtian (张永田 Chang Yong-tian)2; Bruce Bartholomew3 Trees or rarely shrubs, monoecions, evergreen or deciduous. Stipules usually early deciduous. Leaves alternate, sometimes false-whorled in Cyclobalanopsis. Inflorescences unisexual or androgynous with female cupules at the base of an otherwise male inflorescence. Male inflorescences a pendulous head or erect or pendulous catkin, sometimes branched; flowers in dense cymules. Male flower: sepals 4–6(–9), scalelike, connate or distinct; petals absent; filaments filiform; anthers dorsifixed or versatile, opening by longitudinal slits; with or without a rudimentary pistil. Female inflorescences of 1–7 or more flowers subtended individually or collectively by a cupule formed from numerous fused bracts, arranged individually or in small groups along an axis or at base of an androgynous inflorescence or on a separate axis. Female flower: perianth 1–7 or more; pistil 1; ovary inferior, 3–6(– 9)-loculed; style and carpels as many as locules; placentation axile; ovules 2 per locule. Fruit a nut. Seed usually solitary by abortion (but may be more than 1 in Castanea, Castanopsis, Fagus, and Formanodendron), without endosperm; embryo large. Seven to 12 genera (depending on interpretation) and 900–1000 species: worldwide except for tropical and S Africa; seven genera and 294 species (163 endemic, at least three introduced) in China. Many species are important timber trees. Nuts of Fagus, Castanea, and of most Castanopsis species are edible, and oil is extracted from nuts of Fagus. Nuts of most species of this family contain copious amounts of water soluble tannin. -
The Complete Chloroplast Genome of Fagus Crenata (Subgenus Fagus) and Comparison with F
The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana) James R. P. Worth1, Luxian Liu2, Fu-Jin Wei1 and Nobuhiro Tomaru3 1 Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan 2 Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, College of Life Sciences, Henan University, Kaifeng, China 3 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan ABSTRACT This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome has a total of 158,227 bp containing 111 genes, including 76 protein-coding genes, 31 tRNA genes and 4 ribosomal RNA genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed while the proportion of nucleotide sites differing between the two species was equal to 0.0018. The six most variable regions were, in increasing order of variability, psbK-psbI, trnG-psbfM, rpl32, trnV, ndhI-ndh and ndhD-psaC. These highly variable chloroplast regions in addition to 160 chloroplast microsatellites identified (of which 46 were variable between the two species) will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus. Subjects Biodiversity, Evolutionary Studies, Genetics, Plant Science Keywords Beech, Chloroplast SSRs, Fagaceae phylogeny, Fagus crenata, Whole chloroplast Submitted 9 January 2019 genome, Chloroplast microsatellites Accepted 24 April 2019 Published 7 June 2019 INTRODUCTION Corresponding author James R. -
DNA Barcoding of Greenideinae (Hemiptera : Aphididae) with Resolving Taxonomy Problems
10.1071/IS13014_AC ©CSIRO 2013 Supplementary Material: Invertebrate Systematics , 2013, 27 (4), 428–438 SUPPLEMENTARY MATERIAL DNA barcoding of Greenideinae (Hemiptera : Aphididae) with resolving taxonomy problems Qing-Hua Liu A,B , Li-Yun Jiang A and Ge-Xia Qiao A,C AKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. BUniversity of Chinese Academy of Sciences, Beijing 100049, China. CCorresponding author. Email: [email protected] Table S1. The collection information and GenBank accession numbers of Greenideinae species included in this study Species names Locations Collection date Host plant No. voucher specimens /Genbank Accession numbers voucher COI CytB Anomalosiphum takahashii Tao,1947 CHINA: Zhejiang Prov.: Fengyangshan Mt. 26-Ⅶ-2007 Dalbergia millettii 20371 JQ926133 JX186598 Anomalosiphum takahashii Tao ,1947 CHINA: Guangdong Prov.: Ruyuan County 20-Ⅶ-2008 Fabaceae 21883 JQ926135 JX186591 Anomalosiphum takahashii Tao ,1947 CHINA: Guangdong Prov.: Ruyuan County 21-Ⅶ-2008 unknown 21917 JQ926136 JX186592 Anomalosiphum tiomanensis Martin et Agarwala ,1994 CHINA: Hainan Prov.: Wenchang City 18-Ⅲ-2008 Fabaceae 20895 JQ926137 JX186748 Anomalosiphum tiomanensis Martin et Agarwala ,1994 CHINA: Guangxi Auto. Reg.: Damingshan Mt. 11-Ⅷ-2011 Phyllanthus emblica 27195 JQ926138 JX186594 Cervaphis echinata Hille Ris Lambers, 1956 CHINA: Hainan Prov.: Jianfengling Mt. 21-Ⅲ-2006 Paulownia sp. 18461 JQ926132 JX186599 Cervaphis quercus Takahashi,1918 CHINA: Guizhou Prov.: -
Sympatric Parallel Diversification of Major Oak Clades in the Americas
Research Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity Andrew L. Hipp1,2, Paul S. Manos3, Antonio Gonzalez-Rodrıguez4, Marlene Hahn1, Matthew Kaproth5,6, John D. McVay3, Susana Valencia Avalos7 and Jeannine Cavender-Bares5 1The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA; 2The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605, USA; 3Duke University, Durham, NC 27708, USA; 4Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autonoma de Mexico, Antigua Carretera a Patzcuaro No. 8701, Col. Ex Hacienda de San Josedela Huerta, Morelia, Michoacan 58190, Mexico; 5Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; 6Department of Biological Sciences, Minnesota State University, Mankato, MN 56001, USA; 7Herbario de la Facultad de Ciencias, Departamento de Biologıa Comparada, Universidad Nacional Autonoma de Mexico, Circuito Exterior, s.n., Ciudad Universitaria, Coyoacan, CP 04510, Mexico City, Mexico Summary Authors for correspondence: Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number Andrew L. Hipp and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak Tel: +1 630 725 2094 diversity is key to understanding biodiversity of northern temperate forests. Email: [email protected] A phylogenetic study of biogeography, niche evolution and diversification patterns in Paul S. Manos Quercus was performed using 300 samples, 146 species. Next-generation sequencing data Tel: +1 919 660 7358 Email: [email protected] were generated using the restriction-site associated DNA (RAD-seq) method. A time- calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, Jeannine Cavender-Bares and leaf habit data to reconstruct the biogeographic and evolutionary history of the American Tel: +1 612 624 6337 Email: [email protected] oaks. -
Evergreen Sclerophyllous Quercus Forests in Northwestern Yunnan
Web Ecology 6: 88–101. Evergreen sclerophyllous Quercus forests in northwestern Yunnan, China as compared to the Mediterranean evergreen Quercus forests in California, USA and northeastern Spain C. Q. Tang Tang, C. Q. 2006. Evergreen sclerophyllous Quercus forests in northwestern Yunnan, China as compared to the Mediterranean evergreen Quercus forests in California, USA and northeastern Spain. – Web Ecol. 6: 88–101. Evergreen sclerophyllous Quercus forests in NW Yunnan (China) were studied and compared with the Mediterranean evergreen sclerophyllous Quercus forests in central coastal California (USA) and Catalonia (NE Spain). Forests of Q. aquifolioides, Q. pan- nosa, Q. longispica of NW Yunnan, Q. agrifolia of California and Q. ilex of NE Spain were analyzed as representative communities. The similarities and differences at the community level in the contemporary vegetation of the sclerophyllous Quercus forest found in the three regions are clarified. The general patterns of the evergreen Quercus forest in the three regions were similar, though different assemblages of species were involved. The species diversity in all three regions was rather low. The species richness did not significantly differ among the forests, although in the Q. longispica forest it is somewhat higher than the others. The three representative species of evergreen Quercus in NW Yunnan reached the greatest maximum height, while Q. agrifolia of California had the largest basal area per ha. The Q. ilex forest of Spain had the lowest values for maximum tree height and dbh and the highest density per ha. Frequency of dbh size classes indicated that Q. aquifolioides, Q. pannosa, and Q. agrifolia had potentially good regeneration of the sporadic type with highest values for the intermediate size classes, and the regeneration of Q. -
Predating Strategy of Rodents on Acorns of Quercusaliena Var
ACTA ECOLOGICA SINICA Volume 26, Issue 11, November 2006 Online English edition of the Chinese language journal Cite this article as: Acta Ecologica Sinica, 2006, 26(11), 3533−3541. RESEARCH PAPER Predating strategy of rodents on acorns of Quercusaliena var. acuteserrata under different predating risks and fate of acorns Wang Zhonglei1,2, Gao Xianming1,* 1 Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2 Graduate School of Chinese Academy of Sciences, Beijing 100039, China Abstract: The effects of rodents on forest regeneration have been highlighted in many ecological studies. In 2002 and 2003, the acorns of Quercus aliena var. acuteserrata were subjected to 12 different treatments. The daily dynamics and the amount of acorns that were finally left intact, predated in situ, or removed off were examined and documented. The ratios of acorns that were infested by bugs before and after predation by rodents were carefully documented. It was found that: (1) the ratios of acorns infested by bugs before and after predation by rodents showed significant difference (P > 0.05), suggesting that rodents would not prey on acorns during the predating process if acorns had been already infested by bugs. (2) When compared with the controls, the fate of acorns could be roughly classified into four types: ①acorns that were simply buried or placed on black paper showed no significant differ- ences with the controls in their response to rodents, suggesting that rodents have no sensitivity to the little change of odor resulting from burying and may be more adapted to black background. -
Forest Characteristics, Population Structure and Growth Trends Of
Vegetation Classification and Survey 1: 7–20 doi: 10.3897/VCS/2020/37980 International Association for Vegetation Science (IAVS) RESEARCH PAPER Forest characteristics, population structure and growth trends of Pinus yunnanensis in Tianchi National Nature Reserve of Yunnan, southwestern China Cindy Q. Tang1, Li-Qin Shen1, Peng-Bin Han1, Diao-Shun Huang1, Shuaifeng Li2, Yun-Fang Li3, Kun Song4, Zhi-Ying Zhang1, Long-Yun Yin5, Rui-He Yin5, Hui-Ming Xu5 1 Institute of Ecology and Geobotany, College of Ecology and Environmental Science, Yunnan University, Yunnan, China 2 Research Institute of Resource Insects, Chinese Academy of Forestry, Yunnan, China 3 Forest Station of Yunlong Forestry Bureau, Yunnan, China 4 School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China 5 Management Office of Tianchi National Nature Reserve, Yunnan, China Corresponding author: Cindy Q. Tang ([email protected]); Shuaifeng Li ([email protected]) Academic editor: David W. Roberts ♦ Received 4 July 2019 ♦ Accepted 1 September 2019 ♦ Published 4 May 2020 Abstract Aims: Pinus yunnanesis is commercially, culturally and economically important, but there is a lack of ecological data on its role in stand dynamics. Our aims are to clarify the structure, composition, regeneration and growth trends of primary mature P. yunnanensis forests. Study area: The Tianchi National Nature Reserve in the Xuepan Mountains, Yunlong County, northwestern Yunnan, China. Methods: We investigated forests containing P. yunnanensis, meas- ured tree ages and analyzed the data. Results: Six forest types were identified: (1) coniferous forest:Pinus yunnanensis (Type 1); (2) mixed coniferous and evergreen broad-leaved forest: P. yunnanensis-Lithocarpus variolosus (Type 2); (3) mixed coniferous and deciduous broad-leaved forest: P. -
In Vitro Propagation of Oriental White Oak Quercus Aliena Blume
Article In Vitro Propagation of Oriental White Oak Quercus aliena Blume Qiansheng Li 1 , Mengmeng Gu 1 and Min Deng 2,3,* 1 Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, College Station, TX 77843, USA; [email protected] (Q.L.); [email protected] (M.G.) 2 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China 3 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla 666303, China * Correspondence: [email protected] Received: 28 April 2019; Accepted: 23 May 2019; Published: 28 May 2019 Abstract: Quercus aliena Blume, also known as the oriental white oak, is a widespread species in temperate forests of East Asia with significant ecological and economical importance. Establishing an efficient vegetative propagation system is important for its germplasm conservation and breeding program. Protocols of micropropagation from shoot tips and nodal segments were investigated in order to produce uniform high-quality seedlings. Nodal segments from 18 month old seedlings were used as explants to initiate the aseptic culture. The highest bud proliferation was achieved by subculturing the explants on 1/2 strength woody plant medium (WPM) with 2.0 mg L 1 BA. · − WPM with 0.5 mg L 1 BA and 0.05 mg L 1 IBA was the best medium for subculture to obtain the · − · − vigorous regenerated shoots in this experiment. Nodal segments without shoot tips had a higher adventitious bud proliferation rate than those with shoot tips. The highest rate (41.5%) of rooting in vitro was induced by using WPM with 1.0 mg L 1 IBA and 5 g L 1 activated charcoal.